Page: 1 of 3 Date: 05/03/2000

English Station Summary of Soil Analytical Data Oil ASTs (AOC 8)

PERIOD: From 05/29/1998 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE					
CONSTITUENT	SAMPLE ID Indust.		ES-MW16 (64	8) ESMW17D 26	-28 ES-MW17 (4- 05/29/1998	6) ES SS1S 0
	DEPTH (ft) CTDE	P Jan. 1996 CTDEP Jan. 19	98 7.00	27.00	5.00	
Selenium (SPLP)	(mg/l) (mg/l)	0.15 0.5	0.005U 0.01U	0.02	0.01U	0.005U

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 3 Date: 05/03/2000

English Station Summary of Soil Analytical Data Oil ASTs (AOC 8)

PERIOD: From 05/29/1998 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	DEPTH (n) CTI	teria Criteria DEP Jan.: 1996 CTDEP Jan.	06/19/1998			05/29/1998 3,00
					A AAPT	
Lead (SPLP)	(mg/l)	0.15	0.068J	0.0050	0.0050	0.007

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 3 of 3 Date: 05/03/2000

English Station Summary of Soil Analytical Data Oil ASTs (AOC 8)

PERIOD: From 05/29/1998 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soil

_			The second of th			
	antiniara di dinimia. Caralleira manera caller des des constitutos de la constituto de la citada de citada de c					
1 ::						
						******* * ******** ** *
	* 11.00 11.00					
				TB-211		
		SITE				
		SAMPLE ID Indust	parameter and the control of the con	THE PROPERTY OF THE PARTY OF TH	TB-212(2-4)	
			/Comm. GB Mobility	· · · · · · · · · · · · · · · · · · ·		
		-11:				
	CUNSTITUENT	DATE Criteri			03/30/2000	
						-848844-17-0-0-141-2814-48-18-18-18-18-18-18-18-18-18-18-18-18-18
			U: Ten:::1008::::::::::::::::::::::::::::::::	CRT IN		
		DEPTH (ft) CTDE	P Jan. 1996 CTDEP Jan. 19	700		
			التنافي المتناف المتناف فينتف والمستنف والمتناف والمتناف والمتناف والمتناف والمتناف والمتناف والمتناف والمتناف			
				inches and a contract of the second contract	and the second of the second o	
	many transfer and the same and					
				The state of the s		
	Lead (OFLF)					
		(mg/l)			· ; • ; <u>; · · · · · · · · · · · · · · · · · </u>	
						The first of the second second of the second
	110 100 100 100 100 100 100 100 100 100	***************************************				
					-0.04	
	6 I : (65I 5)	(1)	0.5	en (14	<0.01	
	Selenium (SPLP)	(ma/l)	U.S	~0.01	~0.01	
	Selement (St Et)	(1119-17				
		, • .				

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 10 Date: 05/03/2000

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - inclusive

SAMPLE TYPE: Soil

	SITE			CS-006	HA-01		PCB-01
CONSTITUENT	DATE		GB Mobility: Criteria CTDEP Jan. 1996		HA-01 03/30/2000 1.65	HA-02 03/30/2000 0.95	ES PCB1:(1)
PCB's TPH	(mg/kg) (mg/kg)	10 2500	2500	1.00 NA	[29] NA	<1.0 NA	[440] NA
Arsenic	(mg/kg)	10		NA	NA	[230]	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 10 Date: 05/03/2000

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

				The second secon		indicated and a large control of the large		
	at the firm water with a district for the left limit				1		and the bearing the state of th	
					<u> </u>			#. LYK.
								A
				DOD AS THE	DCD 02	000 04	PCB-05	
	SITE			PCB-02				1,11 1-11
							······································	2.4.
				ES PCB2 (1.5)	こら ひとはっ バンン	ES PCB4 (0.2)	ES PCB5 (0.5)	
	SAMPLE ID.	Indust/Comm.	GB Mobility	C3 FGD2 (1.3)		""" LO 1 ODT (0.2)	LO 1 000 (0.0)	
	The land of the contract of th	# 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	DATE		Criteria	06/11/1998	06/11/1998	06/11/1998	06/11/1998	dry freigi
CONSTITUENT	DAIE	Griteria.	CILETIA					
	DEPTH (ft)	CTDEP Jan, 1996	CTDEP Ian	1996 1.50	0:20		0.50	
	DEC IN (II)							
								
	a la constituire de				1.0U	4.01 I	······································	
D/R's	(ma/ka)	::::::::::::::::::::::::::::::::::::::		[2300]				
						r-mana - maria (::::::::::::::::::::::::::::::::::::::	
	T				100001	14.400E1	ACE	
l ==:	(mg/kg)	2500	2500	58	[9203]	[11235]	100	
I TPH	(ing/kg)	2000	2000	~ -	L 1			
1				marten er en internet er	:			
	A CONTRACTOR OF THE PARTY OF TH			NA NA	MA.	NA	NA	
Arsenic								
I Arsenic								

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 3 of 10 Date: 05/03/2000

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soi

	SITE	***************************************		PCB-06		PCB-08	PCB-09
CONSTITUENT	DATE	Indust/Comm; Criteria CTDEP Jan: 1996	Criteria		ES PCB7 (0.5) 06/11/1998 0,50		ES PCB9 (0.8) - 06/11/1998 - 0.80
PCB's	(mg/kg)	10		4	1.00		1.
Arsenic Arsenic	(mg/kg) (mg/kg)	2500 10	2500	[9091] NA	600 NA	33 NA	32 NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 4 of 10 Date: 05/03/2000

English Station Summary of Soll Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Sol

	SITE			PCB-10:	PCB-11	PCB-12	PCB-13
		Indust/Comm.	GB Mobility	ES PCB10	(0.5) ES PCB11 (1)	ES PCB12 (1) ES PCB13 (0.5)
CONSTITUENT	DATE		Criteria			06/11/1998	06/11/1998
			6 CTDEP Jan.	996 0.50	1.00	1.00	0.50
PCB's	(mg/kg)	10		1.00	1.0U	1.00	1.0U
TPH	(mg/kg)	2500	2500	25U	25U	25U	27
Arsenic	(mg/kg)	10		NA	NA	NA	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 5 of 10 Date: 05/03/2000

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

			August 1994 Blick Color Charles				
						- 10-10 10-11 10-1	

				PCB-14	PCB-15	PCB-16	PCB-17
	SITE						
			CO MALMA	ES PCB14 (1)	ES PCR15 (0.5)	FS PCR16/1	ES PCB17 (0.5)
	SAMPLEID	Indust/Comm.	GB MODILITY	ES FUBIALITY			
					ACM4/4000	06/11/1998	06/11/1998
CONSTITUENT	DATE	Criteria	Criteria	06/11/1990		00/11/1330	00/11/1000
							0.50
	DEBIH (N)	CTDEP Jan. 1996	CTDEP Jan. 1996	3: 1.00	0.50	1.00	0.50
				1.00	1011	1.0U	
PCB's	(ma/ka)	10					
LODA					11.00 (mm mm.mm.mm.mm.mm.mm.mm.mm.mm.mm.mm.mm.m		
			2500	118	25U	25U	25U
I TPH	(mg/kg)	2500	2500	110	200		-
1					## **** *******************************		
	/	10		NA	NA	NA.	NA SECTION OF THE SEC
Arsenic	(mg/kg)	1V					

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - inclusive

SAMPLE TYPE: Soil

	SITE					PCB-19	******
CONSTITUENT		: Indust/Comm. : Criteria	GB Mobility Criteria		ES PCB18A (2)	ES PCB19 (0.5)	ES PCB19A (2.5) 06/11/1998
CONSTITUENT							2.50
PCB's	(mg/kg)	10		1.00	1.00	1.0U	1.00
TPH	(mg/kg)	2500	2500	25U	25U	28	25
Arsenic	(mg/kg)	10		NA	NA	NA 🗒 : 💮 💮	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 7 of 10 Date: 05/03/2000

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

						** *** *** *** *** *** *** ** ** ** **	
					! !!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!		
11.000							***************************************
							". '
			**************************************	• • • • • • • • • • • • • • • • • • •	**************************************		
- allered by a contract of the	::::::::::::::::::::::::::::::::::::::				[] . [] . [] . [] . [] . [] . [] . [] . [] . [] . [] . [] . [] . [] . [] . [] . [] . [] . [
1 The Control of the	SITE			PCB-20	PCB-21	DOD OF	
	511 E		***************************************	PCB-ZU	PCB-21	: PCB-31	PCH-32
	*****		***************************************				
		*				***************************************	
	CANDICIO	Indust /Camp		ES PCB20 0.7	ESPCB21 0.5	PCB-31	DADISALLINING
	SAMPLEID	Indust/Comm.	GD MOOHITY	C3 F CDZU U.1	COPUDAL U.D.	- rup-3	PUD-02
						The state of the s	***************************************
the first being the second of							
I CONSTITUENT	DATE	Criteria .	Criteria	06/18/1998	06/18/1998	07/07/1998	07/07/1998
1 00101110211	^1	. 	· OIRCHA			0110111330	01/0/11/330
					**************************************	11' 1' 1 (1' 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
		DTDCD:I IAGO	OTDED I 4000	~ 70 ····	. A EA	n nn	A AA
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	0.70	0.50	0.00	0.00
							
	and the second s	and a decision of the contract		inima yi wa dana manini ini ini a	richard and arm continuous or committee and arms	and the second s	
E-PGR'4	- (maka					. 1941	1531
LCDS	(mg/kg)						
				***************************************		****	
in the state of th	***************************************		··· ··· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	**** **** ** **************************	••• ••• •• • • • • • • • • • • • • • • •	
2011	(fla \	2500	2500	25UJ	25UJ	382	420
I TPH	(mg/kg)	∠ 500	2 300	2503	2003	30Z	120
	(33)						
							and a great second for a comment of the comment
Areanic	/mo/kn)	Tip: Till till till till till till till till		NA	NA	NA	NA
Arsenic	(mg/kg)	10		NA	NA	NA	NATERIA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 8 of 10

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE			PCB-33	PCB-34	PCB-35	SS-101	
CONSTITUENT	SAMPLEID	Indust/Comm Criteria	. GB Mobility Criteria	PCB-33 07/07/1998	PCB-34 07/07/1998	PCB-35 07/07/1998	SS-01 03/30/2000	
PCB's	DEPTH (ft) (mg/kg)	CTDEP Jan, 1	1998 CTDEP Jan. 19	996 0.00 1.0U	0,00 1.0U	0.00 1.0U	0.15 <1.0	
TPH	(mg/kg)	2500	2500	25U	25U	41	NA	
Arsenic	(mg/kg)	10		NA .	NA	NA	[150]	

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 9 of 10 Date: 05/03/2000

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - inclusive

SAMPLE TYPE: Soil

	SITE			\$\$-102	SS-103	TB-115	-TB-116
	SAMPLEID	Indust/Comm,	GB Mobility	SS-02	SS-03	TB-115 (5-7)	TB-116 (5-7)
* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Criteria		03/30/2000	* · · · · · · · · · · · · · · · · · · ·		07/01/1998
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	0,15	0.15	6,00	6.00
PCB's	(mg/kg)	10		[23]	ব.0	1.00	1.00
TPH	(mg/kg)	2500	2500	NA	NA	25U	NA
Arsenic	(mg/kg)	10		5.4	[116]	NA	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 10 of 10 Date: 05/03/2000

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 06/11/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

	dia-				TB-215
CONSTITUENT	SAMPLE ID DATE	Indust/Comm.	GB Mobility	18-214 TB-214(3-3.3) 03/30/2000	TB-215 TB-215(2-2:2) 03/30/2000
				Y4.1 Y	2.10
PCB's TPH	(mg/kg) (mg/kg)	10. 2500	2500	Ž	A NA
Ärsenic	(mg/kg)	10		NA	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page; 1 of 4 Date: 05/03/2000

0,020

English Station Summary of Soil Analytical Data Former Interior Chemical Storage Areas (AOC 10)

PERIOD: From 05/27/1998 thru 07/01/1998 - Inclusive

SAMPLE TYPE: Soil

MW-020 MW-013 MW-014D MW-014S SITE ES-MW14 (1-3) ES-MW13 (13-15) ES MW14D(26-28) ES-MW20 (11-13) GB Mobility SAMPLE ID Indust /Comm. 06/01/1998 06/11/1998 06/01/1998 05/27/1998 DATE Criteria Criteria CONSTITUENT CTDEP Jan. 1996 14.00 27.00 2.00 12.00 DEPTH (A) CTDEP Jan. 1998 100U 100U 218.0 100U 84000 (ua/ka) 2500000 Acenaphthene 128.0 100U 100U 100U 2500000 84000 (ug/kg) Acenaphthylene 562.0 1001 1001 1000 (ug/kg) 2500000 400000 Anthracene 260.0 100U 100U 1023.0 7800 1000 (ug/kg) Benzo(a)anthracene 1000 581.0 312.0 100U 1000 (ug/kg) 1000 Benzo(a)pyrene 550.0 100U 100U 100U 7800 1000 3.4-Benzofluoranthene (ug/kg) 500U 1081.0 500U 42000 (ug/kg) 2500000 Benzo(g,h,i)perylene 550.0 100U 100U 1000 100U (ug/kg) 78000 Benzo(k)fluoranthene 1000 960 100U 721.0 297.0 780000 (ug/kg) Chrysene 1417.0 573.0 100U 115.0 2500000 56000 (ug/kg) Fluoranthene 2500000 100U 239.0 10011 100U (ug/kg) 56000 Fluorene 178.0 100U 100U 100U 2500000 56000 (ug/kg) Naphthalene 1200.0 295 D 100U 100U (ug/kg) 2500000 40000 Phenanthrene 2205.0 534.0 100U 121.0 2500000 40000 (ug/kg) Pyrene 29J 588 45 2500 (mg/kg). 2500 6.7 4.3 1.0U [10.5] (mg/kg) 10 Arsenic 38 140000 (mg/kg) Barlum 0.5U 0.50 0.5U 0.5U (mg/kg) 1000 Cadmium 15.7 23,9J 10.2 (mg/kg) Chromium 11.0 70.0 0.08 76.0 1000 (mg/kg) Lead

Only those parameters detected are shown. RSR exceedences are bracketed.

Mercury

(ma/kg) -

Page: 2 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Former Interior Chemical Storage Areas (AOC 10)

PERIOD: From 05/27/1998 thru 07/01/1998 - Inclusive

SAMPLE TYPE: Soil

Silver	(mg/kg)	10000	0.2U	0.4	0.2U	0.2U
Selenium	(mg/kg)	10000	0.7		0.5U	0.5U
	UZF16(II)		96 CTDEP Jan. 1996 14.00			12.00
CONSTITUENT		Criteria		06/11/1998		05/27/1998
	SAMPLE ID	***************************************	GB Mobility ES-MW13 (13-1	5) ES MW14D(26-28) ES-MW14 (1-	3) ES-MW20 (11-13)
	SITE		MW-013		MW-014S	MW-020

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data Former Interior Chemical Storage Areas (AOC 10)

PERIOD: From 05/27/1998 thru 07/01/1998 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE DEPTH (R)	indust/Comm. Criteria CTDEP Jan. 1996	GB Mobility Criteria CTDEP Jan.:1998	TB-018A ES-TB18A(16-18) 05/28/1998 17.00	TB-108 TB-108 (8-10) 07/01/1998 9.00	TB-108 TB-108 (12-14) 07/01/1998 13.00
Acenaphthene	(ug/kg):	2500000	84000	10000U	10000Ü	1000U
Acenaphthylene	(ug/kg)	2500000	84000	10000Ü	10000U	1000U
Anthracene	(ug/kg)	2500000	400000	U0000t	10000U	1000U
Benzo(a)anthracene	(ug/kg)	7800	1000	[10000]U	[10000]U	1000U
Benzo(a)pyrene	(ug/kg)	1000	1000	[10000]U	[10000]Ü	[1000]U
3,4-Benzofluoranthene	(ug/kg)	7800	1000	[10000]U	[10000]U	1000U
Benzo(g,h,i)perylene	(ug/kg)	2500000	42000	[50000u]	[50000U]	5000U
Benzo(k)fluoranthene	(ug/kg)	78000	1000	[10000U]	[100000]	1000U
Chrysene	(ug/kg)	780000	960	[10000U]	[10000Ü]	[10∞∩]
Fluoranthene	(ug/kg)	2500000	56000	59574.0J	10000U	1691.0
Fluorene	(ug/kg)	2500000	56000	100000	10000Ü	1000U
Naphthalen o	(ug/kg)	2500000	56000	10000U	10000U	1000U
Phenanthrene	(ug/kg)	2500000	40000	38833.0	10000U	1483.0
Pyrene	(ug/kg)	2500000	40000	61277.0	10000U	1658.0
TPH	(mg/kg)	2500	2500	1492	[4162]	1542
Arsenic	(mg/kg)	10		[10.7]J	NA	NA
Barlum	(mg/kg)	140000		10.2	NA .	NA IIII
Cadmium	(mg/kg)	1000		5.0	NA	NA
Chromium	(mg/kg)			90.4	NA	NA THE PROPERTY OF THE PROPERT
Lead	(mg/kg)	1000		350	NA	NA
Mercury Mercury	(mg/kg)	610		3,46	NA.	NA CONTRACTOR OF THE CONTRACTO

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 4 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Former Interior Chemical Storage Areas (AOC 10)

PERIOD: From 05/27/1998 thru 07/01/1998 - Inclusive

SAMPLE TYPE: Soil

			 			
	SITE SAMPLE ID	Indust/CommGB N	Mobility: ES-TB18A(16-18)	TB-108 TB-108 (8-10)	TB-108) TB-108 (12-14)	
CONSTITUENT	DEPTH (ft)	CTDEP Jan. 1996 CTD		9.00	13.00	
Selenium	(mg/kg)	10000	0.50	NA	NA	
Silver	(mg/kg)	10000	4.6	NA	NA	

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE SAMPLE ID	Indust/Comm.	GB Mobility	MW-004D ESMW4D:36-40	MW-004S ES-MW45 (11-13)	MW-005 ES-MW5 (2-4)	MW-006 ESMW6 5-9
CONSTITUENT	DATE DEPTH (ft)	Criteria CTDEP Jan: 1996	Criteria CTDEP Jan: 1998	06/10/1998 38.00	05/27/1998 12.00	05/26/1998 3.00	06/09/1998 7.00
Acenaphthene	(ug/kg)	2500000	84000	1000	100U	1000	100U
Acenaphthylene	(ug/kg)	2500000	84000	100U	100U	100U	122.0
Anthracene	(ug/kg)	2500000	400000	1000	1000	100U	1000
Benzo(a)anthracene	(ug/kg)	7800	1000	100U	100U	100U	633.0
Benzo(a)pyrena	(ug/kg)	1000	1000	100UJ.	1000	100U	572.0
3,4-Benzofluoranthene	(ug/kg)	7800	1000	100U	100U	100U	432.0
Benzo(k)fluoranthene	(ug/kg)	78000	1000	100U	.100U	100U	222.0
Chrysene	(ug/kg)	780000	960	100U	100U	100U	100U
Fluoranthene	(ug/kg)	2500000	56000	1000	100U.	1000	662.0
Phenanthrene	(ug/kg)	2500000	40000	100U	100U	100U	464.0
Pyrene	(ug/kg)	2500000	40000	100U	100U	100U	919.0
ТРН	(mg/kg)	2500	2500	25 U	25U	1384J	974
Arsenic	(mg/kg)	10		1.003	[39.4]	[47.2]	[68.6]
Barium	(mg/kg)	140000		24	30	50	32
Cadmlum	(mg/kg)	1000		0.5U	0.50	0.50	24.3
Chromium	(mg/kg)			4.9	18.1	9.4	30.8
Lead	(mg/kg)	1000		2.3	43.7	33.1	470
Mercury	(mg/kg)	610	2000 a 20 femare (20 de 10 de	0.02U	0.10	0.06	0.59
Selenium	(mg/kg)	10000		0.6	0.5Ü	1,0	4.2

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 9 Date: 05/03/2000

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	Indust/Comm. Criteria	GB Mobility Criteria	MW-007. ES-MW7 (7-9) 06/04/1998 8.00	MW-009A ES:MW9A(0-2) 05/26/1998	MW-010 ESMW10.9-11 06/09/1998 10.00	MW-022 ESMW22 7-9 06/09/1998
	DEPTH (ft) (ug/kg)	CTDEP Jan. 1996 2500000	CTDEP Jan. 1996 84000	8.00 100U	1.00 100U	181.0	100U
Acenaphthene	(ug/kg)	250000Q 2500000	84000	100U	100U	384.0	100U
Acenaphthylene Anthracene	(ug/kg)	2500000	400000	1000	100U	664.0	1000
	(ug/kg)	7800	1000	100U	100U	[1089.0]	100U
Benzo(a)anthracene	(ug/kg)	1000	1000	100U		830.0	113.0
Benzo(a)pyrene		7800	1000	100U	100U	954.0	100U
3,4-Benzofluoranthene	(ug/kg)	78000	1000	1000	1000	161.0	100U
Benzo(k)fluoranthene	(ug/kg)		960	100U	100U	[1536.0]	100U
Chrysene	(ug/kg)	780000		100U	135.0	2774.0	1320
Fluoranthene	(ug/kg)	2500000	56000				
Phenanthrene	(ug/kg)	2500000	40000	100U	100U	448.0	100U
Pyrene	(ug/kg)	2500000	40000	1000	120.0	3333.0	1420
TPH	(mg/kg)	2500	2500	25U	25U	30	25U
Arsenic	(mg/kg)	10		[14.7]	[18.3]	3.6	[23.0]
Barium	(mg/kg)	140000		35	54	57	24
Cadmium	(mg/kg)	1000		0.5U	: 0.5U	0.5U	0.9
Chromium	(mg/kg)			12.0	9,8	9.3	27.1
Lead	(mg/kg)	1000		49.4	62.9	97.1	- 13.0
Mercury	(mg/kg)	610		0.22	0.25	2.86	0.16
Selenium	(mg/kg)	10000		5.2	1.1	1,5	3.5

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE DEPTH (n)	Indust./Comm. Criteria CTDEP Jan, 1996	GB Mobility Criteria CTDEP Jan. 1998	SED-01: ES SED1 (1) 06/12/1998 1,00	TB-005 ES-TB5 (4-6) 06/04/1998 5.00	TB-008A ES-TB8A (1-3) 06/04/1998 2.00	TB-008B ES-TB8B (15-17) 06/04/1998 -16.00
Acenaphthene	(ug/kg)	2500000	84000	10000U	100U	100Ù	1000
Аселарhthylene	(ug/kg)	2500000	84000	10000U	100U	100U	100U
Anthracene	(ug/kg)	2500000	400000	10000U	100 U	100 U	100U
Benzo(a)anthracene	(ug/kg)	7800	1000	[10000]U	100U	100U	100U
Benzo(a)pyrene	(ug/kg)	1000	1000	[10000]U	100U	100U	1000
3,4-Benzofluoranthene	(ug/kg)	7800	1000	[10000]U	100U	100U	100U
Benzo(k)fluoranthene	(ug/kg)	78000	1000	[1000gu	100U	100U	100U
Chrysene	(ug/kg)	780000	960	[1000]]	100U	100U	100U
Fluoranthene	(ug/kg)	2500000	56000	10000U	1000	100U	1000
Phenanthrene	(ug/kg)	2500000	40000	10000U	100U	100U	100U
Pyrene	(ug/kg)	2500000	40000	10000U	100U	100U	100U
TPH	(mg/kg)	2500	2500	35	97	25U	25U
Arsenic	(mg/kg)	10		[16.3]	4.9	[23.1]	6.6
Bartum	(mg/kg)	140000		31	53.0	100	28.0
Cadmium	(mg/kg)	1000		0.5ป	0.5U	0.5ป	0.5U
Chromium	(mg/kg)			92.1J	8.5	3.7	18.4
Lead	(mg/kg)	1000		429	165	807-	18,4
Mercury	(mg/kg)	610		1.67	1.20	0.38	0.02
Selenium	(mg/kg)	10000		0,5U	. 0.5U	3.4	0.5U

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE DEPTH (ft)	Indust/Comm, Criteria CTDEP Jan. 1996	GB Mobility Criteria CTDEP Jan. 1998	TB-009 ES-TB9 (3-7) 06/04/1998 5,00	TB-010 ES-TB (0(11-13) 06/04/1998 12.00	TB-104 TB-104 (2-4) 06/30/1998 3.00	TB-104 TB-104 (4-6) 06/30/1998 5.00
kcenaphthene	(ug/kg)	2500000	84000	1000	100U	NA	NA
Acenaphthylene	(ug/kg)	2500000	84000	100U	100U	NA	NA
Inthracens	(ug/kg)	2500000	400000	100U	100U	NA	NA
Benzo(a)anthracene	(ug/kg)	7800	1000	100U	100U	NA	NA
Benzo(a)pyrene	(ug/kg)	1000	1000	100U	100U	NA	NA
3,4-Benzofluoranthene	(ug/kg)	7800	1000	100U	100U	NA	NA
Benzo(k)fluoranthene	(ug/kg)	78000	1000	100U	100U	NA	NA
Chrysene	(ug/kg)	780000	960	100U	100U	NA	NA
luoranthene.	(ug/kg)	2500000	56000	1000	100U	NA	NA
Phenanthrene	(ug/kg)	2500000	40000	100U	100 U	NA	NA
- Pyrana	(ug/kg)	2500000	40000	100U	1000	NA	NA
TPH	(mg/kg)	2500	2500	57	25U	598	45
Arsenic	(mg/kg)	10		[93.0]	[13.8]	[10.1]	7.2
B arium	(mg/kg)	140000		50.0	102	NA	NA
Cadmium	(mg/kg)	1000		3.7	4.0	NA.	NA
Chromium	(mg/kg)			8.6	21.0	NA	NA
Load	: (mg/kg)	1000		318	475	8.2	11,3
Mercury	(mg/kg)	610		0.94	2.03	NA	NA .

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 5 of 9 Date: 05/03/2000

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE DEPTH (N)	Indust/Comm. Criteria CTDEP Jan; 1998	GB Mobility Criteria CTDEP Jan. 1998	TB-104 TB-104 (6-8) 06/30/1998 7,00	TB-106 TB-106 (3-5) 06/30/1898 4.00	TB-106 TB-106 (8-10) 06/30/1998 9,00	TB-106 TB-106 (10-12) 06/30/1998
Acenaphthene	(ug/kg)	2500000	84000	NA .	NA NA	NA	NA
Acenaphthylene	(ug/kg)	2500000	84000	NA	NA	NA	NA
Anthracene	(ug/kg)	2500000	400000	NA	NA	NA	NA
Benzo(a)anthracene	(ug/kg)	7800	1000	NA	NA	NA	NA
Benzo(a)pyrene	(ug/kg)	1000	1000	NA	NA .	NA	NA
3,4-Benzofluoranthene	(ug/kg)	7800	1000	NA	NA	NA	NA
Benzo(k)fluoranthene	(ug/kg)	78000	1000	NA	NA .	NA	NA
Chrysene	(ug/kg)	780000	960	NA	NA	NA	NA
Fluoranthene	(ug/kg)	2500000	56000	NA.	NA	NA	NA
Phenanthrene	(ug/kg)	2500000	40000	NA	NA	NA	NA
Pyrene	(ug/kg)	2500000	40000	NA .	NA	NA III	NA:
ТРН	(mg/kg)	2500	2500	25U	NA	2118	2498
Arsenic	(mg/kg)	10		NA	3.3	NA	NA
Barlum	(mg/kg)	140000		NA	NA	NA	NA .
Cadmium	(mg/kg)	1000		NA	NÁ	NA	NA .
Chromium	(mg/kg)			NA	NA	NA	NA
Lead	(mg/kg)	1000		NA.	19.5	NA	NA :
Mercury	(mg/kg)	610		NA	NA	NA	NA
Selenium	(mg/kg)	10000		NA	NA .	NA	i NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 6 of 9 Date: 05/03/2000

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	Indust/Comm. Criteria	GB Mobility Criteria CTDEP Jan: 1994	TB-107 TB-107 (2-4) 07/01/1998 5 3.00	TB-107 TB-107 (6-8) 07/01/1998 7.00	TB-230. TB-230(2-4) 04/03/2000 3.00	TB-231 TB-231(0-2) 04/03/2000 1.00
	DEPTH (it) (ug/kg)	CTDEP Jan. 1996 2500000	84000	. S.00	NA:	S.OO NA	NA NA
Acenaphthene .		2500000	84000	NA	NA	NA	NA
Acenaphthylene Anthracene	(ug/kg) (ug/kg)	2500000	400000	NA NA	NA	NA	NA .
		7800	1000	NA	NA	NA	NA
Benzo(a)anthracene	(ug/kg)	1000	1000	NA NA	NA	NA NA	NA NA
Benzo(a)pyrena	(ug/kg)			NA	NA	NA	NA
3,4-Benzofluoranthene	(ug/kg)	7800	1000	NA NA	NA NA	NA NA	NA NA
3enzo(k)fluoranthene	(ug/kg)	78000	1000			ididikililing Albeitanitati tuPhat	
Chrysen e	(ug/kg)	780000	960	NA	NA	NA .	NA
Fluoranthene	(ug/kg)	2500000	56000	NA .	NA	NA	NA .
Phenanthrene	(ug/kg)	2500000	40000	NA	NA	NA	NA
Pyrane	(ug/kg)	2500000	40000	NA.	NA NA	NA .	. NA
TPH	(mg/kg)	2500	2500	380	129	NA	NA
Arsenic	(mg/kg)	10		[34.4]	[11.8]	5.0	[11.5]
Barium	(mg/kg)	140000		NA	NA	NA	NA
Cadmium	(mg/kg)	1000		NA	NA.	NA	NA .
	(mg/kg)			NA	NA NA	NA .	NA
Chromium		1000		80.5	78.3	NA	NA III
Lead	(mg/kg)			NA	NA	NA	NA
Mercury	(mg/kg)	610	***************************************			*** ***********************************	
Selenium	(mg/kg)	10000		NA	NA	NA	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	DATE DEPTH (ft)	Indust/Comm. Criteria CTDEP Jan, 1996	GB Mobility Criteria CTDEP Jan. 1996	TB-232 TB-232(2-4) 04/03/2000 3.00	TB-233 TB-233(2-4) 04/03/2000 3.00	TB-234 TB-234(0-2) 04/03/2000 1.00	TB-235 TB-235(2-4) 04/03/2000 3,00
Acenaphthene	(ug/kg)	2500000	84000	NA	NA	NA	NA
Acenaphthylene	(ug/kg)	2500000	84000	NA	NA	NA	NA
Anthracena	(ug/kg)	2500000	400000	NA:	NA	NA	NA
Benzo(a)anthracene	(ug/kg)	7800	1000	NA	NA	NA	NA
Benzo(a)pyrene	(ug/kg)	1000	1000	. NA	NA	NA.	NA:
3,4-Benzofluoranthene	(ug/kg)	7800	1000	NA	NA	NA	NA
Benzo(k)fluoranthene	(ug/kg)	78000	1000	NA	NA	NA	NA
Chrysene	(ug/kg)	780000	960	NA	NA	NA	NA
Fluoranthena	(ug/kg)	2500000	56000	- NA	NA	NA	NA
Phenanthrene	(ug/kg)	2500000	40000	NA	NA	NA	NA
Pyrene	(ug/kg)	2500000	40000	NA	NA .	NA	NA
TPH	(mg/kg)	2500	2500	NA	NA	NA	NA
Arsenic	(mg/kg)	10		[[1].5]	[32.3]	[124]	[22.8]
Barium	(mg/kg)	140000		NA	NA	NA	NA
Cedmlum	(mg/kg)	1000		NA	NA.	NA	NA.
Chromium	(mg/kg)			NA	NA	NA NA	NA
Lead	(mg/kg)	1000		NA	NA III	. NA	NA
Mercury	(mg/kg)	610		NA .	NA NA	NA NA	NA NA
Selenium	(mg/kg)	10000		NA NA	NA	NA NA	NA III

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

					Manager 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
CONSTITUENT	SITE SAMPLE ID DATE	indust/Comm, Criteria	GB Mobility Criteria	TB-236 TB-236(0-2) 04/03/2000	TB-237 TB-237(0-2) 04/03/2000	TB-239 TB-239(0-2) 04/03/2000	TB-240 TB-240(2-4) 04/03/2000
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	1.00	1.00	1.00	3.00
Acenaphthene	(ug/kg)	2500000	84000	NA .	NA	NA	NA .
Acenaphthylene	(ug/kg)	2500000	84000	NA	NA	NA	NA
Anthracene	(ug/kg)	2500000	400000	NA	NA	NA	NA
Benzo(a)anthracene	(ug/kg)	7800	1000	NA	NA	NA	NA
Benzo(a)pyrene	(ug/kg)	1000	1000	NA	NA	NA	NA
3,4-Benzofluoranthene	(ug/kg)	7800	1000	NA	NA	NA NA	NA
Benzo(k)fluoranthene	(ug/kg)	78000	1000	NA	NA	NA	NA
Chrysene	(ug/kg)	780000	960	NA	NA	NA	NA
Fluorenthene	(ug/kg)	2500000	56000	NA	NA	NA	NA
Phenanthrene	(ug/kg)	2500000	40000	NA	NA	NA .	NA
Pyrene	(ug/kg)	2500000	40000	NA	NA	NA	NA
TPH	(mg/kg)	2500	2500	NA	NA NA	NA	NA
Arsenic	(mg/kg)	10.		3.6	7.9	4.3	3.0
Barlum	(mg/kg)	140000		NA	NA	NA	NA
Cadmium	(mg/kg)	1000		NA .	NA.	NA	NA
Chromium	(mg/kg)			NA	NA NA	NA NA	NA
Lead	(mg/kg)	1000		NA	NA .	NA NA	NA
Mercury	(mg/kg)	610		NA	NA	NA	NA
Selenium	(mg/kg)	10000		NÄ	NA	NA NA	NA TOTAL
					P. 37. 1		

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 9 of 9 Date: 05/03/2000

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: So

CONSTITUENT	SITE SAMPLE ID DATE DEPTH (ft)	Indust/Comm: Criteria CTDEP Jan: 1996	GB Mobility Criteria CTDEP Jan. 1998	TB-241 TB-241(1-3) 04/03/2000 2.00	TB-242 TB-242(1-3) 04/03/2000 2.00
Acenaphthene	(ug/kg)	2500000	84000	NA	NA
Acenaphthylene	(ug/kg)	2500000	84000	NA	NA
Anthracene	(ug/kg)	2500000	400000	NA	NA .
Benzo(a)anthracene	(ug/kg)	7800	1000	NA	NA
Benzo(a)pyrene	(ug/kg)	1000	1000	NA	NA
3,4-Benzofluoranthene	(ug/kg)	7800	1000	NA	NA
Benzo(k)fluoranthene	(ug/kg)	78000	1000	NA	NA.
Chrysene	(ug/kg)	780000	960	NA	NA
Fluoranthene	(ug/kg)	2500000	56000	- NA	NA
Phenanthrene	(ug/kg)	2500000	40000	NA	NA
Pyrene	(ug/kg)	2500000	40000	NA	NA:
TPH	(mg/kg)	2500	2500	NA	NA
Arsenic	(mg/kg)	10		7.3	5.5
Barium	(mg/kg)	140000		NA	NA
Cadmlum	(mg/kg)	1000		NA	NA
Chromium	(mg/kg)			NA	NA
Lead	(mg/kg)	1000		NA .	M
Mercury	(mg/kg)	610		NA	NA
Selenium	(mg/kg)	10000		NA	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE	***************************************	MW-004D	MW-004S	MW-005	MW-006
CONSTITUENT	SAMPLE ID Indust. DATE Criteria		ESMW4D 36-40 06/10/1998		13) ES-MW5 (2-4) 05/26/1998	ESMW6 5-9
CONSTRUCTO	DEPTH (ft) CTDEF	· · · · · · · · · · · · · · · · · · ·	998 38.00	12.00	3.00	7,00
Arsenic (SPLP)	(mg/l)	0.5	0.05U	0.05U	0.05U	0.06
Cadmium (SPLP)	(mg/l)	0.05	0.005U	0.005U	0.005U	0.005U
Lead (SPLP)	(mg/l)	0.15	0,005U	0.005U	0.005U	0.005U

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

					addicina distratività describira a communications	di d
					** *******	
		**** **** ******************* * *******				4 "-1. 1

	SITE	://b:/*******************************	MW-007	-MW-009A	MW-010	MW-022
						14)14-044
	SAMPLE ID Indust/Comm.	GB Mobility	ES-MW7 (7-9)	ES-MW9A(0-2)	ESMW10 9-11	ESMW22 7-9
	DAMILLE ID	OD WODING	CO-14141 E. (1.73)		EOIMANTO 2-11	
***************************************						The second contract to the second sec
	DATE Criteria	Criteria	06/04/1998	05/26/1998	06/09/1998	000004000
1 CONSTITUENT	DATE: Glidia	CINCIIA				06/09/1998
	DEPTH (ft) CTDEP Jan. 1996	CTDEP Jan. 1998	8.00	1.00	40.00	
	DEFINITION CIDEF Jan. 1990	U I UCT Jan. 1990	O,UU		10.00	8.00
	and the second s					
Arsenic (SPLP)	(ma/i)	n. g	0.050	0.05U	0 05U	0.05U
Macine (a) El)						U.UJU
				······································	*****************************	
Cadmium (SPLP)	(mg/l)	0.05	0.005U	0.005U	0.005U	(A AEA)
(Cadinum (SFEF)	(ingri)	0.03	0.0030	0.0030	0.0030	[0.052]
1						• •
					TT: 12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
				N N14	an nost transmission	n nne
Lead (SPLP)	(mg/l):	0.15	0.005U	0.014	≝0.005U	0.008

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 3 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE SAMPLE ID Indus	L/Comm. GB Mobility	SED-01 ES SED1 (1)	TB-005 ES-TB5 (4-6)	TB-008A ES-TB8A (1-3)	TB-008B ES-TB8B (15-17)
CONSTITUENT	DATE Criter DEPTH (ft) CTDE	a Criteria P Jan, 1996 CTDEP Jan, 19	06/12/1998 98 1.00	06/04/1998 5.00	06/04/1998 2.00	06/04/1998 16.00
Arsenic (SPLP)	(mg/l)	0.5	0.05U	0.05U	0.05U	0.05U
Cadmium (SPLP)	(mg/l)	0.05	0.005U	0.005U	0.005U	0.005U
Lead (SPLP)	(mg/l)	0.15	0.023	0.0050	0.021	0.005U

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 4 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 05/26/1998 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soi

	SITE SAMPLE ID Indu	V/Comm. GB Wakiliku	TB-009	TB-010	
CONSTITUENT	DATE Crite DEPTH(ft) CTD	ria Criteria EP Jan. 1996 CTDEP Jan. 1996	06/04/1998 3 5.00	06/04/1998 12.00	
Arsenic (SPLP)	(mg/l)	0.5	0.05U	0.05U	
Cadmium (SPLP)	(mg/l)	0.05	0.005U	0.007	
Lead (SPLP)	(mg/l).	0.15	0.005U	0.005U	

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 8 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE Soil

	SITE			MW-018	MVV-020	SED-02	TB-018
	SAMPLEID	Indust/Comm.	GB Mobility	ES-MW18 (14-16) 05/29/1998	ES-MW20 (11-13) 05/27/1998	ES SED2 (0.5) 06/12/1998	ES-TB18 (12-14) 05/28/1998
CONSTITUENT	DATE DEPTH (ft)	Critéria CTDEP Jan. 1995	Criteria CTDEP Jan. 1996	15.00	12.00	0.50	13.00
		10		1.00	1.00	1	1,0U
PCB's	(mg/kg)	2500000	84000	1000U	100U	10000U	100U
Acenaphthene	(ug/kg)	2500000	84000	1000U	100U	10000U	145.0
Acenaphthylene	(ug/kg)	2500000	400000	1000U	100U	10000U	100 U
Anthracene	(ug/kg)	7800	1000	1000U	- 100U	[10000]U	182.0
Benzo(a)anthracene	(ug/kg)	1000	1000	1000:U	100U	[10000]U	268.0J
Benzo(a)pyrene	(ug/kg)	7800	1000	1000U	100U	[10000]U	203.0
3,4-Benzofluoranthene	(ug/kg)		1000	1000U	100U	[1000gu	100U
Benzo(k)fluoranthene	(ug/kg)	78000	960	[1000U]	1000	[1000gh	226.0
Chrysene	(ug/kg)	780000			1000	10000U	369.0J
Fluoranthene	(ug/kg)	2500000	56000	1000U	1000	10000U	100U
Fluorene	(ug/kg)	2500000	56000	1000Ú			500U
indeno(1,2,3-cd)pyrene	(ug/kg)	7800	1000	(200gu	500U	[50000]U	65797.0
Naphthalena	(ug/kg)	250000D	56000	1000U	100U	10000U	
Phenanthrene	(ug/kg)	2500000	40000	1000U	100U	10000U	203.0
Pyrana	(ug/kg)	2500000	40000	1000U	100U	10000U	529.0
TPH	(mg/kg)	2500	2500	238	29J	191	405
ETPH	(mg/kg)	2500	2500	M	NA	- NA	NA
and a series of the control of the c	(mg/kg)	10		2.8J	4.3	5.3	4.5J
Barlum	(mg/kg)	140000		18.3	38	62	51.3
	(mg/kg)	1000		0.9	0.5U	0.5U	0.5U
Cadmium Chromium	(mg/kg)	100		14,9	10.2	32.0J	9.2

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 8 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

			11000	LW/ 600	65-870	
		Indust/Comm. GB Mobility	ES-MW18 (14-16)		ES SED2 (0.5)	ES-TB18 (12-14)
CONSTITUENT			05/29/1998 1998 15:00			05/28/1998 13.00
Load	(mg/kg)	1000	36.3		110	[2160]
Mercury	(mg/kg)	610	0.24	0.02U	1.66	0.07
Selenium	(mg/kg)	10000		0.5U		0.50
Silver	(mg/kg)	10000	0.2U	0.2U	0.2ป	0.2U

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE DEPTH (n)	indust/Comm. Criteria CTDEP Jan. 1996	GB Mobility Criteria CTDEP Jan. 1998	TB-018A ES-TB18A(16-18) 05/28/1998 17.00	TB-108 TB-108 (8-10) 07/01/1998 9.00	TB-108 TB-108 (12-14) 07/01/1998 13.00	TB-200 TB-200(0-2) 03/30/2000 1,00
PCB's	(mg/kg)	10		1.00	NA.	NA .	NA .
Acenaphthene	(ug/kg)	2500000	84000	10000U	10000U	1000U	<100
Acenaphthylene	(ug/kg)	2500000	84000	10000U	10000U	1000U	<100
Anthracene	(ug/kg)	2500000	400000	10000U	10000U	1000U	<100
Benzo(a)anthracene	(ug/kg)	7800	1000	[10000]Ü	[100001]	1000U	<100
Вепло(а)ругеле	(ug/kg)	1000	1000	[10000]U	[10000]U	[1000]U	170.0
3,4-Benzofluoranthene	(ug/kg)	7800	1000	[10000]U	Ulogooti	1000U	114.0
Benzo(k)fluoranthene	(ug/kg)	78000	1000	[1000gu	[1000]]	1000U	<100
Chrysene	(ug/kg)	780000	960	[1000gh	[1000dh	1000U	<100
Fluoranthene	(ug/kg)	2500000	56000	[59574.qu	10000U	1691.0	<100
Fluorene	(ug/kg)	2500000	56000	10000U	10000U	1000U	<100
Indeno(1,2,3-cd)pyrene	(ug/kg)	7800	1000	[50000]U •	[50000]U	[500g]U	<500
Naphthalene	(ug/kg)	2500000	56000	10000U	10000U	1000U	<100
Phenanthrene	(ug/kg)	2500000	40000	38833.0	1000QU	1483.0	<100
Pyrene	(ug/kg)	2500000	40000	81277.0	10000U	1658.0	<100
TPH	(mg/kg)	2500	2500	1492	[4162]	1542	NA
ETPH	(mg/kg)	2500	2500	NA .	NA	NA .	28
Arsenic	(mg/kg)	10		[10.7]J	NA	NA	29
Barlum	(mg/kg)	140000		10.2	NA	NA:	41
Cadmium	(mg/kg)	1000		5.0	NA	NA	<0.5
Chromium	(mg/kg)	100		90,4	NA	NA .	8.0

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 4 of 8 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

SITE SAMPLE ID	Indust/Comm.	GB Mobility	ES-TB18A(16-1	3) TB-108 (8-10		14) TB-200(0-2)
CONSTITUENT DATE DEPTH (II)	Criteria CTDEP Jen: 1996	Criteria CTDEP Jan. 1996	*************************************	9.00 9.00	07/01/1998 - 13.00	03/30/2000 1.00
Lead (mg/kg) (mg/kg)	1000 610		3.46	NA NA	NA NA	0.06
: Selenium (mg/kg) Silver (mg/kg)	10000 10000		4.6	NA NA	NA NA	40.2

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 5 of 8 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE: DEPTH (N)	Indust/Comm. Criteria CTDEP Jan, 1998	GB Mobility Criteria CTDEP Jan. 1996	TB-201 TB-201(0-2) 03/30/2000 1.00	TB-202 TB-202(2-4) 03/30/2000 3.00	TB-203 TB-203(0-2) 03/30/2000 1.00	TB-204 TB-204(2-4) 03/30/2000 3.00
PCB's	(mg/kg)	10		NA	NA	NA .	NA
Acenaphthene	(ug/kg)	2500000	84000	<100	3292.0	<100	<100
Acenaphthylene	(ug/kg)	2500000	84000	<100	1636.0	3531.0	< 100
Anthracene	(ug/kg)	2500000	400000	<100	15425.0	6603.0	<100
Benzo(a)anthracene	(ug/kg)	7800	1000	<100	[28441.0]	[30950.0]	<100
Benzo(a)pyrene	(ug/kg)	1000	1000	<100	[43270.0]	[28585.0]	[3269.0]
3,4-Benzoftuoranthene	(ug/kg)	7800	1000	<100	[26508.0]	[24427.0]	<100
Benzo(k)fluoranthene	(ug/kg)	78000	1000	<100	[32681.0]	[18714.0]	<100
Chrysene	(ug/kg)	780000	960	<100	[28794.0]	[27318.0]	<100
Fluoranthene	(ug/kg)	2500000	56000	<100	_ 64475.0]	51323.0	<100
Fluorene	(ug/kg)	2500000	56000	<100	7249.0	<100	<100
Indeno(1,2,3-cd)pyrene	(ug/kg)	7800	1000	<500	[8147.0]	[6040.0]	<500
Naphthalene:	(ug/kg)	2500000	56000	<100	<100	<100	<100
Phenanthrene	(ug/kg)	2500000	40000	<100	[72000.0]	26000.0	<100
Pyrane	(ug/kg)	2500000	40000	<100	[44532.0]	[48043.0]	<100
ТРН	(mg/kg)	2500	2500	NA	NA	NA	NA
ETPH	(mg/kg)	2500	2500	94.	57:	32	1377
Arsenic	(mg/kg)	10		1.9	4.2	3.7	3.0
Barlum	(mg/kg)	140000		47	48	34	23
Cadmium	(mg/kg)	1000		<0.5	<0.5	<0.5	⋖ 0.5
Chromlum	(mg/kg)	100		7.6	10.2	11,7	8.8

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 6 of 8 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE			TB-201	TB-202	TB-203	TB-204
	SAMPLEID	Indust/Comm.	CB VANIKY	TB-201(0-2)	TB-202(2-4)	TB-203(0-2)	TB-204(2-4)
CONSTITUENT		***************************************			03/30/2000	03/30/2000	03/30/2000
	DEPTH (ft)	CTDEP Jan. 1998	CTDEP Jan. 1998	1.00	3.00	1.00	3.00
Load	(mg/kg)	1000		33.5	157	44.3	44.7
Coau	(11979)						
Mercury	(mg/kg)	610		0.03	0.28	0.07	0.14
Selenium	(mo/ka)	10000		40.5	4 8	<0.5	nα
Selenium	ואי אניוו)	17777				~ . ~	V.=
Silver	(mg/kg)	10000		⋖ 0.2	<0.2	⋖ 0.2	≪0.2
	` • • •						

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 7 of 8 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: So

	SITE			TB-205	TB-206
	SAMPLE ID	Indust/Comm.	GB Mobility	TB-205(2:4)	TB-206(2-4)
CONSTITUENT	DATE	Criteria	Criteria	03/30/2000	03/30/2000
		CTDEP Jan. 1996	CTDEP Jan. 1998	3,00	3.00
PCB's	(mg/kg)	10		NA .	NA .
Acenaphthene	(ug/kg)	2500000	84000	<100	<100
Acenaphthylene	(ug/kg)	2500000-	84000	1311.0	<100
Anthracene	(ug/kg)	2500000	400000	1034.0	<100
Benzo(a)anthracene	(ug/kg)	7800	1000	[10590.0]	[1316.0]
Benzo(a)pyrene	(ug/kg)	1000	1000	[14827.0]	[3433.0]
3,4-Benzofluoranthene	(ug/kg)	7800	1000	[15828.0]	[2767,0]
Benzo(k)fluoranthene	(ug/kg)	78000	1000	12757.0	[1754.0]
Chrysene	(ug/kg)	780000	960	[9540,0]	[1390:0]
Fluoranthene	(ug/kg)	2500000	56000	10237.0	1498.0
Fluorene	(ug/kg)	2500000	56000	<100	<100
	(ug/kg)	7800	1000	[7496.0]	<500
Indeno(1,2,3-cd)pyrene	(ug/kg)	2500000	56000	<100	<100
Naphthalena		2500000	40000	3635.0	<100
Phenanthrene	(ug/kg)		40000	12721:0	1625.0
Pyrene	(ug/kg)	2500000		NA NA	NA
ТРН	(mg/kg)	2500	2500		
ЕТРН	(mg/kg)	2500	2500	189	115
Arsenic	(mg/kg)	10		6.1	9.3
Barlum	(mg/kg)	140000		37	65
Cadmium	(mg/kg)	1000		<0.5	⋖ .5
Chromium	(mg/kg)	100		8.8	10.8
	Y 7 7				

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 8 of 8 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE			113-205	TO 200	
				10-200	TB-206	
	SAMPLE ID	indust/Comm.	G8 Mobility	TB-205(2-4)	TB-206(2-4)	
CONSTITUENT	DATE	Criteria	Criteria	03/30/2000	0.3520/2000	
99101719411		Olivaia	VIRVIA	UJOU/LUUU.	USIOU/EUUU	
				A AA		
	DEPTH (n)	GIDEN Jan. 1990	CTDEP Jan. 1996	3.00	J.UU	

a view ja i kan kina diaminina kan kan kan kan dia kan kina kina kina diaminina diaminina diaminina diaminina		JAAA	***************************************	134		
Load	(mg/kg)	1000			276	
Manager	(/k)	610		0.24	D 46	
Mercury	(mg/kg)	010		U.Z.I	0.46	
Selenium	/ma/ka)	10000			1.2	
- 96/9/1/1/1/1	(0)9/19)			9.4		
Silver	(ma/ka)	10000		-0 2	-0 2	
l Silati	(mykg)	10000		~.∠	~4.4	

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 3 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE SAMPLE ID Indust/Comm. GB M	MW-018 MW-020 obility ES-MW18 (14-16) ES-MW20 (1	SED-02 TB-018
CONSTITUENT	DATE Criteria Criter	la 05/29/1998 05/27/1998	06/12/1998 05/28/1998
	DEPTH (ft) CTDEP Jan. 1996 CTDE		0.50 13.00
Lead (SPLP)	(mg/l) 0.15	0.008 0.005U	0.005U 0.005U

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 3 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

SITE TB-018A TB-200 TB-201 TB-202
SAMPLE ID Indust/Comm. GB Mobility ES-TB18A(16-18) TB-200(0-2) TB-201(0-2) TB-202(2-4)
SAMPLE ID Indust/Comm GB Mobility ES-TB18A(16-18) TB-201(0-2) TB-201(0-2) TB-202(2-4)
SAMPLE ID Indust/Comm GB Mobility ES-1B18A(16-18) TB-201(0-2) TB-201(0-2) TB-202(2-4)
CONSTITUENT DATE Criteria 05/28/1998 03/30/2000 03/30/2000 03/30/2000
CONSTITUENT DATE Criteria 05/28/1998 03/30/2000 03/30/2000 03/30/2000
CONSTITUENT: DATE Criteria 05/28/1998 03/30/2000 03/30/2000 03/30/2000
CONSTITUEN) DATE Criteria 05/28/1998 03/30/2000 03/30/2000 03/30/2000
DEPTH (ft) CTDEP Jan. 1998 CTDEP Jan. 1998 17.00 1.00 3.00 3.00
Lead (SPLP) 0.005U <0.005 <0.005 <0.005 <0.005
Lead (SPLP) <0.005 <0.005 <0.005 <0.005
Lead (SPLP) <0.005 <0.005 <0.005 <0.005 <0.005

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 3 of 3 Date: 05/04/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 05/27/1998 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

	TB-203 TB-204 TB-205 TB-206
SAMPLEID Indust/Comm. GB Möbility	TB-203(0-2)TB-204(2-4)TB-205(2-4)TB-206(2-4)
CONSTITUTENT DATE Criteria Criteria	03/30/2000 03/30/2000 03/30/2000 03/30/2000
CONSTITUENT Criteria Criteria Criteria	
CONSTITUENT DATE Criteria Criteria Criteria	
DEPTH (ft) CTDEP Jan. 1996 CTDEP Jan. 1996	98 1.00 3.00 3.00 3.00 1.00 1.00 1.00 1.00
[mg/l) 0.15	■ <0.005 0.007 0.012 0.031
1 Lead (SPLP) (mg/l) 0.15	
Lead (SPLP) (mg/l) 0.15	

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 1 Date: 05/03/2000

English Station Summary of Soil Analytical Data Southwest of Plant

PERIOD: From 03/30/2000 thru 03/30/2000 - inclusive

SAMPLE TYPE: Soil

CONSTITUENT	DATE DEPTH (n)	Criteria Crite CTDEP Jan: 1996 CTD	eria 03/30/200 DEP Jani: 1998 3.00	1.00	
ETPH	(mg/kg)	2500 250	70 29	130	
Arsenic	(mg/kg)	10	2.9	4.4	
Barlum	(mg/kg)	140000	32	41	
Chromium	(mg/kg)	•	7.4	22.0	
Lood	(mg/kg)	1000	14.0	24.2	
Mercury	(mg/kg)	610	0.03	0.09	
Selenium					

Only those parameters detected are shown. RSR exceedences are bracketed.

Date: 05/03/2000

English Station Summary of Soil Analytical Data PCB Remediation Area

ERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

		ana i	PCB's		
SITE	DATE	DEPTH SAMPLE IC			
			(mg/kg)		
	iaCTDEP Jan. 1996		10		
GB MobilityCrit ori aC	::::::::::::::::::::::::::::::::::::::				
BOR1	12/15/1999	6.00	1.2		
BOR1 :	12/15/1999	11,00	1U		
BOR1	12/15/1999	16.00	1U	nation that and analysis to the control of the cont	
BOR1	12/15/1999	2100	1U 1U		
BOR1	12/15/1999	26.00			**************************************
BOR1	12/15/1999	31,00	1U		
BOR2	12/15/1999	6.00	1Ü		
BORŽ	12/15/1999	11.00	10		
BOR2	12/15/1999	16,00	1U		
BOR2	12/15/1999	21,00	10		
BOR2	12/15/1999	26.00	1U		
BOR2	12/15/1999	31,00	1U		
BOR3	12/15/1999	11.00 16.00			
BOR3	12/15/1999 12/15/1999	21.00	1Ü		
BOR3	12/15/1999	26.00			
BOR3	12/15/1999	31.00	1U		
BOR4	12/15/1999	######################################	 1U		
BOR4	12/15/1999	11.00	1U		
30R4	12/15/1999	75.00	10		
BOR4	12/15/1999	21.00	1U		10.0000
BOR4	12/15/1999	26.00	10		
BOR4	12/15/1999	31.00	1U		
BOR5	12/15/1999	6.00	טויייי		
BOR5	12/15/1999	11.00	1U		
BOR5	12/15/1999	16.00	1U		
BOR5	12/15/1999	21.00	1U		
90R5:	12/15/1999	26.00	. 1U		
BOR5	12/15/1999	31.00	1U		
SP-01	12/12/1997	12.00	. 10		
3P-02	12/12/1997	12.00	10		
3P-03	12/12/1997	4.00	10		
3P-04	12/12/1997	12.00	5.0		
3P-05	-12/12/1997	12.00	3.0		
3P-07	12/12/1997	8.00	1U		
3P-09	12/19/1997	1,00	10		

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data PCB Remediation Area

⇒ERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SITE:	DATE	DEPTH	SAMPLE ID	PCB's	
				(mg/kg)	
	CriteriaCTDEP Jan. 1996			10	
	HaCTDEP Jan. 1996	2.00		1U	
3P-09 3P-09	12/19/1997 12/19/1997	2.00 			
3P-09	12/19/1997	4.00	illig i i primer produce de primer i i i i	1U	
3P-09	12/19/1997	5.00		10	
3P-09	12/19/1997	6.00		10	
3P - 09	12/19/1997	7.00		10	
3P - 09	12/19/1997	8.00		1U	
3P-09	12/19/1997	9.00		1U 1U	
3P-09	12/19/1997 12/19/1997	10.00 		10 	
3P-09 3P-09	12/19/1997	12.00		1U	
SP-09	12/19/1997	13.00		10	
3P - 09	12/19/1997	14.00	mining and a second of the second	1U	
3P-09	12/19/1997	15.00		10	
3P-09	12/19/1997	20.00		1U	
3P-10"	12/19/1997	1,00 2.00		10 10 10 10 10 10 10 10 10 10 10 10 10 1	
3P-10	12/19/1997 12/19/1997	2.00 		1U	
3P-10 3P-10	12/19/1997	4.00		1Ü	
3P-10	12/19/1997	5.00		יי טר	
3P-10	12/19/1997	6.00	Hilli itelienieni.Luttininena.: 🖘	10	
3P-10	12/19/1997	7.00		טוי	
3P-10	12/19/1997	8.00		1U	oreno en esta e
3P-10	12/19/1997	9,00		1U 1U	
3P-10 3P-10	12/19/1997 12/19/1997	10.00 11.00		1U	
3P-10	12/19/1997	12.00		1U	
3P-11	12/19/1997	1.00		טו: " טו	
3P-11	12/19/1997	2.00	energy and energy and a secretarial re-	1U	
3P-11	12/19/1997	3,00		10	
3P-11	12/19/1997	4.00	anum, an accopanius, santom ambantomo	1U	
3P-11	12/19/1997	5.00		1U	
3P-11 3P-11	12/19/1997 12/19/1997	6,00 7.00		10	
3P-11	12/19/1997	8.00		10	
3P-11	12/19/1997	9.00		10	

Only those parameters detected are shown.

RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data PCB Remediation Area

1 490. 5 51 5 Date: 05/03/2000

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SITE	DATE	DEPTH	SAMPLE ID	PCB's			
				(mg/kg)			
	riteriaCTDEP Jan. 1996			10			eritorienturianen
ribbirtin C. Sould	HaCTDEP Jan. 1996			. 41			
GP-11 3P-15	12/19/1997 12/19/1997	10.00 ##################################	er maerias i 190, seletistratuest	10 			
3P-15	12/19/1997	8.00	以用选择。企業的問題	2.7			
3P-15	12/19/1997	12.00		1U			
3P-15	12/19/1997	16.00	it (gjj. i Striki). I. Lendika i Gartana	1U	ammada, ama mandina da		
3P-15	12/19/1997	20.00		10			
3P-15	12/19/1997	25.00 28,00		1.4 			
3P-15 3P-15	12/19/1997 12/19/1997	28,00 32.00		1U			
3P-15	12/19/1997	36.00		10			
3P-16	12/29/1997	4.00	erroporar actornos tenconomicos	1.7			Aria diament
3P-16	12/29/1997	8.00		3.8			
3P-16	12/29/1997	12.00	an tantingan ayan sarahan mang	1U			::::::::::::::::::::::::::::::::::::::
3P-16	12/29/1997 12/29/1997	16,00 20.00		1Ü			
3P-16	1 <i>2/2</i> 9/199 <i>7</i>	20.00 4.00	uni de contrata de la constanta de la constant La constanta de la constanta d				
3P-17 3P-17	12/29/1997	8.00		[24.5]			
3P-17	12/29/1997	12.00		10			
3P-17	12/29/1997	13.00		1U		one and the batterine part	
3P-18	12/15/1999	1.50 2.50		1.7 1U			
3P-18 3P-18	12/15/1999 12/15/1999	2.50 3.50		4.1			
)P-18	12/15/1999	4.50		[16.7]	pelan temperatual and and and		
IP-18	12/15/1999	5.50		6,4			
P-18	12/15/1999	6.50	40 C + 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1U			
3P418	12/15/1999	7.50		1.9			
3P-19	12/15/1999 	3.50 7.50		1U 3.4			
3P-19 3P-19	12/15/1999	7.50 11.50		1U			
)P-19	12/15/1999	12.50		10			
P-20	12/15/1999	3.50	per numbro e eus helles	10	saman miniman perusik (1966) * "Eterkil	enaria a spalarere e e africh	
3P-20	12/15/1999	7.50		5.0			
SP-20	12/15/1999	11.50	nggradig gayyan nan adalah d	1U			METALINEAN
3P-20A 3P-20A	04/22/1999 04/22/1999	1.00 3.00		1U 1U			
P-20A P-20A	04/22/1999	5.00					

Only those parameters detected are shown.

[]=Greater than Action Level NA=Not analyzed

RSR exceedences are bracketed.

Date: 05/03/2000

.

English Station Summary of Soil Analytical Data PCB Remediation Area

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SITE	DATE	DEPTH	SAMPLE ID PCB's	
			(mg/kg)	
ndust./Comm.Cri	terlaCTDEP Jan. 1996		10	
	aCTDEP Jan, 1996			
3P-20A	04/22/1999	7.00	8.2	
3P-20A	04/22/1999	9.00		
3P-20A	04/22/1999	11.00	1U	
3P-22	12/15/1999	0.50	10 1U	
3P-22	12/15/1999 12/15/1999	1.50 2.50	טו יין אין	
3P-22 3P-22	12/15/1999	3.50	majayan kata na Milia da Mili 10	SANDORIGENDA POLICIONA DE CONTROL DE CONTROL DE PARTICIONA.
3P-22	12/15/1999	4.50	u i i i i i i i i i i i i i i i i i i i	
3P -22	12/15/1999	5.50	1.5	anna canadana a canadan da canada da can
3P-22	12/15/1999	6.50	10	
3P -22	12/15/1999	7,50	10	
3P-23	12/15/1999	0.50	1U	
3P -2 3	12/15/1999	1.50	1U	
3P-23	12/15/1999	2.50 3.50	1U	
3P-23 3P-23	12/15/1999 	3.50 4.50		
3P-23 3P-23	12/15/1999	5.50	9.3	
3P-23	12/15/1999	6.50	3.2	
3P -2 3	12/15/1999	7.50	8.4	
3P-23	12/15/1999	8.50	67/	
SP -2 3	12/15/1999	9.50	3.9	
3P-24	12/15/1999	0,50	10	
3P-24	12/15/1999	1.50	1U	saramanan saramanan mananan sarah
3P-24	12/15/1999 12/15/1999	3.50 3.50	2.3	
3P-24 3P-24	12/15/1999	4,50	#///30091701701817181718171817181718	
3P-24 3P-24	12/15/1999	5.50	1.0	mministraturus proprietati suoren 1940 eta 1960 eta 1960 Eta 1960 eta 1960 et
37-24 3P-24	12/15/1999	6.50	jania ili	
3P-24	12/15/1999	7.50	7.9	miniminiminimes imperiorimento a seriorios e Santa e Se e Marielo.
3P-24	12/15/1999	8.50	U TOTAL	
3P -2 4	12/15/1999	9.50	7,5	
3P-24	12/15/1999	10.50	10	
3P-24	12/15/1999	11.50	1U	
3P+24	12/15/1999	12,50 13.50	10 10	
3P-24 3P-24	12/15/1999 	13.50		

Only those parameters detected are shown.

RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data PCB Remediation Area

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

ITE .	DATE	DEPTH SAMPLE D	PCB's (mg/kg)
ndust./Comm.C	riteriaCTDEP Jan. 1996		10
	riaCTDEP Jen, 1996		
P-24	12/15/1999	16.00	10
P-30 P-30	04/22/1999 04/22/1999	3.00	
P-30 P-30	04/22/1999 04/22/1999	5.00	1U #15-74 p. #16-10-10-10-10-10-10-10-10-10-10-10-10-10-
P-30	04/22/1999	7.00	5.4
P-30	04/22/1999	9.00	, -10
P-30	04/22/1999	11.00	11 di di minimi (massimi de mendimenti mini (mendimente mendimente mendimente mendimente mendimente mendimente 10
P-31	04/22/1999	1.00	10.
P-31	04/22/1999	3.00	1U
P-31	04/22/1999	7.00	
P-31 P-31	04/22/1999 04/22/1999	7,00 9,00	7.1
-31 2-31	04/22/1999	11.00	1U
2-32	04/22/1999	1.00	10
P-32	04/22/1999	3.00	10
P-32	04/22/1999	5.00	1.12
2-32	04/22/1999	7.00	8.7
2-32	04/22/1999	9.00	2.5
?-32 ?-33	04/22/1999 	11.00 1.00	1U #40###################################
^33 }-33	04/22/1999 04/22/1999	3,00	10 10
 9-33	04/22/1999	5.00	THU TO THE TOTAL PROPERTY OF THE TOTAL PROPE
) - 33	04/22/1999	7.00	1U
233	04/22/1999	9.00	10
-33	04/22/1999	10.50	10
2-35	04/22/1999	1.00	
-35 -36	04/22/1999 	3.00 1:00	10 - 10
-36 -36	04/22/1999	3.00	1.5
-38	04/23/1999	00:00 	
-38	04/23/1999	3.00	10
-38	04/23/1999	5.00	25
-38	04/23/1999	7.00	6.3
-39	04/23/1999	1.00	10

Only those parameters detected are shown.

RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data PCB Remediation Area

Date: 05/03/2000

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SITE	DATE	DEPTH	SAMPLE ID	PCB's		
				(mg/kg)		
	teriaCTDEP Jan. 1996			10		
	aCTDEP Jan. 1996					
P-39	04/23/1999	7.00	na a proportion de la proportiona de l	2.6		urrangumananangarang territo
P-40	04/23/1999 04/23/1999	1.00 3.00		10		
P-40 P-40	04/23/1999	5.00		10		
P-40	04/23/1999	7.00		1U		
P41	04/23/1999	1,00		- 1U		
P-41	04/23/1999	3,00		1U		
P41	04/23/1999	5.00		- 10		
P-41	04/23/1999	7.00	······································	1U		
P41	04/23/1999	9.00		10		
P-41	04/23/1999	11.00	and the state of t	1U	annonna ann an t-airean an	nerg terrener de energranden (f. 1411).
P-621	12/15/1999	0.50		1U		
P-621	12/15/1999 12/15/1999	1.50 2.50		1U 1U		
P-821 P-621	12/15/1999	3.50		1U		
P-621	12/15/1999	4.50		10		
P-621	12/15/1999	5.50		1U	ina tahun 1997 Madalah Madalah Addisi	
P-621	12/15/1998	6.50				
P-621	12/15/1999	7.50	er districtive de di minimi de distributione de distribut	1U		•
P-621	12/15/1999	8.50		3U		
P-621	12/15/1999	9.50		1U		
P-621	12/15/1999	10.50		10		
P-621	12/15/1999	11.50		1U 1U		***************************************
W-050	10/12/1999 10/12/1999	1.00 3.00	MW50	1U		
W-050 W-050	10/12/1999	5.00		1.4		
W-050	10/12/1999	9.00		10 10		
W-050	10/12/1999	11.00		1Ü "		
W-051	10/12/1999	1.00		1U		aragum a ucultomafurfilmalak di 1919.
W-051	10/12/1999	3.00		10		
W-051	10/12/1999	5.00	era gazzen arribet eta eta eta eta eta eta eta eta eta e	10	manananananan tamamananah d	
W-051	10/12/1999	7,00		1.7		
W-051	10/12/1999	9.00		1U		
W-051	10/12/1999	11.00		10		
W-052 W-053	10/12/1999 	5.00 1.00		1U 1U		kan na sana banan ar manan na sasa sa

Only those parameters detected are shown. RSR exceedences are bracketed.

Date: 05/03/2000

English Station Summary of Soil Analytical Data PCB Remediation Area

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SITE	DATE	DEPTH	SAMPLEID	PCB's			
				(mg/kg)			
	iteriaCTDEP Jan. 1996		one on the second of the secon	10	enterminalisation of the belief the feet of the second of	emantana saar arat sagetsiisti	manning and a con-
	faCTDEP Jan. 1996			1U			
MW-053 MW-053	10/12/1999 **********************************	3.00 5.00		10 10			
MW-053	10/12/1999	7.00		2.6			
MW-053	10/12/1999	9.00		10			
MW-053	10/12/1999	11.00	######################################	1U	PHINIPPHINING AUTOMORE, and a		Hillianu saaaa
MWP-01	12/15/1999	1.00		4,3			
MWP-01	12/15/1999	3.00	AND THE A SECOND STREET, THE SECOND STREET, SANS THE S	1U	******		
MWP-01	12/15/1999	5.00 7.00		2.9			
MWP-01	12/15/1999 	7.00 9.00		2.9 1U			
MWP-01 MWP-01	12/15/1999	11.00		1.1			
MWP-01	12/15/1999	13.00		1U			
MWP-01	12/ 15/1999	15.00	Alle Deliniale A Supramor market	1U	Alian Apparitus de dasse	: intelligence of the contract	idii i.tu
MWP-01	12/15/1999	20.00		10			
MWP-01	12/15/1999	25.00		1U	. oznapatajni Pathili 1209.		**************************************
MWP-01	12/15/1999 12/15/1999	30.00 35.00	OFFI FIRM THE	1U			
MWP-01	12/15/1999 	35.00 40.00 - 10.		####1U################################			
MWP-01	12/15/1999	45.00	Allehi Anthi Billine menerasa	1U			ili. Mint end
MWP-01	12/15/1999	50.00		שוי 10			
MWP-01	12/15/1999	55.00	#RABABBetsta emembroni no	1U	iiiiiii) maaaaaaa		Pripaga
MWP-01	12/15/1999	65,00		10			
MWP-02	12/15/1999	1.00		2.8 1.9			
MWP-02	12/15/1999 12/15/1999	3,00 5.00		1.9 [33.2]			
MWP-02	12/15/1999 	5.00 7. 00		[33.2]			
MWP-02	12/15/1999	9.00	And Parker Van Steinerheit	1U	della Tari, estatoro con :	hijidilinine ett til trener	iiiiriin, haan o
MWP-02	12/15/1999	11,00		10			
MWP-02	12/15/1999	13.00	P IF I T. II. I S. III. S.	1U	and many the control of the state of the		
MWP-02	12/15/1999	15.00		10			
MWP-02	12/15/1999	20,00		1U 1U		ararananniirii (1886)	
MWP-02 MWP-02	12/15/1999 12/15/1999	25.00 30.00		1U			
MWP-02	12/15/1999	35.00					
MWP-02	12/15/1999	40.00	lidhida'i e sancialistiana comenci	10		Seminarura unazione	diamen.
MWP-02	12/15/1999	45.00		::::::::::::::::::::::::::::::::::::::			

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data PCB Remediation Area

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

зпе	DATE	DEPTH	SAMPLE ID	PCB's (mg/kg)		
ndust /Comm Ci	riteriaCTDEP Jan. 1996			10		
	NaCTDEP Jan, 1996					
MWP-02	12/15/1999	50.00		1U		
MWP-02	12/15/1999	55.00		10		
MWP-02	12/15/1999	60.00		1U		
WWP-02	12/15/1999	65,00				
MWP-02	12/15/1999	70.00		1 U	iniinan partuuri een maraan atteen	
MWP-03	12/15/1999	1.00		10		
MWP-03	12/15/1999	3.00	ii qui pini •me minique dine came. ···uu	1U		
MWP-03	12/15/1999	5.00		4.6		
MWP-03	12/15/1999	7.00		[11.9]		
MWP-03	12/15/1999	9.00		1U		
MWP-03	12/15/1999	11.00		1U		
MWP-03	12/15/1999	13.00		1U		
MWP-03	12/15/1999	15.00		1U		
MWP-03	12/15/1999	20.00		10		
MWP-03	12/15/1999	25.00 30.00	megan) adap keerkinkababahaan eedel	1U 		acacananan ana ana ana ana ana ana ana a
MWP-03	12/15/1999	35.00		1U		
MWP-03	12/15/1999 	40.00		10		
WWP-03	12/15/1999	45.00		1U		
WP-03	12/15/1999	50.00		10		
WP-03	12/15/1999	55.00		10		ini, ja enti etti kuntur indoner (** 1642. b.).
WP-03	12/15/1999	60.00		10		
MWP-03	12/15/1999	65.00		1U		
WP-03	12/15/1999	70,00		#1U		
//WP-04	12/15/1999	1.00		4,5		
MWP-04	12/15/1999	3.00		10		
/WP-04	12/15/1999	5.00		4.5		
ИWP-04	12/15/1999	7.00		34		
/WP-04	12/15/1999	9.00		1U		*** * * . **** * . * · · · · · · · · · ·
/WP-04	12/15/1999	11.00		, 10		
AWP-04	12/15/1999	13.00	F19794 40 44 40 00 42 10 10 10 10 11 11 11 11 11 11 11 11 11	10		
MP-04	12/15/1999	15.00		10		
AWP-04	12/15/1999	20.00	anga kaya papaganatan ng pasa-s	1U שלו אייניייייייייייייייייייייייייייייייייי		niggi yararganari dari i
AWP-04	12/15/1999	25.00				
/WP-04 /WP-04	12/15/1999 12/15/1999	30.00 35.00		1U 	BARRORESERVES IN 147 SERVES PROPERTY	896395140000008951515164

Only those parameters detected are shown.

RSR exceedences are bracketed.

Page: 9 of 9 Date: 05/03/2000

English Station Summary of Soil Analytical Data PCB Remediation Area

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SAMPLE TYPE: SO

SAMPLE TYPE:		ner enertenententet der er e	Committee of the Commit		carrance garanearana are	***************************************	• •••
SITE	DATE	DEPTH	SAMPLE ID	PCB's			
				(mg/kg)			
Indust./Comm.C	riteriaCTDEP Jan. 1996			10		.	
GB MobilityCrite	riaCTDEP Jan. 1996						
MWP-04	12/15/1999	40.00		1U			
MWP-04	12/15/1999	45.00		1U			
MWP-04	12/15/1999	50.00	ment of H to annual that the transfer	1U			
MWP-04	12/15/1999	55.00		1U			
MWP-04	12/15/1999	60.00		10	• ****** ty- ****************************		
MWP-04	12/15/1999	65.00		าม			
MWP-04	12/15/1999	70.00		10			- 1

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 1 Date: 05/03/2000

English Station
Summary of Soil Analytical Data
Station B
(AOC 1)

PERIOD: From 03/30/2000 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soi

					distributation of colors of the color of the colors of the

			******************************		fortunation and the first the same and the s
The second secon					
			1D•Z11	The state of the s	
SILE					3 . Marin 1
V11C		TB-217		***************************************	

CAMPIE	ID Indust/Comm. G		1 H-21 // 2-41		**************************************
SAMPLE	indier/i.omm	H MODIIIV 10-21/10-21	.:::.1D-211(2-7)	······································	
SAMPLE	.IO				

		12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		03/30/2000	7777777
The state of the s		riteria 03/30/2000	03/30/2000		
CONSTITUENT		INCII a			
LUNSHIUPN	1. 12 . 1. 12 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		*		
00101110011					TAA: "
			7 NA	· · · · · · · · · · · · · · · · · · ·	
DEPTH	ft) CTDEP Jan : 1996 C		J. UU	5.00	1 · · · · · · · · · · · · · · · · · · ·
	ICI SALL 1999		*******		

		The state of the s	10.11		
	and the second s		***************************************		
The state of the s	CONTRACTOR OF A CONTRACTOR OF		e / III	7/4	300
	/5t # 1			**************************************	the state of the s
ETPH (mg/kg)		500 <25			Commence of the commence of th
					Compact continues to the state of the state
			7 ^	RIA	NIA .
, n	40	PA	/ M	IVA	11//
I A!_ (ma/ya)	10	0.5		,	
I Arcenic (mg/cg/	• •				

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 3 Date: 05/03/2000

English Station Summary of Soil Analytical Data Gasoline USTs (AOC 2)

From 03/30/2000 thru 03/31/2000 - Inclusive PERIOD:

SAMPLE TYPE:

Soil

					- 6		
	SITE			TB-218	_TB-218	TB-226	TB-227
	SAMPLE ID:	Indust/Comm.	GB Mobility	TB-218(0-2)	TB-218(4-6)	TB-226(2-4)	TB-227(4-6)
CONSTITUENT	DATE	Criteria	Criteria 4000	03/30/2000	03/30/2000 5,00		03/31/2000 5.00
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	1,00		<100	NA.
Acenaphthylene	(ug/kg)	250000D	84000	<100	2020.0		
Anthracene	(ug/kg)	2500000	400000	<100	1304.0	<100	NA
Benzo(a)anthracens	(ug/kg)	7800	1000	<100	3445.0	<100	NA III.
Benzo(a)pyrene	(ug/kg)	1000	1000	<100	[5584.0] -10/0, 74	<i>j</i> <100	NA
3,4-Benzofluoranthene	(ug/kg)	7800	1000	<100	4605.0 ×	<100	NA
Benzo(k)fluoranthene	(ug/kg)	78000	1000	<100	3665.0 ∨	<100	NA
Chrysene	(ug/kg)	780000	960 কিবই	<100	3607.0	<100	NA .
Fluoranthene	(ug/kg)	2500000	56000	<100	4434.0	1303.0	NA
Fluorene	(ug/kg)	2500000	56000	<100	1603.0	<100	NA
	(ug/kg)	2500000	56000	<100	5066.0	<100	NA
Naphthalene	(ug/kg)	2500000	40000	<100	5639.0	1034.0	- NA
Phenanthrene		2500000	40000	<100	4745.0	1100.0	NA
Pyrene	(ug/kg)		2500	534	162	39	- 99
ETPH	(mg/kg)	2500	2300		NA .	4.2	NA
Arsenic	(mg/kg)	10		3.3	IAW !	7.4	141

Page: 2 of 3 Date: 05/03/2000

English Station Summary of Soil Analytical Data Gasoline USTs (AOC 2)

PERIOD: From 03/30/2000 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE			TB-227	TB-228	TB-228	TB-229
				TB-227(10-12)		TB-228(4-6)	TB-229(0-2)
CONSTITUENT			*** *** *** ***** * ****** * * *** *** *** ***	03/31/2000	03/31/2000	03/31/2000	03/31/2000
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	11,00	3.00	5,00	1.00
Acenaphthylene	(ug/kg)	2500000	84000	NA	ব্যঞ	NA	<100
Anthracene	(ug/kg)	2500000	400000	NA	<100	NA	<100
Benzo(a)anthracene	(ug/kg)	7800	1000	NA .	114.0	NA	129.0
Benzo(a)pyrene	(ug/kg)	1000	1000	NA	126.0	NA	100.0
3,4-Benzofluoranthene	(ug/kg)	7800	1000	NA	158.0	NA	135.0
Benzo(k)fluoranthene	(ug/kg)	78000	1000	NA	135.0	NA	124.0
Chrysene	(ug/kg)	780000	960	NA	135.0	NA -	237,0
Fluoranthene	(ug/kg)	2500000	56000	NA	219.0	NA	170.0
Fluorene	(ug/kg)	2500000	56000	NA	<100	NA	<100
Naphthalene	(ug/kg)	2500000	56000	NA	<100	NA	<100
Phenanthrene	(ug/kg)	2500000	40000	NA	<100	NA :	<100
Pyrene	(ug/kg)	2500000	40000	NA	212.0	NA	334.0
ETPH	(mg/kg)	2500	2500	954	133	172	45
Arsenic	(mg/kg)	10 .		NA	2.5	NA	6.4

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 3 of 3 Date: 05/03/2000

English Station Summary of Soil Analytical Data Gasoline USTs (AOC 2)

PERIOD: From 03/30/2000 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE			TB-229
	SAMPLE ID	Indust/Comm.		TB-229(4-6)
CONSTITUENT	DATE	Criteria	Criteria .	03/31/2000
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	5.00
Acenaphthylene	(ug/kg)	2500000	84000	NA
Anthracene	(ug/kg)	2500000	400000	NA
Benzo(a)anthracene	(ug/kg)	7800	1000	MA THE STATE OF TH
Вепхо(а)ругеле	(ug/kg)	1000	1000	NA .
3,4-Benzofluoranthene	(ug/kg)	7800	1000	NA .
Benzo(k)fluoranthene	(ug/kg)	78000	1000	NA NA
Chrysene	(ug/kg)	780000	960	NA CONTRACTOR OF THE CONTRACTO
Fluoranthene	(ug/kg)	2500000	56000	NA
Fluorene	(ug/kg)	2500000	66000	NA
Naphthalene	(ug/kg)	2500000	56000	NA
Phenanthrene	(ug/kg)	2500000	40000	NA Transfer of the Control of the Co
Pyrene	(ug/kg)	2500000	40000	NA
ЕТРН	(mg/kg)	2500	2500	< 25
Arsenic	(mg/kg)	10		NA .

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 3 Date: 05/03/2000

English Station
Summary of Soil Analytical Data
Oil Pump Room/Waste Oil AST
(AOC 7)

PERIOD: From 03/30/2000 thru 03/31/2000 - Inclusive

SAMPLE TYPE: So

CONSTITUENT	SITE SAMPLE ID DATE DEPTH (ft)	Indust/Comm. Criteria CTDEP Jan. 1996	GB Mobility Criteria CTDEP Jan. 1996	TB-207 TB-207(0-2) 03/30/2000 1.00	TB-208 TB-208(0-2) 03/30/2000 1,00	.TB-209 TB-209(2-4) 03/30/2000 3.00	TB-210 TB-210(0-2) 03/30/2000 1.00
PCB's	(mg/kg)	10		NA	NA	NA	NA .
Benzo(a)pyrene	(ug/kg)	1000	1000	215.0	[2138.0]	[1385.0] 🟏	<100
3,4-Benzofluoranthene	(ug/kg)	7800	1000	158.0	2437.0 →	1076.0	<100
Benzo(k)fluoranthene	(ug/kg)	78000	1000	122.0	1491.0	<100	<100
Fluoranthene	(ug/kg)	2500000	56000	<100	1250.0	<100	<100
Pyrene	(ug/kg)	2500000	40000	<100	1179.0	<100	<100
ETPH	(mg/kg)	2500	2500	<25	<25	291	65
Arsenic	(mg/kg)	10		3.9	2.8	5.2	2.2
Barium	(mg/kg)	140000		33	30	20	32
- Cadmium	(mg/kg)	1000		<0.5	<0.5	<0.5	<0.5
Chromium	(mg/kg)			7.5	6.2	8.0	9.3
Load	(mg/kg)	1000		87.1	11.5	28.5	31.3
Mercury	(mg/kg)	610		0.06	0.06	0.06	0.03
Selenium	(mg/kg)	10000		<0.5	<0.5	<0.5	2.5
Silver	(mg/kg)	10000		<0.2	₹0.2	- 0.2	<0.2
Lead (SPLP)	(mg/l)		0.15	0.010	<0.005	<0.005	0.006

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 3

Date: 05/03/2000

English Station Summary of Soil Analytical Data Oil Pump Room/Waste Oil AST (AOC 7)

PERIOD: From 03/30/2000 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE SAMPLE ID	Indust/Comm:	: G8 Mobility	TB-223 TB-223(3.5-3.8)	TB-224 TB-224(1-1.3)	TB-224 TB-224(2-3)	TB-225 TB-225(1.7-2.0)
CONSTITUENT		Criteria	Criteria	03/31/2000	03/31/2000	03/31/2000	03/31/2000
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1998	3.65	1,15	2.50	1.85
PCB's	(mg/kg)	10		<1.0	5	7	[14] 🗸
Benzo(a)pyrene	(ug/kg)	1000	1000	NA	NA	NA	NA
3,4-Benzofluoranthene	(ug/kg)	7800	1000	NA	NA	. NA	NA .
Benzo(k)fluoranthene	(ug/kg)	78000	1000	NA	NA	NA	NA
- Fluoranthene	(ug/kg)	2500000	56000	NA	NA	- NA	NA
Pyrene	(ug/kg)	2500000	40000	NA	NA	NA	NA
ETPH	(mg/kg)	2500	2500	<25	.54	428	236
Arsenic	(mg/kg)	10		NA	NA	NA	NA .
Barlum	(mg/kg)	140000		NA	NA	NA	NA
Cadmium	(mg/kg)	1000		NA	NA	NA	NA
Chromlum	_(mg/kg)			NA .	NA	NA	NA:
Lead	(mg/kg)	1000		NA	NA	NA	NA
Mercury	(mg/kg)	610		NA	NA .	NA	NA
Selenium	(mg/kg)	10000		NA	NA	NA	NA
Silver	(mg/kg)	10000		NA	NA	NA .	NA:
Lead (SPLP)	(mg/1)		0.15	NA	NA	NA	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 3 of 3 Date: 05/03/2000

English Station Summary of Soil Analytical Data Oil Pump Room/Waste Oil AST (AOC 7)

PERIOD: From 03/30/2000 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE			TB-225
2010-114-12	SAMPLEID	Indust/Comm. Criteria	GB Mobility Criteria	TB-225(3:7-4:0)
CONSTITUENT	DATE DEPTH (ft)	CTDEP Jan. 1998	CTDEP Jan; 1996	03/31/2000 3.85
PCB's	(mg/kg)	10		
Benzo(a)ругеле	(ug/kg)	1000	1000	NA
3,4-Benzofluoranthene	(ug/kg)	7800	1000	NA
Benzo(k)fluoranthene	(ug/kg)	78000	1000	NA
Fluoranthena	(ug/kg)	2500000	56000	NA .
Pyrene	(ug/kg)	2500000	40000	NA
ETPH	(mg/kg)	2500	2500	1235
Arsenic	(mg/kg)	10		NA
Barium	(mg/kg)	140000		NA CONTRACTOR OF THE CONTRACTO
Cadmium	(mg/kg)	1000		NA
Chromium	(mg/kg)			NA .
Lead	(mg/kg)	1000		NA
Mercury	(mg/kg)	610		NA CONTRACTOR OF THE CONTRACTO
Selenium	(mg/kg)	10000		NA
Silver	(mg/kg)	10000		NA
Lead (SPLP)	(mg/l)		0.15	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 4 Date: 05/03/2000

English Station
Summary of Soil Analytical Data
Oil ASTs
(AOC 8)

1

PERIOD: From 03/30/2000 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soi

protein aus alla martiette materialiste tratti falle in little aus in internationaliste in televisioni de la c							
	SITE			SS-104	SS-105	SS-108	SS-107
	SAMPLE ID	Indust/Comm.	GB Mobility				SS-07
CONSTITUENT	DATE	Criteria	Criteria	03/31/2000	03/31/2000	03/31/2000	03/31/2000
CONSTITUENT		CTDEP Jan. 1996		0.15	0,15	0.15	0.15
PCB's	(mg/kg)	_10		3	2	1	< 1,U
ETPH	(mg/kg)	2500	2500	<25	<25	<25	<25
		10		NIA	NA ::	NA	NA III
Arsenic	(mg/kg)	10					NA.
Barium	(mg/kg)	140000		NA	NA	NA	NA NA
	(ma/ka)			NA :	- NA	NA	NA
Chromium						######################################	NA.
Chromium Lead	(mg/kg) (mg/kg)	1000		NA	NA	NA	NA
Lead	(mg/kg)	1000		NA	NA	NA	"That " Table of the second
- Control of the cont		1000		NA		NA	NA

Only those parameters detected are shown. RSR exceedences are bracketed.

English Station Summary of Soil Analytical Data Oil ASTs (AOC 8)

PERIOD: From 03/30/2000 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soil

						*** ********* *************************	
	SITE			°CC 1/10	TB-211	TB-212	∵ТВ-219
				• · · · · · · · · · · · · · · · · · · ·		****	
		Indust./Comm.		SS-08			TB-219(3-3.3)
CONSTITUENT	DATE	Criteria	Criteria	03/31/2000	03/30/2000	03/30/2000	03/31/2000
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1998	0.15	1.00	3.00	3.15
PCB's	(mg/kg)	10			NA	NA.	<1.0
ETPH ,	(mg/kg)	2500	2500	<25	<25	53	41
Arrenia	/ma/km)			NA .	3.0	63	NΔ
Arsenic	(mg/kg)	10		M	3.0	6.3	-NA
Arsenic Barium	(mg/kg) (mg/kg)	10 140000		NA NA	3.0 31	6.3 31	NA NA
Barium	(mg/kg)	140000		NA	31	31	NA
	(mg/kg)			NA NA	31 6.8	31 7.5	NA NA
Barium	(mg/kg)	140000		NA	31	31 7.5 26.6	NA NA NA
Barium Chromium Lead	(mg/kg) (mg/kg) (mg/kg)	140000		NA NA NA	31 6.8 55.9	31 7.5 26.6	NA NA NA
Barium Chromium	(mg/kg) (mg/kg) (mg/kg)	140000		NA NA NA	31 6.8 55.9	31 7.5 26.6	NA NA
Barium Chromium Lead	(mg/kg) (mg/kg) (mg/kg)	140000		NA NA NA	31 6.8 55.9	31 7.5 26.6	NA NA NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 3 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Oil ASTs (AOC 8)

PERIOD: From 03/30/2000 thru 03/31/2000 - Inclusive

SAMPLE TYPE: Soil

						•	
	elTE .			TB 210	TB-220	TB-220	TB-220
		Indust/Comm.					
CONSTITUENT		Criteria					
	***************************************			7,15	1.65	3,65	5.15
PCB's	(mg/kg)	10		<1.0	বা.0	<1.0	<1.0
ETPH	(mg/kg)	2500	2500	46	1050	60	1115
				NA :	NA	NA	NA .
Arsenic	(mg/kg)	10		NA NA	NA NA	NA NA	NA NA
Arsenic Barium	(mg/kg) (mg/kg)	140000		NA	NA	NA	NA
Arsenic Barium Chromium	(mg/kg) (mg/kg) (mg/kg)	10 140000		NA		NA	NA
Arsenic Barium Chromium Lead	(mg/kg) (mg/kg) (mg/kg) (mg/kg)	140000		NA NA NA	NA NA	NA NA	NA NA
Arsenic Barium Chromium Lead	(mg/kg) (mg/kg) (mg/kg)	10 140000		NA NA	NA NA	NA NA	NA NA

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 4 of 4

Date: 05/03/2000

English Station Summary of Soil Analytical Data Oil ASTs (AOC 8)

From 03/30/2000 thru 03/31/2000 - Inclusive PERIOD:

SAMPLE TYPE: Soil

	SITE			TB-221	TB-222	TB-222	
	SAMPLEID	Indust/Comm.	GB Mobility	TB-221(5-5.3)	TB-222(1.7-2.0)	TB-222(5.9-6.2)	
CONSTITUENT	DATE	Criteria	Criteria	03/31/2000	03/31/2000	03/31/2000	
		:; <u>z.</u> : <u>2:::::::::::::::::::::::::::::::::::</u>	:			6.05	
PCB's	(mg/kg)	10		<1.0	<1.0	<1.0	
ETPH	(mg/kg)	2500	2500	128	244	29	
	·						
		10		⊥NA	NA	NA	
Arsenic Bartum	(mg/kg) (mg/kg)	140000		NA	NA	NA NA	
Arsenic Bartum	(mg/kg) (mg/kg)	140000		NA	NA	NA	
Arsenic Bartum	(mg/kg) (mg/kg)	140000		NA	NA		
Arsenic Barium Chromium	(mg/kg) (mg/kg) (mg/kg) (mg/kg)	140000 1000		NA NA NA	NA NA NA	NA NA	

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 2 Date: 05/03/2000

English Station Summary of Soil Analytical Data Capacitors/Transformers (AOC 9)

PERIOD: From 03/30/2000 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

				** ** . ** . ** * * . * . * * *
the state of the s	***************************************			
2115				
SITE	HA-01			
SAMPLE ID Indust/Comm. GB Möbility	HA-01			SS-02
SAMPLE III I INDUSTICOMM				
JAMI LEID III III III III III III III III III				
CONSTITUENT DATE Criteria Criteria				
TO CONSTITUTE OF THE PROPERTY				
DEDTU (A) CTDEP lan 1996 CTDEP Jan.				
		0,95	0.15	
DEPTH (ft) CTDEP Jan. 1996 CTDEP Jan. 1				
Implie) 10				
PCR's (mg/kg) 10				
THE PARTY OF THE P				
PCB's (mg/kg) 10				
The manner of the property of		D1/ '!	*****	P 4
And the state of t	A1A	[220] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11501 23/24 - 7	► Λ
1	NΔ	[230] 🗘 🗸	[150] examply	J.7
/===/	1177			· ·
I AIa	•			
1 Arsenic (mg/kg)				

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 2 Date: 05/03/2000

English Station
Summary of Soil Analytical Data
Capacitors/Transformers
(AOC 9)

PERIOD: From 03/30/2000 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soi

PCB's	DEPTH (ft) (mg/kg)	CTDEP Jan: 1996	SIDEP Jan. 1996 0.15	3.15	4	
CONCTITUENT	DATE	Criteria	3B Mobility SS-03 Criteria 03/30/2000	03/30/2000	03/30/2000	
	SITE		SS-103	TB-214	TB-215	

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 4

Date: 05/03/2000

English Station Summary of Soil Analytical Data Coal Storage Area (AOC 12)

PERIOD: From 03/31/2000 thru 04/03/2000 - Inclusive

SAMPLE TYPE:

Soil

				radga 12 Francis
		111.00		
	SITE	GB Mobility: HA-(0-2)	TB-230 TB-231 TB-232 TB-230(2-4) TB-231(0-2) TB-232(2-4)	
CONCERNIT		Criteria 03/31/2000		
CONSTITUENT		CTDEP Jan. 1996 1.00	3.00 1.00 3.00	

Arsanic	(mg/kg) 10.	[16.1]. (17.7)	5.0 [11.5] dove [11.5] dov	اللا

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 4 Date: 05/03/2000

English Station
Summary of Soil Analytical Data
Coal Storage Area
(AOC 12)

PERIOD: From 03/31/2000 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

	SITE	TB-233 TB-234 TB-234(0-2)	
CONSTITUENT		eria 04/03/2000 04/03/2000	04/03/2000 04/03/2000
	DEPTH (ft) CTDEP Jan: 1996 CTD	DEP Jan. 1996. 3.00 1.00	3.00 1,00
Arsenic	(mg/kg) 10	[323] Jane [124] Jane	(22.8)

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 3 of 4 Date: 05/03/2000

English Station
Summary of Soil Analytical Data
Coal Storage Area
(AOC 12)

PERIOD: From 03/31/2000 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

SITE TB-237 TB-239 TB-240 TB-241
SITE 18-23/ 18-239 18-240 18-241
SAMPLE ID Indust (Comm. GR Mobility TB-237(0-2) TB-239(0-2) TB-240(2-4) TB-241(1-3)
SAMP FID Indust /Comm. GB Mobility TB-237(0-2) TB-239(0-2) TB-240(2-4) TB-241(1-3)
SAMPLE ID Indust/Comm. GB Mobility TB-237(0-2) TB-239(0-2) 1B-240(2-4) 1B-241(1-3):
CONSTITUENT DATE Criteria Criteria 04/03/2000 04/03/2000 04/03/2000 04/03/2000
CONSTITUENT DATE Criteria Criteria Chieria Chieria Chieria
DEPTH (ft) CTDEP Jan. 1996 CTDEP Jan. 1996 1.00 1.00 3.00 2.00
7.9 4.3 3.0 7.3
Areaste 7.9 4.3 3.0 7.3
Arsenic (mg/kg) 10 7.9 4.3 3.0 //.3

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 4 of 4 Date: 05/03/2000

English Station
Summary of Soil Analytical Data
Coal Storage Area
(AOC 12)

PERIOD: From 03/31/2000 thru 04/03/2000 - Inclusive

SAMPLE TYPE: Soil

TB-242
SAMPLE ID Indust/Comm. GB Mobility TB-242(1-3)
SAMPLE ID Indust/Comm. GB Mobility TB-242(1-3)
CONSTITUENT DATE Criteria 04/03/2000
CONSTITUENT DATE Criteria Criteria 04/03/2000
DEPTH (ft) CTDEP Jan. 1996 CTDEP Jan. 1996 2.00
DEPTH (ft) CTDEP Jan. 1996 CTDEP Jan. 1998 2.00
6reale (mg/kg) 10 5.5.

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 03/30/2000 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Se

Soil

)₅,

بمتاءوثير

	SITE			TB-200	TB-201	TB-202	TB-203
	SAMPLE ID	Indust/Comm.	GB Mobility	TB-200(0-2)	TB-201(0-2)	TB-202(2-4)	TB-203(0-2)
CONSTITUENT	DATE	Critéria	Criteria CTDEP Jan, 1996	03/30/2000 1.00	03/30/2000 1.00	3:00 3:00	03/30/2000 1.00
	DEPTH (ft)	CTDEP Jan. 1996		<100	*.00 <100	3292.0	<100
Acenaphthene	(ug/kg)	2500000	84000				3531.0
Acenaphthylene	(ug/kg)	2500000	84000	<100	<100	1636.0 15425.0	6603.0
Anthracena	(ug/kg)	2500000	400000	<100	<100		
Benzo(a)anthracene	(ug/kg)	7800	1000	<100	<100	[28441.0] ~	[30950.0] —
3enzo(a)pyrene	(ug/kg)	1000	1000	170.0	<100	[43270,0]—	[28585.0] —
3,4-Benzofluoranthene	(ug/kg)	7800	1000	114.0	<100	[26506.0] ——	[24427.0]
3enzo(k)fluoranthene	(ug/kg)	78000	1000	<100	. ব00	32661,0	18714.0
Chrysene	(ug/kg)	780000	960	<100	<100	28794.0	27318.0
Fluoranthene	(ug/kg)	2500000	56000	<100	<100	64475.0	51323.0
Fluorene	(ug/kg)	2500000	56000	<100	<100	7249.0	<100
Indeno(1,2,3-cd)pyrene	(ug/kg)	7800	1000	<500	<500	[8147.0]	6040.0
Phenanthrene	(ug/kg)	2500000	40000	<100	<100	72000.0	26000.0
Pyrene	(ug/kg)	2500000	40000	<100	<100	44532.0	-48043.0
ETPH	(mg/kg)	2500	2500	28	94	57	32
Arsenic	(mg/kg)	10		29	1.9	4.2	3.7
	(mg/kg)	140000		41	47	48	34
Barlum	(mg/kg)	1000		<0.5	<0.5	<0,5	<0.5
Cadmium	(mg/kg)		10 10 10 10 10 10 10 10 10 10 10 10 10 1	8,0	7.6	10.2	11.7
Chromium	(mg/kg)	1000		19.3	33.5	157	44.3
Lead				0.06	0.03	0.28	0.07
Mercury	(mg/kg)	610		v.vo ≼0.5	<0.5	managayanan re. 41 mm.	<0.5

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 2 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

PERIOD: From 03/30/2000 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soi

Silver Lead (SPLP)	(mg/l)	0.15	₹0.005	< 0.005	<0.005	⋖ 0.005
	DEPTH (ft)	DEP Jan: 1996 CTDEP Jan: 000		-1.00		1.00
CONSTITUENT	DATE	eria Criteria		***************************************	03/30/2000	
	SAMPLEIDIndo			TB-201 TB-201(0-2)	TB-202(2-4)	TB-203 TB-203(0-2)

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 3 of 4

Date: 05/03/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

From 03/30/2000 thru 03/30/2000 - Inclusive PERIOD:

SAMPLE TYPE:

Soil

dre ine

	SITE			TB-204	TB-205	TB-206:
CONSTITUENT	SAMPLE ID DATE DEPTH (ft)	Indust/Comm. Criteria CTDEP Jan, 1996	GB Mobility Criteria CTDEP Jan. 1998	TB-204(2-4) 03/30/2000 3.00	TB-205(2-4) 03/30/2000 3.00	TB-206(2-4) 03/30/2000 3,00
Acenaphthene	(ug/kg)	2500000	84000	<100	<100	<100
Acenaphthylene	(ug/kg)	2500000	84000	<100	1311.0	<100
Anthracene	(ug/kg)	2500000	400000	<100	1034.0	<100
Benzo(a)anthracene	(ug/kg)	7800	1000	<100	[10590.0]V;	1316.0
Benzo(a)pyrene	(ug/kg)	1000	1000	[3269.0]	[14827.0] 🛂 🖊 📜	[3433.0]
3,4-Benzofluoranthene	(ug/kg)	7800	1000	<100	[15828.0] 💆	2767.0
Benzo(k)fluoranthene	(ug/kg)	78000	1000	<100	12757.0	1754.0
Chrysene	(ug/kg)	780000	960	<100	9540.0	1390.0
Fluoranthene	(ug/kg)	2500000	56000	<100	10237.0	1498.0
Fluorene	(ug/kg)	2500000	56000	<100	<100	<100
Indeno(1,2,3-cd)pyrene	(ug/kg)	7800	1000	<500	7496.0	≥500
Phenanthrene	(ug/kg)	2500000	40000	<100	3635.0	<100
Pyrana	(ug/kg)	2500000	4000D	< 100	12721.0	1625.0
ЕТРН	(mg/kg)	2500	2500	1377	189	115
Arsenic	(mg/kg)	10		- 3.0	6,1	9.3
Barium	(mg/kg)	140000	an (23	37	55
Cedmium	(mg/kg)	1000		<0.5	<0.5	4 0.5
Chronium	(mg/kg)	engangangan ang pambanan alikiliki Pile P	TOTAL LANGUAGE STREET STOPP	8.8	8.8	10.8
Load	(mg/kg)	1000		44.7	134	276
Mercury	(mg/kg)	610		0.14	0.21	0.46
Selenium	(mg/kg)	10000		0,9	3.2	1.2
- Selenium	ניישייט					

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 4 of 4 Date: 05/03/2000

English Station Summary of Soil Analytical Data Wastewater Treatment System/Station East (AOC 13)

V ~

PERIOD: From 03/30/2000 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

		 				
	SITE		TB-204	TB-205	TB-206	
	SAMPLE ID Indust./C	Comm. GB Mobility.	TB-204(2-4)	TB-205(2-4)	TB-206(2-4)	
CONSTITUENT	4. 55.4.5	Criteria Jan: 1996 — CTDEP Jan: 19	198 3.00			
	(mg/kg) 10000					
Lead (SPLP)	(mg/l)	0.15	0.007	0.012	0.031	

Only those parameters detected are shown. RSR exceedences are bracketed.

Page: 1 of 1 Date: 05/03/2000

English Station Summary of Soil Analytical Data Southwest of Plant

PERIOD: From 03/30/2000 thru 03/30/2000 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE DEPTH (ft)	Indust/Comm. GB Criteria Crit CTDEP Jan, 1998 CTI	TB-213 Mobility TB-213(2-4) leria 03/30/2000 DEP Jan, 1998 3.00	TB-216 TB-216(0-2) 03/30/2000 1.00
ЕТРН	(mg/kg)	2500 25	00 29	
	//le-\	40	20	A A
Arsenic	(mg/kg)	IU	2.5	7.7
Arsenic Barlum	(mg/kg)	140000	32	41
Barium	(mg/kg) (mg/kg)		7.4	41 22.0
Barrum Chromium	(mg/kg) (mg/kg)		7.4	22.0 24.2
Barrum Chromium	(mg/kg) (mg/kg)		7.4	22.0

Only those parameters detected are shown. RSR exceedences are bracketed.

Date: 05/03/2000

English Station Summary of Soil Analytical Data PCB Remediation Area

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

Indust/Comm.CriteriaCTDEP Jan. 1996 10 10 10 10 10 10 10 1	
Modust/Comm.CiteriacTDEP Jan. 1996 10 10 12 15 15 15 15 15 15 15	
Indust/Comm. Criteria CTDEP Jan. 1996 3B Mobility Criteria CTDEP Jan. 1996 3B Mobility Criteria CTDEP Jan. 1996 3DR1 12/15/1999	
BB MobilityCriteriaCTDEP Jun 1996 1.2	
ORI 1215/1999	
ORI	
100R1	
12/15/1999 21.00 1U 1U 1U 1U 1U 1U 1U	
ORI 12/15/1999 25.00 1U ORI 12/15/1999 5.00 1U OR2 12/15/1999 6.00 1U OR2 12/15/1999 11.00 1U OR2 12/15/1999 10.00 1U OR2 12/15/1999 10.00 1U OR2 12/15/1999 25.00 1U OR2 12/15/1999 10.00 1U OR2 12/15/1999 10.00 1U OR3 12/15/1999 10.00 1U OR4 12/15/1999 10.00 1U OR5 12/15/1999 10.00 1U OR6 12/15/1999 10.00 1U OR7 12/15/1999 10.00 1U OR8 12/15/1999 10.00 1U OR9 OR 12/15/1999 10.00 1U	
ORR	Marana Malahar P
ORZ 12/15/1999 6.00 1U ORZ 12/15/1999 11.00 1U ORZ 12/15/1999 15.00 1U ORZ 12/15/1999 26.00 1U ORZ 12/15/1999 26.00 1U ORZ 12/15/1999 11.00 1U ORZ 12/15/1999 11.00 1U ORZ 12/15/1999 11.00 1U ORZ 12/15/1999 11.00 1U ORZ 12/15/1999 10.00 1U ORZ 12/15/1999 21.00 1U ORZ 12/15/1999 21.00 1U ORZ 12/15/1999 21.00 1U ORZ 12/15/1999 21.00 1U ORZ 12/15/1999 10.00 1U ORZ 12/	
ORZ	
100	
12/15/1999 25.00 1U 10/15/2 12/15/1999 31.00 1U 10/15/2 12/15/1999 11.00 1U 10/15/15/15/15/15/15/15/15/15/15/15/15/15/	
12/15/1999 11.00 10 10 10 10 10 10	
OR3 12/15/1999 11.00 1U OR3 12/15/1999 21.00 1U OR3 12/15/1999 21.00 1U OR3 12/15/1999 31.00 1U OR3 12/15/1999 31.00 1U OR4 12/15/1999 11.00 1U OR4 12/15/1999 11.00 1U OR4 12/15/1999 10.00 1U OR4 12/15/1999 10.00 1U OR4 12/15/1999 10.00 1U OR5 12/15/1999 10.00 1U OR6 12/15/1999 10.00 1U OR6 12/15/1999 10.00 1U OR7 12/15/1999 10.00 1U OR8 12/15/1999 10.00	
12/15/1999 16.00 1U	
OR3	
10R3 12/15/1999 31.00 1U 10R3 12/15/1999 31.00 1U 10R4 12/15/1999 11.00 1U 10R4 12/15/1999 11.00 1U 10R4 12/15/1999 21.00 1U 10R4 12/15/1999 21.00 1U 10R4 12/15/1999 31.00 1U 10R4 12/15/1999 11.00 1U 10R5 12/15/1999 31.00 1U 10R6 12/15/1999 11.00 1U 10R7 12/15/1999 11.00 1U 10R8 12/15/1999 1I 10R8 12/15/19	
12/15/1999	
12/15/1999 11.00 1U 13/15/1999 16.00 1U 13/15/1999 21.00 1U 13/15/1999 31.00 1U 13/15/1999 31.00 1U 13/15/1999 11.00 1U 13/15/1997 12.00 5.0 13/15/1997 12.00 5.0	anerina naadori kilodor
10R4 12/15/1999 16.00 1U 30R4 12/15/1999 21.00 1U 30R4 12/15/1999 31.00 1U 30R4 12/15/1999 31.00 1U 30R5 12/15/1999 11.00 1U 30R5 12/15/1999 106.00 1U 30R5 12/15/1999 106.00 1U 30R5 12/15/1999 106.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 106.00 1U 30R6 12/15/1999 106.00 1U	
12/15/1999 21.00 1U 12/15/1999 31.00 1U 10/0R4 12/15/1999 31.00 1U 10/0R5 12/15/1999 11.00 1U 10/0R5 12/15/1999 11.00 1U 10/0R5 12/15/1999 21.00 1U 10/0R5 12/15/1999 21.00 1U 10/0R5 12/15/1999 21.00 1U 10/0R5 12/15/1999 21.00 1U 10/0R5 12/15/1999 10.00 1U	
30R4 12/15/1999 26.00 1U 30R4 12/15/1999 31.00 1U 30R5 12/15/1999 11.00 1U 30R5 12/15/1999 11.00 1U 30R5 12/15/1999 11.00 1U 30R5 12/15/1999 10.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 10.00 1U 30R5 12/15/1997 10.00 1U 30R5 12/12/1997 10.00 1U 30R5 12/12/1997 10.00 1U 30R5 12/12/1997 10.00 1U 30R5 1	allarid.Hadiffa : 3:
30R4 12/15/1999 31.00 1U 30R5 12/15/1999 11.00 1U 30R5 12/15/1999 11.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 12.00 1U 30R5 12/15/1999 10.00 1U 30R5 12/15/1999 10.00 1U 30R5 12/15/1999 10.00 1U 30R5 12/15/1999 10.00 1U 30R5 12/12/1997 12.00 1U 30R-01 12/12/1997 12.00 1U 30R-02 12/12/1997 12.00 1U 30R-03 12/12/1997 12.00 1U 30R-04 12/12/1997 12.00 5.0	
30R5 12/15/1999 11.00 1U 30R5 12/15/1999 11.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 31.00 1U 30R5 12/15/1999 31.00 1U 30R5 12/15/1999 12.00 1U 30R5 12/12/1997 12.00 1U 30R-01 12/12/1997 12.00 1U 30R-02 12/12/1997 12.00 1U 30R-03 12/12/1997 12.00 1U 30R-04 12/12/1997 12.00 1U	anninaninini via via via via via
12/15/1999 11.00 1U 30R5 12/15/1999 16.00 1U 30R5 12/15/1999 21.00 1U 30R5 12/15/1999 26.00 1U 30R5 12/15/1999 31.00 1U 3P-01 12/12/1997 12.00 1U 3P-02 12/12/1997 12.00 1U 3P-03 12/12/1997 12.00 1U 3P-04 12/12/1997 5.0	
30R5 12/15/1999 21.00 1U 30R5 12/15/1999 26:00 1U 30R5 12/15/1999 31.00 1U 3P-01 12/12/1997 12.00 1U 3P-02 12/12/1997 12.00 1U 3P-03 12/12/1997 12.00 1U 3P-04 12/12/1997 12.00 5.0	areng jang s
30R5 12/15/1999 26:00 1U 1U 3P-01 12/12/1997 12:00 1U 3P-02 12/12/1997 12:00 1U 3P-03 12/12/1997 4:00 1U 3P-04 12/12/1997 12:00 5:0	
30R6 12/15/1999 31.00 1U 3P-01 12/12/1997 12.00 1U 3P-02 12/12/1997 12.00 1U 3P-03 12/12/1997 4.00 1U 3P-04 12/12/1997 12.00 5.0	
3P-01 12/12/1997 12.00 1U 3P-02 12/12/1997 12.00 1U 3P-03 12/12/1997 4.00 1U 3P-04 12/12/1997 12.00 5.0	
3P-02 12/12/1997 12:00 1U 3P-03 12/12/1997 4:00 1U 3P-04 12/12/1997 12:00 5:0	ensita Nile
3P-03 12/12/1997 4.00 10 5.0 5.0 3P-04 12/12/1997 12.00 5.0	e sortu sort v
3P-04 12/12/1997 12.00 5.0	
	er opprave at 1 15 ee
SP-07 12/12/1997 8.00 1U SP-09 12/19/1997 1.00 1U	

Only those parameters detected are shown.

RSR exceedences are bracketed.

Date: 05/03/2000

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SITE	DATE	DEPTH	SAMPLEID	PCB's		
				(mg/kg)		
ndust./Comm.C	riteriaCTDEP Jan. 1996	N.W. S.S. St. Biblioningsom soc		10		
	naCTDEP Jan. 1996					
3P-09	12/19/1997	2.00		10		
3P-09	12/19/1997	3.00		10		
GP-09	12/19/1997 12/19/1997	4.00 5.00		1U 1		
GP-09	12/19/1997 12/19/1997	6.00		1U		
GP-09 GP-09	12/19/1997	7.00				
GP-09	12/19/1997	8,00		10		iiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
GP-09	12/19/1997	9.00		10		
GP-09	12/19/1997	10.00		1U	••••	ana ang ang ang ang ang ang ang ang ang
GP-09	12/19/1997	11.00		1U		
GP-09	12/19/1997	12.00 13.00		10 10		
GP-09	12/19/1997 12/19/1997	14.00		10 10		P., and and P.C
GP-09 GP-09	12/19/199 <i>7</i> 	15.00		ווי טוי טוי יוי		
GP-09	12/19/1997	20.00		10		
GP-10	12/19/1997	1.00		1U		
GP-10	12/19/1997	2.00		1U		
GP-10	12/19/1997	3.00		10		
GP-10	12/19/1997	4.00 5.00		1U 		
GP-10	12/19/1997 12/19/1997	6.00		1U		
GP-10	12/19/1997	7,00		יי טו		
GP-10	12/19/1997	8.00		10	HIND COMMERCIAL CONTROL CONTRO	1 Hillian Communication
GP-10		9.00		10		
GP-10	12/19/1997	10.00		1U		
GP-10	12/19/1997	11.00		10 10		
GP-10	12/19/1997	12.00		10		
GP-11	12/19/1997 12/19/1997	1.00 2.00		1U		
GP-11 GP-11	12/19/1997 12/19/1997	3.00		บ		
GP-11 GP-11	12/19/1997	4.00	Fillight Action of Spiritual Commission Comm	1U	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Farth Malastra anna
GP-11	12/19/1997	5.00		10		
GP-11	12/19/1997	6.00	William William .	1U		oor cana
GP-11	12/19/1997	7.00		10		
GP-11	12/19/1997	8.00		1U 		
GP-11	12/19/1997	9.00		טו.		

Only those parameters detected are shown. RSR exceedences are bracketed.

Date: 05/03/2000

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

эпе	DATE	.:: DEPTH	SAMPLEID	PCB's			
				(mg/kg)			
ndust./Comm.Cr	riteriaCTDEP Jan. 1996			10			-
3B MobilityCriter	raCTDEP Jan. 1996						
GP-11	12/19/1997	10.00		1U			arang was r
3P-15	12/19/1997	4.00		10			
GP-15	12/19/1997 12/19/1997	8.00 12.00		2.7 1U	arih daliyadi. Limba dikilika		
GP-15 GP-15	12/19/1997	16.00		1U			
GP-15	12/19/1997	20.00		10			
GP-15	12/19/1997	25.00		1.4			•
GP-15	12/19/1997	28,00		1U			
GP-15	12/19/1997	32.00		1U			
GP-15	12/19/1997	36.00		1U			
GP-16	12/29/1997 :::::::::::::::::::::::::::::::::::	4.00 		1.7 3.8			
GP-16 GP-16	12/29/1997	12.00		1U			
GP-16	12/29/1997	16.00		10			
GP-16	12/29/1997	20.00		1U			
GP-17.	12/29/1997	4.00		7,3			
GP-17	12/29/1997	8.00 >		[24.5] 🗸			
GP-17	12/29/1997	12,00		10			
GP-17	12/29/1997 	13.00		1U 			
GP-18 GP-18	12/15/1999 12/15/1999	2.50		1U			
GP-18	12/15/1999	3.50		4.1			
GP-18	12/15/1999	4.50 ∨		[16.7]	provijenjenje kalendrak politikali. Ser del		
GP-18	12/15/1999	5,50		6.4			
GP-18	12/15/1999	6.50		10		mananan padangan pa	magraphanikait di dii a
GP-18	12/15/1999	7.50		1.9			
GP-19	12/15/1999 12/15/1999	3.50 7.50		1U 3.4			
GP-19 GP-19	12/15/1999 12/15/1999	7.50 11.50		1U			
GP-19	12/15/1999	12.50		10			
GP-20	12/15/1999	3.50	autustini ener artikasi entat 190	10	sta alexander PGELI BUTT 9	generaliteti (n. 1201).	
GP-20	12/15/1999	7.50		5,0			
GP-20	12/15/1999	11.50		1U			
GP-20A	04/22/1999	1.00		1U 1U			
GP-20A	04/22/1999 	3.00 5.00		10			
GP-20A	U4/22/1999	2,00					

Only those parameters detected are shown. RSR exceedences are bracketed. []=Greater than Action Level NA=Not analyzed

, 250. Date: 05/03/2000

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SAMPLE TYPE Soil

ITE	DATE	DEPTH	SAMPLE ID PCB's (mg/kg)	
idust./Comm.C	riteriaCTDEP Jan. 1996		10	
	riaCTDEP Jan, 1996	3 00	8.2	
P-20A	04/22/1999 	7.00 9.00	0.2 	
P-20A	04/22/1999	11.00		
)P-22	12/15/1999	0.50	Julian Ju	
6P -22	12/15/1999	1.50	10	
P-22	12/15/1999	2.50	ייי איייייייייייייייייייייייייייייייייי	
6P -2 2	12/15/1999	3.50	10 	and a supplication of the angle of the supplication of the supplic
3P-22	12/15/1999 12/15/1999	4,50 5.50	1.5	ang kangang di mililing, kalang kangang kangang 1964 dan di dibinggan di Salang di Salang di Salang di Salang Salang di Salang di
iP-22 iP-22	12/15/1999 12/15/1999	6.50		
iP-22	12/15/1999	7.50	1U	rennengen ande i stricterinismi internet laboration action de laboration
iP-23	12/15/1999	0.50	10 Juli	
P-23	12/15/1999	1.50	10	
SP-23	12/15/1999	2,50	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
3P-23	12/15/1999 12/15/1999	3.50 4.50	io Maria de la companya	
3P-23 3P-23	12/15/1999	5.50	9.3	
6P-23 6P-23	12/15/1999	6.50	3.2	
SP-23	12/15/1999	7.50	8.4	
3P-23	12/15/1999	8.50	6.7	
3P-23	12/15/1999	9.50	3.9 	
3P-24	12/15/1999 12/15/1999	0,50 1.50	1U	
GP-24 GP-24	12/15/1999	1.50 2.50	2.0	
3P-24	12/15/1999	3.50	2,3	
3P-24	12/15/1999	4.50	1.8	
3P-24	12/15/1999	5.50	1.0	ermoniika kirejiä läina kirimiika kirimiika kirimiika kirimiika kirimiika kirimiika kirimiika kirimiika kirimi
3P-24	12/15/1999	6.50 7.50	10 7.9	
3P-24	12/15/1999	7.50 8.50	7.9 	
3P-24 3P-24	12/15/1999 12/15/1999	9.50	7.5	
3P-24 3P-24	12/15/1999	10,50	1u 1u	
3P-24	12/15/1999	11.50	10	
GP-24	12/15/1999	12.50	10	
GP-24	12/15/1999	13.50 14.50	10 	**************************************

Only those parameters detected are shown. RSR exceedences are bracketed.

Date: 05/03/2000

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

	A	DEPTH	SAMPLEID	PCB's		
SITE	DATE	UEFIN	SAWITELID	(mg/kg)		
tust /Comm C	riteriaCTDEP Jan. 1996			10		<u> 41 - 1</u>
	ntenaCTDEP Jan. 1996					
6P-24	12/15/1999	16.00		1U	APPINATO FORMERO PINARO PER ESPANO	Attur
P-30	04/22/1999	1.00		10		
P-30	04/22/1999	3.00	MALES 200 FOLLOWING PROPERTY LAWS	1U		
P-30	04/22/1999	5.00		3.8		
P-30	04/22/1999	7.00 9.00		5.4 1U		
P-30 P-30	04/22/1999 04/22/1999	9.00 11.00		10 10		534
P-30 P-31	04/22/1999 	1.00				
P-31	04/22/1999	3.00		1U		ll-m.
iP-31	04/22/1999	5.00		10		
P-31	04/22/1999	7.00	31 HILLIAN	7.1		:::., :
iP-31	04/22/1999	9.00		10		
P-31	04/22/1999	11.00		1U		
P-32	04/22/1999 04/22/1999	1,00 3.00		10		,ca.
3P-32 3P-32	04/22/1999 	5.00		1.2		: p"
3P-32 3P-32	04/22/1999	7,00		8.7	iiiiiiiiiiiiiiiiiiiii tareesia aa a	
3P-32	04/22/1999	9.00		2.6		
3P-32	04/22/1999	11.00	IIIII Piritini in	1U		
GP-33	04/22/1999	1.00		10		
GP-33	04/22/1999	3.00	namenen aus aner 1940 sammet 1941	1U 10		ti ji
GP-33	04/22/1999	5,00 7.00		10 10		44
GP-33	04/22/1999 04/22/1999			10		ä.iţ
GP-33 GP-33	04/22/1999 04/22/1999	10.50		1U	Appallation (1975). Appartumente la caracter internacione e coma	4-45
GP-35	04/22/1999	1.00		1U		
GP-35	04/22/1999	3.00	MINISTRACE CALCULATION	1U	ENTERNOS SAMONA A PROPERTIES AND A PROPE	eri ji
GP-36	04/22/1999	1.00		10		
GP-36	04/22/1999	3.00		1.5	namananassa että mantilustusii EE EE EE EE EE	4.T.,
GP-38	04/23/1999	1.00		10 10		
GP-38	04/23/1999 	3,00 5.00			enconcorrante de Marie VIII e Siste de 1920 de 1	
GP-38 GP-38	04/23/1999 04/23/1999	7.00		2,5 6.3	i Salai (1906) i 1906) pro Silai Salain de Luberte de Cartera	.i.i.
GP-38 GP-39	04/23/1999	1.00		10		
GP-39	04/23/1999	3.00	AND THE PROPERTY OF THE PROPER	1U	Indipination and a second second second second	i s
GP-39	04/23/1999	5.00		טף		-::

Only those parameters detected are shown.

RSR exceedences are bracketed.

1 age. 0 01 8 Date: 05/03/2000

English Station Summary of Soil Analytical Data PCB Remediation Area

V

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SITE	DATE	DEPTH	SAMPLE ID	PCB's			
				. (mg/kg) .			
	iteriaCTDEP Jan. 1996			10			F 1824
3B MobilityCrite 3P-39	faCTDEP Jan. 1996 04/23/1999	7.00		2.6			
3P-40	04/23/1999	1.00		10 T			
3P-40	04/23/1999	3.00		10			::::
3P-40 3P-40	04/23/1999 04/23/1999	5.00 7.00		10 10			
3P-41	04/23/1999	7.00					
3P-41	04/23/1999	3.00		1U			
3P-41	04/23/1999	5,00					
3P-41	04/23/1999	7.00		1U			*****
3P41 3P41	04/23/1999 04/23/1999	9.00 11.00		10 10			
3P-621	12/15/1999	0.50		Ur.			
SP-621	12/15/1999	1.50		1U			
3P-821	12/15/1999	2.50		1U 1U			
3P-621 3P-621	12/15/1999 	3.50 4.60					1.11
3F-621 3P-621	12/15/1999	5.50		- 1U 1U			iii:
3P-621	12/15/1999	6.50		10			
3P-621	12/15/1999	7.50		10		•	
3P-621	12/15/1999	9.50		10 10			
3P-621 3P-621	12/15/1999 	9.50					
3P-621	12/15/1999	11.50		1U	indikan dari 12 depember		JH.
VIVV-050	10/12/1999	1.00	MW50	1U:			
MW-050	10/12/1999	3.00		1U			m (c.
WW-050	10/12/1999 10/12/1999	5.00 9.00		1,4 1U			
//W-050 //W-050	10/12/1999	11.00		10			
/W-051	10/12/1999	1.00		1U			11-11
ИW-051	10/12/1999	3.00		10			
AW-051	10/12/1999	5.00		10 			e, Till
/W-051 /W-051	10/12/1999 10/12/1999	7,00 9.00		1.7			
//W-051	10/12/1999	11.00					
∕ıW-052	10/12/1999	5.00		10	mandistrus Piūrini Cūrinicis		muii
MW-053	10/12/1999	1.00		1U			

Only those parameters detected are shown.

RSR exceedences are bracketed.

1 ug6. 1 01 0 Date: 05/03/2000

English Station Summary of Soil Analytical Data PCB Remediation Area

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

		DEDTU	SAMPLE ID PCB's	
SITE	DATE	DEPTH	(mg/kg)	
			10	
	riteriaCTDEP Jan. 1996 ríaCTDEP Jan. 1996		TO THE STANDARD REPORT OF BUILDING STANDARD OF BUILDING STANDARD OF BUILDING STANDARD OF BUILDING STANDARD STANDARD	
зв мөөшустег ИW-053	10/12/1999	3.00	1U	k Sindhilan (a. 1965) nich Pecinstra (B.C.) attalini allemanni (B.C.). 2. 2.
VIVV-053	10/12/1999	5.00		
MW-053	10/12/1999	7.00	2.6	HERENERAL A FRECH Injellente in Elithic et a sumadiscressione
MW-053	10/12/1999	9.00	10	
MW-053	10/12/1999	11.00	10	
MWP-01	12/15/1999	1.00	4.3	
MWP-01	12/15/1999	3.00	10	
MWP-01	12/15/1999	5.00	5.6	
MWP-01	12/15/1999	7.00	2.9	
MWP-01	12/15/1999	9.00 11.00	10 1.1	
MWP-01	12/15/1999 12/15/1999	11.00		
WP-01 WWP-01	12/15/1999	15.00	1U	
MWP-01	12/15/1999	20.00	Ϋ́U	
MWP-01	12/15/1999	25.00	1U	illinningsbesking Heighenstranskrinnin beskingen inner af inner
MWP-01	12/15/1999	30,00	10 ·	
MWP-01	12/15/1999	35.00	10	
MWP-01	12/15/1999	40.00	.1U	
MWP-01	12/15/1999	45.00	1U	na na american i mar ter e e companione, servicino de proposito de la companione de la companione de la compa
MWP-01	12/15/1999	50,00	10	
MWP-01	12/15/1999	55.00	1U	
MWP-01	12/15/1999	65.00	2.8	
MWP-02	12/15/1999	1.00 3.00	2.0	
	12/15/1999 12/15/1999	5.00	[33.2]	
MWP-02 MWP-02	12/15/1999	7.00	[10.6]	
MWP-02	12/15/1999	9.00	1U	periodical contrata de la contrata d La contrata de la co
MWP-02	12/15/1999	11.00		
MWP-02	12/15/1999	13.00	1U	AND
MWP-02	12/15/1999	15,00	10	
MWP-02	12/15/1999	20.00	10	ones com a communication of state of the communication of the communicat
MWP-02	12/15/1999	25.00	10	
MWP-02	12/15/1999	30.00	1U	raannon grancon, com paramentation properties (Colorador Colorador Colorador Colorador Colorador Colorador Colo
MWP-02	12/15/1999	35.00	10	
MWP-02	12/15/1999	40.00	1U	
MWP-02	12/15/1999	45.00	10	

Only those parameters detected are shown.

[]=Greater than Action Level NA=Not analyzed

RSR exceedences are bracketed.

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SITE	DATE	DEPTH	SAMPLE ID	PCB's		
311 <u>-</u>	Lac			(mg/kg)		
	W -1- OXDED 1 4006			10		
	riteriaCTDEP Jan. 1996 HaCTDEP Jan. 1996					
MWP-02	12/15/1999	50.00		1U		
MWP-02	12/15/1999	55.00				
MWP-02	12/15/1999	60.00		1U		
MWP-02	12/15/1999	65.00		1U		
MWP-02	12/15/1999	70.00		1U		
MWP-03	12/15/1999	1.00		1U		
MWP-03	12/15/1999	3.00		1U		i.C.H.H.H.H.H.H.H.H.H.L.H.H.H.H.H.H.H.H.H
MWP-03	12/15/1999	5.00		4,6		
MWP-03	12/15/1999	7.00		[11.9]		
MWP-03	12/15/1999	9.00		1U		
MWP-03	12/15/1999	11.00		1U	**************************************	· · · · · · · · · · · · · · · · · · ·
MWP-03	12/15/1999	13.00		=1U =====		
MWP-03	12/15/1999	15.00		1U	,	
MWP-03	12/15/1999	20.00		10		
MWP-03	12/15/1999	25.00		1U 1U		
MWP-03	12/15/1999	30,00 35.00		1U		
MWP-03	12/15/1999 	40.00		10		
MWP-03	12/15/1858	45.00 45.00		1U		
MWP-03	12/15/1999	50.00				
MWP-03	12/15/1999	55.00		1U		
MWP-03	12/15/1999	60.00		10		
MWP-03	12/15/1999	65.00		1Մ		i dilitta (ila), falli altifali (ila) ar (ila).
	12/15/1999	70.00		ווי 10		
MWP-04	12/15/1999	1.00		4.5		
MWP-04	12/15/1999	3.00		10		
MWP-04	12/15/1999	5.00		4.5		MARKET LINE BASE SHAPE SHAPE SHAPE AND
MWP-04	12/15/1999	7.00		3.4		
MWP-04	12/15/1999	9.00		1U	. a	ala ala sa araban da da da garangan da
MWP-04	12/15/1999	11.00		10		a Piakiki
MWP-04	12/15/1999	13.00	en en generalig plantig om bronsen, filosom a fa	1Ü		enteren erretaren erretaria.
MWP-04	12/15/1999	16.00		10 10		
MWP-04	12/15/1999	20.00		10		
MWP-04	12/15/1999	25,00 30,00		ຼຸມບູກ 1ປ		
MWP-04	12/15/1999 12/15/1999	30.00 35.00	1016.049 (pik disali, 1495)240144500	10 		
MWP-04	[<i>Z</i>] 13/ 13/3	JJ.DJ				

Only those parameters detected are shown. RSR exceedences are bracketed.

[]=Greater than Action Level NA=Not analyzed

Date: 05/03/2000

/

PERIOD: From 12/12/1997 thru 12/15/1999 - Inclusive

SAMPLE TYPE: Soi

SAMPLE TYPE:	3011		and a second control of the second control o	eminer annoca timen i imperatori	main anne e fan en an taiteach	tit tilltuttiltiltiltiltiltiltiltiltiltiltiltiltil
SITE	DATE	DEPTH		PCB's mg/kg)		
	iteriaCTDEP Jan. 199	6		10		
GB MobilityCrite	iaCTDEP Jan. 1996					
MWP-04	12/15/1999	40.00		IU		
MWP-04	12/15/1999	45.00		וט		
MWP-04	12/15/1999	50.00		IU		
MWP-04	12/15/1999	55.00		lu		
MWP-04	12/15/1999	60.00	rrican matalate e e e e e e e e e e e e e e e e e e	1U	presentati sprati a madici in calcini	
		65.00		tü ele ele ele ele ele ele ele ele ele el		
MWP-04	12/15/1999					
MWP-04	12/15/1999	70.00	7	10		

Only those parameters detected are shown. RSR exceedences are bracketed.

Table 1
(page 1 of 3)
SITE-WIDE SOIL SAMPLE MASS ANALYSIS (TOTAL) ARSENIC CONCENTRATIONS

			•	, , ,		411/1/10/19
Site Area	Location	n Sample ID	Sample Date	Sample Depth	Arsenic Conc.	Arsenic Conc.
AOC-1	MW-003	ES-MW3 (15-17)	6/4/98	(ft) 16	(mg/kg)	SPLP (mg/L)
AOC-1	TB-006	ES-TB6 (1-7)	6/4/98	4	2.3	ND<0.05
AOC-1	TB-007A	ES-TB7A (7-9)	6/4/98	. 4	6.1	ND<0.05
AOC-1	TB-217	TB-217 (0-2)	3/30/00	1	2.8 6.9	ND<0.05
AOC-1	TB-217	TB-217 (2-4)	3/30/00	3	7.9	NT
AOC-10	MW-12	ES-MW12 (2-4)	6/1/98	3	7.9 ND<1.0	NT ND 12.25
AOC-10	MW-13	ES-MW13 (13-15)	6/1/98	14	ND<1.0 ND<1.0	ND<0.05
AOC-10	MW-14D	ES-MW14D (26-28)	6/11/98	27	10.5	ND<0.05
AOC-10	MW-14S	ES-MW14S (1-3)	6/1/98	2	6.7	ND<0.05
AOC-10/13	MW-20	ES-MW20 (11-13)	5/27/98	12	4.3	ND<0.05
AOC-10/13	TB-018A	ES-TB18A (16-18)	5/28/98	17	4.3 10.7	NT ND 40.05
AOC-12	MW-004D	ES-MW4D (36-40)	6/10/98	38	ND<1.0	ND<0.05
AOC-12	MW-004S	ES-MW4S (11-13)	5/27/98	12	39.4	ND<0.05
AOC-12	MW-005	ES-MW5 (2-4)	5/26/98	3	47.2	ND<0.05
AOC-12	MW-006	ES-MW6 (5-9)	6/9/98	7	68.6	ND<0.05
AOC-12	MW-007	ES-MW7 (7-9)	6/4/98	8	14.7	0.06
AOC-12	MW-009A	ES-MW9A (0-2)	5/26/98	1	18.3	ND<0.05
AOC-12	MW-010	ES-MW10 (9-11)	6/9/98	10	3.6	ND<0.05
AOC-12	MW-22	ES-MW22 (7-9)	6/9/98	8	23.0	ND<0.05
AOC-12	SED-01	ES-SED1 (1)	6/12/98	1	16.3	ND<0.05 ⁽¹⁾ ND<0.05
AOC-12	TB-005	ES-TB5 (4-6)	6/4/98	5	4.9	ND<0.05 ND<0.05
AOC-12	TB-009	ES-TB9 (3-7)	6/4/98	5	93.0	ND<0.05 ND<0.05
AOC-12	TB-010	ES-TB010 (11-13)	6/4/98	12	13.8	ND<0.05 ND<0.05
AOC-12	TB-104	ES-TB-104 (2-4)	6/30/98	3	10.1	NT
AOC-12	TB-104	TB-104 (4-6)	6/30/98	5	7.2	NT
AOC-12	TB-106	TB-106 (3-5)	6/30/98	4	3.3	NT
AOC-12	TB-107	TB-107 (2-4)	7/1/98	3	34.4	NT
AOC-12	TB-107	TB-107 (6-8)	7/1/98	7	11.8	NT
AOC-12	TB-230	TB-230 (2-4)	4/3/00	3	5.0	NT
AOC-12	TB-231	TB-231 (0-2)	4/3/00	1	11.5	NT
	TB-232	TB-232 (2-4)	4/3/00	3	11.5	NT
	TB-233	TB-233 (2-4)	4/3/00	3	32.3	NT
	TB-234	TB-234 (0-2)	4/3/00	1	12.4	NT
		TB-235 (2-4)	4/3/00	3	22.8	NT
	HA-03	HA-3 (0-2)	3/31/00	1	16.1	NT
	TB-236	TB-236 (0-2)	4/3/00	1	3.6	NT
		TB-237 (0-2)	4/3/00	1	7.9	NT
	TB-239	TB-239 (0-2)	4/3/00	1	4.3	NT
AOC-12		TB-240 (2-4)	4/3/00	3	3.0	NT
,		• •		•	0.0	14.1

QE / Coal Yard Area RAP April 13, 2001 (Rev 1) Page 26 of 32

Table 1
(page 2 of 3)
SITE-WIDE SOIL SAMPLE MASS ANALYSIS (TOTAL) ARSENIC CONCENTRATIONS

Site Area	Location	Sample ID	Sample Date	Sample Depth (ft)	Arsenic Conc. (mg/kg)	Arsenic Conc. SPLP (mg/L)
AOC-12	TB-241	TB-241 (1-3)	4/3/00	2	7.3	NT NT
AOC-12	TB-242	TB-242 (1-3)	4/3/00	.2 .	5.5	NT
AOC-12/-3	TB-008A	ES-TB8A (1-3)	6/4/98	2	23.1	ND<0.05
AOC-12/-3	TB-008B	ES-TB8B (15-17)	6/4/98	16	6.6	ND<0.05
AOC-13	TB-200	TB-200 (0-2)	3/30/00	1	2.9	ND<0.05
AOC-13	TB-201	TB-201 (0-2)	3/30/00	1	1.9	ND<0.05
AOC-13	TB-202	TB-202 (2-4)	3/30/00	3	4.2	ND<0.05
AOC-13	TB-203	TB-203 (0-2)	3/30/00	1	3.7	ND<0.05
AOC-13	TB-204	TB-204 (2-4)	3/30/00	3	3.0	ND<0.05
AOC-13	TB-205	TB-205 (2-4)	3/30/00	3	6.1	ND<0.05
AOC-13	TB-206	TB-206 (2-4)	3/30/00	3	9.3	ND<0.05 ⁾
AOC-2	MW-001	ES-MW1 (5-7)	6/2/98	6	1.4	ND<0.05
AOC-2	MW-002	ES-MW2 (13-17)	6/2/98	15	1.5	ND<0.05
AOC-2	TB-001	ES-TB1 (7-8)	6/2/98	7.5	ND<1.0	ND<0.05
AOC-7	TB-207	TB-207 (0-2)	3/30/00	1	3.9	ND<0.05
AOC-7	TB-208	TB-208 (0-2)	3/30/00	1	2.8	ND<0.05
AOC-7	TB-209	TB-209 (2-4)	3/30/00	3	5.2	ND<0.05
AOC-7	TB-210	TB-210 (0-2)	3/30/00	1	2.2	ND<0.05
AOC-7/-13	AST-01	ES AST1 (2)	6/11/98	2	1.5	NT
AOC-7/-13	MW-018	ES-MW18 (14-16)	5/28/98	15	2.8	ND<0.05
AOC-7/-13	MW-021	ES-MW21 (7-9)	5/28/98	8	2.1	ND<0.05
AOC-7/-13	MW-021	ES-MW21 (11-13)	5/28/98	12	1.2	ND<0.05
AOC-7/-13	SED-02	ES-SED2 (0.5)	6/12/98	0.50	5.3	ND<0.05
AOC-7/-13	TB-18	ES-TB18 (12-14)	5/28/98	13	4.5 ⁽²⁾	ND<0.05
AOC-8	MW-017D	ES-MW17D (26-28)	6/10/98	27	8.3	ND<0.05
AOC-8	MW-017S	ES-MW17 (4-6)	5/29/98	5	2.7	ND<0.05
AOC-8	MW-16	ES-MW16 (6-8)	5/29/98	7	4.6	ND<0.05
AOC-8	SS-001	ES-SS1D (0.5)	6/19/98	0.50	4.0	ND<0.05
AOC-8	SS-001	ES-SS1S (0)	6/19/98	0	ND<1.0	ND<0.05
AOC-8	TB-021	ES-TB21 (0-2)	5 <i>1</i> 29/98	1	2.4	ND<0.05
AOC-8	TB-024	ES-TB24 (6-8)	5/29/98	7	ND<1.0	ND<0.05
AOC-8	TB-025	ES-TB25 (2-4)	5/29/98	3	1.9	ND<0.05
AOC-8	TB-211	TB-211 (0-2)	3/30/00	1	3.0	ND<0.05
AOC-8	TB-212	TB-212 (2-4)	3/30/00	3	6.3	ND<0.05
AOC-9	HA-02	HA-02	3/30/00	0.95	230	ND<0.05
AOC-9	SS-101	SS-01	3/30/00	0.15	150	ND<0.05
AOC-9	SS-102	SS-02	3/30/00	0.15	5.4	ND<0.05

Table 1
(page 3 of 3)
SITE-WIDE SOIL SAMPLE MASS ANALYSIS (TOTAL) ARSENIC CONCENTRATIONS

Site Area	Location	Sample ID	Sample Date	Sample Depth (ft)	Arsenic Conc. (mg/kg)	Arsenic Conc. SPLP (mg/L)	
AOC-9	SS-103	SS-03	3/30/00	0.15	116	ND<0.05	
SW of Plant	TB-213	TB-213 (2-4)	3/30/00	3	2.9	ND<0.05	
SW of Plant		TB-216 (0-2)	3/30/00	1	4.4	ND<0.05	
Notes: mg/kg = Milligrams per kilogram. NT = Not tested. ND = Not detected. < = Less than minimum detection limit of the analytical method used. AOC = Area of Concern. SPLP = Synthetic Precipitation Leaching Procedure.							

- (1) = SPLP cadmium was detected at a concentration of 0.052 milligrams per liter (mg/L), which exceeds the GBPMC for cadmium of 0.05 mg/L. However, the GBPMC do not apply to this sample because it was collected from below the water table.
- (2) = Mass analysis (total) lead was detected at a concentration of 2,160 mg/kg, which exceeds the IDEC for lead of 1,000 mg/kg.

Table 2
(page 1 of 2)
SOIL SAMPLE MASS ANALYSIS (TOTAL) ARSENIC CONCENTRATIONS IN/AROUND FORMER COAL STORAGE AREA

Site Area	Location	Sample ID	Sample Date	Sample Depth (ft)	Arsenic Conc. (mg/kg)	Arsenic Conc. SPLP (mg/L)
AOC-1	MW-003	ES-MW3 (15-17)	6/4/98	16	2.3	ND<0.05
AOC-1	T B-006	ES-TB6 (1-7)	6/4/98	4	6.1	ND<0.05
AOC-1	TB-007A	ES-TB7A (7-9)	6/4/98	8	2.8	ND<0.05
AOC-1	TB-217	TB-217 (0-2)	3/30/00	1	6.9	NT
AOC-1	TB-217	TB-217 (2-4)	3/30/00	3	7.9	NT
AOC-12	MW-004D	ES-MW4D (36-40)	6/10/98	38	ND<1.0	ND<0.05
AOC-12	MW-004S	ES-MW4S (11-13)	5/27/98	12	39.4	ND<0.05
AOC-12	MW-005	ES-MW5 (2-4)	5/26/98	3	47.2	ND<0.05
AOC-12	MW-006	ES-MW6 (5-9)	6/9/98	7	68.6	0.06
AOC-12	MW-007	ES-MW7 (7-9)	6/4/98	8	14.7	ND<0.05
AOC-12	MW-009A	ES-MW9A (0-2)	5/26/98	1	18.3	ND<0.05
AOC-12	MW-010	ES-MW10 (9-11)	6/9/98	10	3.6	ND<0.05
AOC-12	MW-22	ES-MW22 (7-9)	6/9/98	8	23.0	ND<0.05 (1)
AOC-12	SED-01	ES-SED1 (1)	6/12/98	10	16.3	ND<0.05
AOC-12	TB-005	ES-TB5 (4-6)	6/4/98	5	4.9	ND<0.05
AOC-12	TB-009	ES-TB9 (3-7)	6/4/98	5	93.0	ND<0.05
AOC-12	TB-010	ES-TB010 (11-13)	6/4/98	12	13.8	ND<0.05
AOC-12	TB-104	ES-TB-104 (2-4)	6/30/98	3	10.1	NT
AOC-12	TB-104	TB-104 (4-6)	6/30/98	5	7.2	NT
AOC-12	TB-106	TB-106 (3-5)	6/30/98	4	3.3	NT
AOC-12	TB-107	TB-107 (2-4)	7/1/98	3	34.4	NT
AOC-12	TB-107	TB-107 (6-8)	7/1/98	7	11.8	NT
AOC-12	TB-230	TB-230 (2-4)	4/3/00	3	5.0	NT
AOC-12	TB-231	TB-231 (0-2)	4/3/00	. 1	11.5	NT
AOC-12	TB-232	TB-232 (2-4)	4/3/00	3	11.5	NT
AOC-12	TB-233	TB-233 (2-4)	4/3/00	3	32.3	NT
AOC-12	TB-234	TB-234 (0-2)	4/3/00	1	12.4	NT
AOC-12	TB-235	TB-235 (2-4)	4/3/00	3	22.8	NT
AOC-12	HA-03	HA-3 (0-2)	3/31/00	1	16.1	NT
AOC-12	TB-236	TB-236 (0-2)	4/3/00	1	3.6	NT
AOC-12	TB-237	TB-237 (0-2)	4/3/00	1	7.9	NT
AOC-12	TB-239	TB-239 (0-2)	4/3/00	1	4.3	NT
AOC-12	TB-240	TB-240 (2-4)	4/3/00	3	3.0	NT
AOC-12	TB-241	TB-241 (1-3)	4/3/00	2	7.3	NT
AOC-12	TB-242	TB-242 (1-3)	4/3/00	2	5.5	NT
AOC-12/-3	TB-008A	ES-TB8A (1-3)	6/4/98	2	23.1	ND<0.05
AOC-12/-3	TB-008B	ES-TB8B (15-17)	6/4/98	16	6.6	ND<0.05

Table 2

(page 2 of 2) SOIL SAMPLE MASS ANALYSIS (TOTAL) ARSENIC CONCENTRATIONS IN/AROUND FORMER COAL STORAGE AREA

Site Area	Location	Sample ID	Sample Date	Sample Depth (ft)	Arsenic Conc. (mg/kg)	Arsenic Conc. SPLP (mg/L)
AOC-9 AOC-9	HA-02 SS-101 SS-102	HA-02 SS-01 SS-02	3/30/00 3/30/98 3/30/98	0.95 0.15 0.15	230 150 5.4	ND<0.05 ND<0.05 ND<0.05 ND<0.05
AOC-9	SS-103	SS-03	3/30/98	0.15	116	ND<0.05
Notes: mg/kg = NT = ND = < = AOC = SPLP = (1) =	Not tested Not detected Less than Area of Co Synthetic F SPLP cadr (mg/L), wh	ed. minimum detection linercern. Precipitation Leaching mium was detected at ich exceeds the GBPI o not apply to this san	Procedure a concent MC for cad	e. ration of 0 mium of 0	.052 milligr .05 mg/L.	ams per liter However, the

Table 1

SUMMARY OF SITE CHARACTERIZATION RESULTS FOR PCB AREA 1: STATION B

Table 1.1 (page 1 of 2)

Overhead Crane (page 1 of 2)

AOC #: 1 Cleanup Area Description: Overhead crane: motor and non-porous steel surface Location Reference: Figure 4.1 Sample Matrix: Motor oil / hexane wipe of steel surface Analysis: US EPA Method 8082 Units: Micrograms per 100 square centimeters (µg/100 sq. cm)
Laboratory Results In: Appendix C

	Characterization Sam	pies		Verification Samp	les	
Sample ID	Sampling Date (Analysis Date)	Sample Result	Sample ID	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
	MOTOR OIL			MOTOR OIL		MOTOR OIL
NEM (1)	7/18/01 (7/25/01)	6.6 (1)	RS-CS 1 (1)	3/21/02 (3/28/02)	ND<2.0 (1)	2.0
SEM (1)	7/18/01 (7/25/01)	6.6 (1)				2.0
11-16-MISC- 113 ^(1,2)	11/18/99 (11/29/99)	4.0 (1)				2.0
HEXA	NE WIPE OF STEEL S	URFACE	HEXAN	IE WIPE OF STEEL	SURFACE	HEXANE WIPE
CR-CS 1	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 2	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 3	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 4	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 5	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 6	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 7	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 8	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 9	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 10	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 11	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 12	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 13	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 14	3/21/02 (4/4/02)	ND<5.0	· · · ·			10.0
CR-CS 15	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 16	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 17	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 18	3/21/02 (4/4/02)	ND<5.0	CR-CS 18B	4/19/02 (4/23/02)	ND<5.0	10.0
CR-CS 19	3/21/02 (3/26/02)	25	CR-CS 19B	4/19/02 (4/23/02)	ND<5.0	10.0
CR-CS 20	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 21	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 22	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 23	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 24	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 25	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 26	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 27	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 28	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 29	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 30	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 31	3/21/02 (3/26/02)	ND<5.0				10.0

Table 1.1 (page 2 of 2)

Overhead Crane (page 2 of 2)

AOC #: 1
Cleanup Area Description:
 Location Reference: Figure 4.1
 Sample Matrix: Motor oil / hexane wipe of steel surface
 US EPA Method 8082
 Units: Laboratory Results in: Appendix C

C	haracterization San	nples		Verification Sam	ples	
Sample ID	Sampling Date (Analysis Date)	Sample Result	Sample ID	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
HEXAN	E WIPE OF STEEL	SURFACE	HEXAN	IE WIPE OF STEE	L SURFACE	HEXANE WIPE
CR-CS 32	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 33	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 34	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 35	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 36	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 37	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 38	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 39	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 40	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 41	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 42	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 43	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 44	3/21/02 (3/26/02)	ND<5.0				10.0
CR-CS 45	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 46	3/21/02 (4/4/02)	ND<5.0				10.0
CR-CS 47	3/21/02 (3/26/02)	ND<5.0				10.0
Field Blank 1	3/21/02 (3/26/02)	ND<5.0				NA
Field Blank 2	3/21/02 (4/12/02)	ND<5.0				NA NA
Field Blank 3	3/21/02 (4/12/02)	ND<5.0				NA

Notes for Table 1.1:

^{(1) =} Sample of oil from a motor on the crane. Result reported as milligrams per kilogram (mg/kg), wet weight.

^{(2) =} Result reported by GEI Consultants, Inc., who did not indicate that the result is reported as wet weight.

NA = Not applicable.

Bold indicates that detected concentration exceeds associated cleanup criterion.

Table 1.2 (page 1 of 2)

Interior Areas—porous surfaces (page 1 of 2)

AOC #: 1 Cleanup Area Description: Interior areas: porous concrete and wood Location Reference: Figure 4.1 (Not all GEI sample locations are shown.) Sample Matrix: Concrete / wood Analysis: US EPA Method 8082 Units: Milligrams per kilogram (mg/kg), dry weight Laboratory Results in: Appendix C

C	Characterization Samp	oles		Verification Sample	es ⁽¹⁾	
Sample ID	Sampling Date (Analysis Date)	Sample Result	Sample ID	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
AN	NEX III CONCRETE FI	_OOR	AN	NEX III CONCRETE	FLOOR	CONCRETE
A-1	7/18/01 (7/20/01)	ND<0.50				1.0
A-2	7/18/01 (7/20/01)	ND<0.50				1.0
A-3	7/18/01 (7/20/01)	ND<0.50				1.0
A-4	7/18/01 (7/20/01)	ND<0.50				1.0
B-1	7/18/01 (7/20/01)	17.4	J-1	5/9/02 (5/13/02)	ND<0.50	1.0
B-2	7/18/01 (7/20/01)	45	J-2	5/9/02 (5/13/02)	ND<0.50	1.0
B-3	7/18/01 (7/20/01)	2.4	J-3	5/9/02 (5/13/02)	ND<0.50	1.0
B-4	7/18/01 (7/20/01)	ND<0.50	J-4	5/9/02 (5/13/02)	ND<0.50	1.0
C-1	7/18/01 (7/20/01)	1.3	I-1	5/9/02 (5/13/02)	0.50	1.0
C-2	7/18/01 (7/20/01)	1.5	1-2	5/9/02 (5/13/02)	1.6	1.0
C-3	7/18/01 (7/20/01)	0.98	1-3	5/9/02 (5/13/02)	1.1	1.0
	1		I-3a (2)	5/9/02 (5/13/02)	0.65	1.0
C-4	7/18/01 (7/20/01)	ND<0.50	1-4	5/9/02 (5/13/02)	ND<0.50	1.0
D-1	7/18/01 (7/20/01)	0.94	H-1	5/9/02 (5/13/02)	ND<0.50	1.0
D-2	7/18/01 (7/20/01)	0.77	H-2	5/9/02 (5/13/02)	ND<0.50	1.0
D-3	7/18/01 (7/20/01)	ND<0.50	H-3	5/9/02 (5/13/02)	ND<0.50	1.0
D-4	7/18/01 (7/20/01)	ND<0.50				1.0
E-1	7/18/01 (7/20/01)	0.69				1.0
E-2	7/18/01 (7/20/01)	0.98				1.0
E-3	7/18/01 (7/20/01)	0.51				1.0
E-4	7/18/01 (7/20/01)	ND<1.0				1.0
SE-1	7/18/01 (7/20/01)	0.80				1.0
F-2	7/18/01 (7/20/01)	ND<0.50				1.0
F-3	7/18/01 (7/20/01)	ND<1.0 (3)				1.0
F-4	7/18/01 (7/20/01)	ND<1.0 (3)				1.0
SF-1	7/18/01 (7/20/01)	ND<1.0 ⁽³⁾				1.0
SF-3	7/18/01 (7/20/01)	ND<1.0 ⁽³⁾				1.0
G-2	7/18/01 (7/20/01)	ND<1.0 (3)				1.0
G-3	7/18/01 (7/20/01)	ND<1.0 (3)				1.0
			Field blank	5/9/02 (5/13/02)	ND<0.50 (4)	NA
CS-5 (5)	6/11/98 (6/23/98)	15				1.0
11-16-MISC- 114 ⁽⁵⁾	11/18/99 (11/29/99)	ND<1.0				1.0
11-16-MISC- 115 ⁽⁵⁾	11/18/99 (11/29/99)	ND<1.0				1.0
11-16-MISC- 116 ⁽⁵⁾	11/18/99 (11/29/99)	ND<1.0				1.0

Table 1.2 (page 2 of 2)

Interior Areas—porous surfaces (page 2 of 2)

AOC #: Cleanup Area Description: Interior areas: porous concrete and wood Location Reference: Figure 4.1 (Not all GEI sample locations are shown.) Sample Matrix: Concrete core / wood chips US EPA Method 8082 Analysis: Milligrams per kilogram (mg/kg), dry weight Units: Laboratory Results in: Appendix C

C	Characterization Samp	les		Verification Samp	ples	
Sample ID	Sampling Date (Analysis Date)	Sample Result	Sample ID	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
FIRST FLOO	R OIL-STAINED CON	CRETE FLOOR	FIRST FI	OOR OIL-STAINE FLOOR	D CONCRETE	CONCRETE
11-16-MISC- 121 ⁽⁵⁾	11/19/99 (12/1/99)	ND<1.0				1.0
FIRST FL	OOR OIL-STAINED W	OOD CHIPS	FIRST FL	OOR OIL-STAINED	WOOD CHIPS	WOOD
11-16-MISC- 123 ⁽⁵⁾	11/19/99 (12/1/99)	ND<1.0				1.0
BASEM	ENT FLOOR CONCRE	TE PADS	BASEM	ENT FLOOR CONC	CRETE PADS	CONCRETE
11-16-MISC- 117 ⁽⁵⁾	11/18/99 (11/29/99)	ND<1.0		****		1.0
11-16-MISC- 118 ⁽⁵⁾	11/18/99 (11/29/99)	ND<1.0				1.0
11-16-MISC- 119 ⁽⁵⁾	11/18/99 (11/29/99)	ND<1.0				1.0
11-16-MISC- 120 ⁽⁵⁾	11/18/99 (11/29/99)	1.0				1.0
11-16-MISC- 122 ⁽⁵⁾	11/19/99 (12/1/99)	ND<1.0				1.0
SEC	OND FLOOR WOOD	CHIPS	SEC	OND FLOOR WOO	DD CHIPS	WOOD
11-16-MISC- 124 ⁽⁵⁾	11/19/99 (12/1/99)	ND<1.0				1,0
11-16-MISC- 125 ⁽⁵⁾	11/19/99 (12/1/99)	ND<1.0				1.0

Notes for Table 1.2:

^{(1) =} Sample locations selected using a 1.5-meter grid.

^{(2) =} Duplicate sample. (3) = Minimum detection limit (MDL) affected by matrix interference.

^{(4) =} Units are micrograms per liter (µg/L). (5) = Result reported by GEI Consultants, Inc., who did not indicate that the results are reported as dry weight.

Table 1.3 (page 1 of 1)

Former Earthen Floor in Basement (page 1 of 1)

AOC #:	1
Cleanup Area Description:	Former earthen floor in basement: surface soil
Location Reference:	Figure 4.2
Sample Matrix:	
	US EPA Method 8082
Units:	Milligrams per kilogram (mg/kg), dry weight
Laboratory Results in:	Appendix C

Characterization Samples

Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
	SUI	RFACE SOIL		SOIL
SS-N	0.0-1.0	5/2/01 (5/18/01)	ND<0.50	1.0
SS-O	0.0-0.5	5/2/01 (5/4/01)	ND<0.50	1.0
SS-P	0.0-0.5	5/2/01 (5/4/01)	ND<0.50	1.0
SS-Q	0.0-0.5	5/2/01 (5/4/01)	ND<0.50	1.0
SS-R	0,0-0.5	5/2/01 (5/18/01)	ND<0.50	1.0
SS-S	0.0-0.5	5/2/01 (5/4/01)	ND<0.50	1.0
SS-T	0.0-0.5	5/2/01 (5/18/01)	ND<0.50	1.0

Table 2

SUMMARY OF SITE CHARACTERIZATION RESULTS FOR PCB AREA 2: FORMER COAL YARD AREA

Table 2.1 (page 1 of 1)

Former Coal Yard—hand auger (page 1 of 1)

AOC #: 12 Former coal yard: surface soil and catch basin sediment Cleanup Area Description: Location Reference: Figure 5 Soll / catch basin sediment Sample Matrix: US EPA Method 8082 Analysis: Units: Milligrams per kilogram (mg/kg), dry weight Laboratory Results in: Appendix D (also Appendices E and H)

Characterization Samples

Sample ID	Depth (feet)	Sampling Date	Sample Result	Cleanup
		(Analysis Date)		Criterion
	SUI	RFACE SOIL		SOIL
SS-D1	0.0-1.0	5/2/01 (5/4/01)	ND<0.50	10.0
SS-D2	0.0-0.5	5/2/01 (5/4/01)	ND<0.50	10.0
SS-X	0.00.6	5/14/01 (5/22/01)	ND<0.50	10.0
SS-Y	0.0-0.6	5/14/01 (5/22/01)	ND<0.50	10.0
SS-Z	0.00.6	5/14/01 (5/22/01)	ND<0.50	10.0
SS-CC	0.0-0.3	4/3/02 (4/8/02)	ND<0.50	10.0
SS-CC	0.3-1.3	4/3/02 (4/8/02)	ND<0.50	10.0
SS-DD	0.0-0.3	4/3/02 (4/8/02)	ND<0.50	10.0
SS-DD	0.3-1.3	4/3/02 (4/8/02)	ND<0.50	10.0
SS-EE	0.0-0.3	4/3/02 (4/8/02)	ND<0.50	10.0
SS-EE	0.3-1.3	4/3/02 (4/8/02)	ND<0.50	10.0
SS-FF (1)	0.0-0.3	4/3/02 (4/6/02)	0.80	10.0
SS-GG	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
ss-gg	1.0–1.5	4/3/02 (4/6/02)	ND<0.50	10.0
SS-HH	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
SS-II	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
SS~JJ	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
SS-KK (1)	0.0-0.3	4/3/02 (4/6/02)	0.83	10.0
SS-LL	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
SS-MM	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
SS-NN	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
SS-00	0.0-0.3	4/3/02 (4/11/02)	ND<0.50	10.0
_	CATCH	BASIN SEDIMENT		SEDIMENT
CB-1	NA	5/10/01 (5/15/01)	ND<0.50	10.0
CB-2	NA	5/10/01 (5/15/01)	3.8	10.0
CB-3	NA	5/10/01 (5/15/01)	ND<0.50	10.0

Notes for Table 2.1:

(1) = Sample also tested for leachable PCBs using the Synthetic Precipitation Leachate Procedure (SPLP). SPLP PCBs were not detected. Bold indicates that detected concentration exceeds associated cleanup criterion.

Table 2.2 (page 1 of 3)

Former Coal Yard—test boring (page 1 of 3)

AOC #:	12
Cleanup Area Description:	Former coal yard: test boring asphalt and soil
Location Reference:	Figure 5
Sample Matrix:	Asphalt / soil
Analysis:	US EPA Method 8082
Units:	Milligrams per kilogram (mg/kg), dry weight
Laboratory Results in:	Appendix D (also Appendices E and H)

Characterization Samples

Sample ID		Sampling Date	Sample Result	Cleanup
Outilpie IB	Dop (.00.,	(Analysis Date)		Criterion
	ASP	HALT (1)		ASPHALT
TB-CCCC	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
TB-DDDD	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
TB-EEEE	0.0-0.3	4/4/02 (4/8/02)	ND<0.50	10.0
TB-JJJJ	0.0-0.3	4/4/02 (4/8/02)	ND<0.50	10.0
TB-KKKK	0.0-0.3	4/4/02 (4/9/02)	ND<0,50	10.0
TB-MMMM	0.0-0.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-NNNN	0.0-0.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-0000	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-PPPP	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-RRRR	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-SSSS	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-UUUU	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-WWW	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-YYYY	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-DDDDD	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	10.0
		SOIL		SOIL
TB-D/MW-C	2–4	5/11/01 (5/18/01)	ND<0.50	10.0
TB-F	0–2	5/11/01 (5/18/01)	ND<0.50	10.0
TB-R/MW-F	5–7	5/15/01 (5/18/01)	ND<0.50	10.0
TB-I	2–4	5/14/01 (5/18/01)	ND<0.50	10.0
TB-C/MW-BS	2–4	5/10/01 (5/15/01)	ND<0.50	10.0
TB-ZZZ	0.0-0.3	4/3/02 (4/8/02)	ND<0.50	10.0
TB-ZZZ	0.3-1.3	4/3/02 (4/8/02)	ND<0.50	10.0
TB-ZZZ	2.3-4.3	4/3/02 (4/8/02)	ND<0.50	10.0
TB-ZZZ	4.3-6.3	4/3/02 (4/8/02)	ND<0.50	10.0
TB-ZZZ	10–12	4/3/02 (4/8/02)	ND<0.50	10.0
TB-ZZZ	15–16	4/3/02 (4/6/02)	ND<0.50	10.0
TB-CCCC	2.5–2.8	4/3/02 (4/6/02)	ND<0.50	10.0
TB-CCCC	2.8-3.8	4/3/02 (4/6/02)	ND<0.50	10.0
TB-CCCC	4.5-6.0	4/3/02 (4/6/02)	ND<0.50	10.0
TB-CCCC	10-12	4/3/02 (4/6/02)	ND<0.50	10.0
TB-DDDD	1.3-1.6	4/3/02 (4/6/02)	ND<0.50	10.0
TB-DDDD	1.6-2.6	4/3/02 (4/6/02)	ND<0.50	10.0
TB-DDDD	3.3-4.3	4/3/02 (4/6/02)	ND<0.50	10.0
TB-DDDD	15–17	4/3/02 (4/6/02)	ND<0.50	10.0
TB-EEEE	1.5–1.8	4/4/02 (4/8/02)	ND<0.50	10.0
TB-EEEE	1.8–2.8	4/4/02 (4/8/02)	ND<0.50	10.0
TB-EEEE	3.8-5.8	4/4/02 (4/8/02)	ND<0.50	10.0
TB-EEEE	10–12	4/4/02 (4/8/02)	ND<0.50	10.0
TB-GGGG	0.0-0.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-GGGG	1–2	4/4/02 (4/9/02)	ND<0.50	10.0
TB-GGGG	2.3-4.3	4/4/02 (4/9/02)	ND<0.50	10.0

Former Coal Yard—test boring (page 2 of 3)

AOC #:

Cleanup Area Description:
Location Reference:
Sample Matrix:
Analysis:
Units:
Laboratory Results in:

AOC #:

Former coal yard: test boring asphalt and soil
Figure 5
Asphalt / soil
US EPA Method 8082
Milligrams per kilogram (mg/kg), dry weight
Appendix D (also Appendices E and H)

Characterization Samples

Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
		SOIL		SOIL
ТВ-НННН	0.0-0.3	4/4/02 (4/8/02)	ND<0.50	10.0
ТВ-НННН	1.3–2.3	4/4/02 (4/8/02)	ND<0.50	10.0
ТВ-НННН	2.3-4.3	4/4/02 (4/8/02)	ND<0.50	10.0
ТВ-НННН	5-6	4/4/02 (4/8/02)	ND<0.50	10.0
TB-JJJJ	1.5–1.8	4/4/02 (4/8/02)	ND<0.50	10.0
TB-JJJJ	1.8–2.8	4/4/02 (4/8/02)	ND<0.50	10.0
TB-JJJJ	3.5-5.0	4/4/02 (4/8/02)	ND<0.50	10.0
TB-JJJJ	5.0-5.5	4/4/02 (4/8/02)	ND<0.50	10.0
TB-KKKK	1.0-1.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-KKKK	1.3-2.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-KKKK	5–6	4/4/02 (4/9/02)	ND<0.50	10.0
TB-KKKK (2)	5–6	4/4/02 (4/9/02)	ND<0.50	10.0
TB-LLLL	0.0-0.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-LLLL	0.3-0.6	4/4/02 (4/9/02)	ND<0.50	10.0
TB-LLLL	0.6-1.6	4/4/02 (4/9/02)	ND<0.50	10.0
TB-LLLL	3.3-4.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-LLLL	4.3-6.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-MMMM	0.5-0.8	4/4/02 (4/9/02)	ND<0.50	10.0
TB-MMMM	0.8-1.8	4/4/02 (4/9/02)	ND<0.50	10.0
ТВ-ММММ	4.5-6.5	4/4/02 (4/9/02)	ND<0.50	10.0
TB-NNNN	1.0-1.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-NNNN	1.3-2.3	4/4/02 (4/9/02)	ND<0.50	10.0
TB-NNNN	4–5	4/4/02 (4/9/02)	ND<0.50	10.0
TB-0000	2.0-2.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-0000	4–5	4/5/02 (4/11/02)	ND<0.50	10.0
TB-PPPP	0.3-0.6	4/5/02 (4/11/02)	ND<0.50	10.0
TB-PPPP	0.9-1.0	4/5/02 (4/11/02)	ND<0.50	10.0
TB-PPPP	2.3-4.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-QQQQ	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-QQQQ	0.3-2.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-QQQQ	2.3-4.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-RRRR	1.0-1.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-RRRR	3.3-3.9	4/5/02 (4/11/02)	ND<0.50	10.0
TB-RRRR	3.9-4.0	4/5/02 (4/11/02)	ND<0.50	10.0
TB-SSSS	2.2-2.5	4/5/02 (4/11/02)	ND<0.50	10.0
TB-SSSS	2.5-4.5	4/5/02 (4/11/02)	ND<0.50	10.0
ТВ-ТТТТ	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
ТВ-ТТТТ	1.0-1.3	4/5/02 (4/11/02)	ND<0.50	10.0
ТВ-ТТТТ		4/5/02 (4/11/02)	ND<0.50	10.0
TB-UUUU		4/5/02 (4/11/02)	ND<0.50	10.0
TB-UUUU		4/5/02 (4/11/02)	ND<0.50	10.0

Table 2.2 (page 3 of 3)

Former Coal Yard—test boring (page 3 of 3)

Cleanup Area Description:
Location Reference:
Sample Matrix:
Analysis:
Units:
Laboratory Results in:

ACC #:

Former coal yard: test boring asphalt and soil
Figure 5
Asphalt / soil
US EPA Method 8082
Milligrams per kilogram (mg/kg), dry weight
Appendix D (also Appendices E and H)

Characterization Samples

Sample ID		Sampling Date	Sample Result	
		(Analysis Date)		Criterion
		SOIL		SOIL
TB-VVVV	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-VVVV	0.5-2.5	4/5/02 (4/11/02)	ND<0.50	10.0
TB-VVVV	2.5-4.5	4/5/02 (4/11/02)	ND<0.50	10.0
TB-WWW	2.2-2.5	4/5/02 (4/11/02)	ND<0.50	10.0
TB-WWW	2.5-4.5	4/5/02 (4/11/02)	ND<0.50	10.0
TB-XXXX	0.0-0.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-XXXX	2.3-4.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-XXXX	4.3-6.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-YYYY	2.0-2.3	4/5/02 (4/11/02)	ND<0.50	10.0
TB-YYYY	2.5-3.0	4/5/02 (4/11/02)	ND<0.50	10.0
TB-YYYY	3–5	4/5/02 (4/10/02)	ND<0.50	10.0
TB-YYYY	5–7	4/5/02 (4/10/02)	ND<0.50	10.0
TB-ZZZZ	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	10.0
TB-ZZZZ	0.3-2.3	4/5/02 (4/10/02)	ND<0.50	10.0
TB-ZZZZ	2.3-4.3	4/5/02 (4/10/02)	ND<0.50	10.0
TB-DDDDD	0.5-0.8	4/5/02 (4/10/02)	ND<0.50	10.0
TB-EEEEE	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	10.0
TB-EEEEE	0.3-2.3	4/5/02 (4/10/02)	ND<0.50	10.0
TB-EEEEE	2.3-4.3	4/5/02 (4/10/02)	ND<0.50	10.0
TB-5 (3)	4–6	6/4/98 (6/12/98)	ND<1.0	10.0
TB-8A (3)	1–3	6/4/98 (6/12/98)	ND<1.0	10.0
TB-8B (3)	15–17	6/4/98 (6/12/98)	ND<1.0	10.0
TB-8B (3)	9–11	6/4/98 (6/12/98)	ND<1.0	10.0
TB-9 (3)	3–7	6/4/98 (6/12/98)	ND<1.0	10.0
TB-10 (3)	11–13	6/4/98 (6/12/98)	ND<1.0	10.0
MW-7 (3)	7–9	6/4/98 (6/12/98)	ND<1.0	10.0
MW-22 (3)	7–9	6/9/98 (6/19/98)	ND<1.0	10.0
MW-6 (3)	5-9	6/9/98 (6/19/98)	ND<1.0	10.0

Notes for Table 2.2:

(1) = Sample may include some base material (e.g., cobbles or gravel).

(2) = Duplicate sample.

(3) = Result reported by GEI Consultants, Inc.

SUMMARY OF SITE CHARACTERIZATION RESULTS FOR PCB AREA 3: ELECTRICAL INFRASTRUCTURE AND EXCAVATION AREA

Table 3.1 (page 1 of 1)

Former Transformer Area (page 1 of 1)

Cleanup Area Description:

Location Reference:
Sample Matrix:
Analysis:
Units:
Laboratory Results in:

Pormer transformer area: non-porous steel grate, porous concrete pad, and sump
Figures 6.1 and 6.5
Hexane wipe of steel surface / concrete / sediment
US EPA Method 8082
Milligrams per kilogram (mg/kg), dry weight
Appendix E (also Appendices D, F, and H)

Characterization Samples

Sample ID	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion		
HEXA	NE WIPE OF STEEL	SURFACE	HEXANE WIPE		
TXFP-1 1	02/05/02 (2/11/02)	ND<5.0 ⁽¹⁾	10.0		
TXFP-12	02/05/02 (2/11/02)	ND<5.0 ⁽¹⁾	10.0		
TXFP-1 3	02/05/02 (2/11/02)	ND<5.0 ⁽¹⁾	10.0		
TXFP-1 4	02/05/02 (2/11/02)	ND<5.0 ⁽¹⁾	10.0		
	CONCRETE PAD		CONCRETE		
TXFP-1 A-1	02/05/02 (2/7/02)	ND<0.50	1.0		
TXFP-1 A-2	02/05/02 (2/7/02)	ND<0.50	1.0		
TXFP-1 A-3	02/05/02 (2/7/02)	ND<0.50	1.0		
TXFP-1 A-4	02/05/02 (2/7/02)	1.5	1.0		
TXFP-1 A-5	02/05/02 (2/7/02)	1.2	1.0		
TXFP-1 B-1	02/05/02 (2/7/02)	0.83	1.0		
TXFP-1 B-2	02/05/02 (2/7/02)	0.69	1.0		
TXFP-1 B-3	02/05/02 (2/7/02)	ND<0.50	1.0		
TXFP-1 B-4	02/05/02 (2/7/02)	0.61	1.0		
TXFP-1 B-5	02/05/02 (2/7/02)	0.58	1.0		
TXFP-1 C-1	02/05/02 (2/7/02)	ND<0.50	1.0		
TXFP-1 C-2	02/05/02 (2/7/02)	0.85	1.0		
TXFP-1 C-3	02/05/02 (2/7/02)	1.4	1.0		
TXFP-1 C-4	02/05/02 (2/7/02)	2.2	1.0		
TXFP-1 C-5	02/05/02 (2/7/02)	1.1	1.0		
TXFP-1 D-1	02/05/02 (2/7/02)	ND<0.50	1.0		
TXFP-1 D-2	02/05/02 (2/7/02)	4.0	1.0		
TXFP-1 D-3	02/05/02 (2/7/02)	2.2	1.0		
TXFP-1 D-4	02/05/02 (2/7/02)	2.1	1.0		
TXFP-1 E-1	02/05/02 (2/7/02)	1.1	1.0		
TXFP-1 E-2	02/05/02 (2/7/02)	1.1	1.0		
TXFP-1 E-3	02/05/02 (2/7/02)	1.9	1.0		
TXFP-1 E-4	02/05/02 (2/7/02)	1.8	1.0		
TXFP-1 E-5	02/05/02 (2/7/02)	0.92	1.0		
TXFP-1 F-1	02/05/02 (2/7/02)	1.1	1.0		
TXFP-1 F-2	02/05/02 (2/7/02)	0.71	1.0		
TXFP-1 F-3	02/05/02 (2/7/02)	0.69	1.0		
TXFP-1 F-4	02/05/02 (2/7/02)	ND<0.50	1.0		
TXFP-1 F-5	02/05/02 (2/7/02)	ND<0.50	1.0		
	SEDIMENT SUMP SEDIMENT				
PCB-6 ⁽²⁾	6/11/98 (6/23/98)	4	10.0		

Notes for Table 3.1:

(1) = Result reported as micrograms per 100 square centimeters (μg/100 sq. cm), dry weight.

(2) = Result reported by GEI Consultants, Inc.

Table 3.2 (page 1 of 2)

Capacitor Release Area—porous surfaces (page 1 of 2)

AOC #: 6 Cleanup Area Description: Capacitor release area: porous asphalt berm and concrete pads Location Reference: Figures 6.1, 6.2 and 6.3 Sample Matrix: Asphalt / concrete Analysis: US EPA Method 8082 Units: Milligrams per kilogram (mg/kg), dry weight Laboratory Results in: Appendix E (also Appendices D, F, and H)

Characterization Samples

Sample ID	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion

	(Analysis Date)		Criterio
Capacitor I	Bank 1:		
	ASPHALT BER	М	ASPHA
A-1 Cap 1	1/30/02 (2/4/02)	ND<0.50	
A-2 Cap 1	1/30/02 (2/4/02)	0.73	
A-3 Cap 1	1/30/02 (2/4/02)	0.54	
A-4 Cap 1	1/30/02 (2/4/02)	1.7	
A-5 Cap 1	1/30/02 (2/4/02)	17	
A-6 Cap 1	1/30/02 (2/4/02)	55	
A-7 Cap 1	1/30/02 (2/4/02)	4.1	
D-1 Cap 1	1/30/02 (2/4/02)	1.8	
D-2 Cap 1	1/30/02 (2/4/02)	0.52	
D-3 Cap 1	1/30/02 (2/4/02)	4.3	
D-4 Cap 1	1/30/02 (2/4/02)	4.9	
D-5 Cap 1	1/30/02 (2/4/02)	8.2	
D-6 Cap 1	1/30/02 (2/4/02)	7.7	
D-7 Cap 1	1/30/02 (2/4/02)	10	
D-8 Cap 1	1/30/02 (2/4/02)	4.1	
	CONCRETE PA	D	CONCRE
B-1 Cap 1	1/30/02 (2/4/02)	ND<0.50	
B-2 Cap 1	1/30/02 (2/4/02)	ND<0.50	
B-3 Cap 1	1/30/02 (2/4/02)	ND<0.50	
B-4 Cap 1	1/30/02 (2/4/02)	1.2	
B-5 Cap 1	1/30/02 (2/4/02)	0.92	
B-6 Cap 1	1/30/02 (2/4/02)	240	
B-7 Cap 1	1/30/02 (2/4/02)	40	
B-8 Cap 1	1/30/02 (2/4/02)	3.5	
C-1 Cap 1	1/30/02 (2/4/02)	ND<0.50	
C-2 Cap 1	1/30/02 (2/4/02)	ND<0.50	
C-3 Cap 1	1/30/02 (2/4/02)	ND<0.50	
C-4 Cap 1	1/30/02 (2/4/02)	ND<0.50	
C-5 Cap 1	1/30/02 (2/4/02)	12.2	
C-6 Cap 1	1/30/02 (2/4/02)	94	
C-7 Cap 1	1/30/02 (2/4/02)	25	
C-8 Cap 1	1/30/02 (2/4/02)	1.8	
CS-1 (1)	6/11/98 (6/23/98)	3	
CS-2 (1)	6/11/98 (6/23/98)	10	. L.

Criterion
Bank 1:
ASPHALT
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1,0
CONCRETE
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 1.0

Table 3.2 (page 2 of 2)

Capacitor Release Area—porous surfaces (page 2 of 2)

AOC #: Cleanup Area Description: Capacitor release area: porous asphalt berm and concrete pads Location Reference: Figures 6.1, 6.2 and 6.3 Asphalt / concrete Sample Matrix: Analysis: US EPA Method 8082 Units: Milligrams per kilogram (mg/kg), dry weight
Laboratory Results In: Appendix E (also Appendices D, F, and H)

Characterization Samples

Sample ID	Sampling Date (Analysis Date)	Sample Resuit	Cleanup Criterion
Capacitor E	Bank No. 2:		Bank 2:
	CONCRETE PA	D	CONCRETE
Cap 2-A	1/30/02 (2/4/02)	ND<0.50	1.0
Cap 2-B	1/30/02 (2/4/02)	ND<0.50	1.0
Cap 2-C	1/30/02 (2/4/02)	ND<0.50	1.0
Cap 2-D	1/30/02 (2/4/02)	ND<0.50	1.0
CS-3 (1)	6/11/98 (6/23/98)	ND<0.50	1.0
Capacitor E	Bank No. 3:		Bank 3:
	CONCRETE PA	D	CONCRETE
Cap 3-A	1/30/02 (2/4/02)	ND<0.50	1.0
Cap 3-B	1/30/02 (2/4/02)	ND<0.50	1.0
Cap 3-C	1/30/02 (2/4/02)	ND<0.50	1.0
Cap 3-D	1/30/02 (2/4/02)	ND<0.50	1.0
CS-4 (1)	6/11/98 (6/23/98)	ND<0.50	1.0

Notes for Table 3.2:

(1) = Result reported by GEI Consultants, Inc.

Bold indicates that detected concentration exceeds associated cleanup criterion.

Table 3.3 (page 1 of 1)

Capacitor Release Area—Capacitor Bank No.1 (page 1 of 1)

AOC #:	5
Cleanup Area Description:	Capacitor release area, Capacitor Bank No. 1: surface soil
Location Reference:	Figures 6.1, 6.4a and 6.4b
Sample Matrix:	Soil
Analysis:	US EPA Method 8082
Units:	Milligrams per kilogram (mg/kg), dry weight
Laboratory Results in:	Appendix E (also Appendices D, F, and H)

Pre- and Post-Excavation Characterization

Verification Samples (1)

,,,	Sa	mples						
Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
AOC-6 CS1	0.3-0.6	1/30/02 (2/4/02)	10	AOC-6 CS14	1.3–1.6	5/8/02 (5/10/02)	4.4	10.0
SS-E	0.5-1.0	5/2/01 (5/4/01)	ND<0.50					10.0
SS-02 ⁽²⁾	0.0-0.3	3/30/00 (4/4/00)	23					10.0
AOC-6 CS2	2.0–2.5	1/30/02 (2/4/02)	1.3	AOC-6 CS13a	1.3–1.6	5/8/02 (5/10/02)	ND<0.50	10.0
AOC-6 CS3	0.3–0.6	1/30/02 (2/4/02)	5.5	AOC-6 CS13	1.3–1.6	5/8/02 (5/10/02)	4.8	10.0
HA-2 ⁽²⁾	0.7-1.0	3/30/00 (4/4/00)	ND<1.0					10.0
PCB-17 ⁽²⁾	0.5	6/11/98 (6/23/98)	2					10.0
AOC-6 CS4	0.0-0.3	1/30/02 (2/4/02)	ND<0.50	AOC-6 CS8	0.0-0.3	5/8/02 (5/10/02)	2.0	10.0
SS-G	0.5–1.0	5/2/01 (5/4/01)	ND<0.50					10.0
SS-03 ⁽²⁾	0.0-0.3	3/30/00 (4/4/00)	ND<1.0					10.0
SS-F	0.3–1.0	5/2/01 (5/4/01)	ND<0.50	AOC-6 CS16	2.3-2.6	5/8/02 (5/10/02)	1.1	10.0
SS-01 ⁽²⁾	0.0-0.3	3/30/00 (4/4/00)	ND<1.0					10.0
AOC-6 CS5	0–2	1/30/02 (2/4/02)	ND<0.50	AOC-6 CS10	0.0-0.3	5/8/02 (5/10/02)	ND<0.50	10.0
SS-H	0.2-0.8	5/2/01 (5/4/01)	0.63					10.0
AOC-6 CS6	0–2	1/30/02 (2/4/02)	ND<0.50					10.0
				AOC-6 CS7	0.0-0.3	5/8/02 (5/10/02)	ND<0.50	10.0
				AOC-6 CS9	0.0-0.3	5/8/02 (5/10/02)	ND<0.50	10,0
				AOC-6 CS11	1.0–1.3	5/8/02 (5/10/02)	0.68	10.0
				AOC-6 CS12	1.3–1.6	5/8/02 (5/10/02)	1.4	10.0
				AOC-6 CS15	2.0–2.3	5/8/02 (5/10/02)	1.6	10.0
				AOC-6 CS17	2.3-2.6	5/8/02 (5/10/02)	2.2	10.0

Notes for Table 3.3:
(1) = Sample locations selected using a 10-meter grid.
(2) = Result reported by GEI Consultants, Inc.

Bold indicates that detected concentration exceeds associated cleanup criterion.

Table 3.4 (page 1 of 1)

Capacitor Release and PCB Remediation Areas—hand auger (page 1 of 1)

AOC #: 5 and 6 Cleanup Area Description: Capacitor release and PCB remediation areas: surface soil and sump sediment Location Reference: Figure 6.1 Sample Matrix: | Soil / sump sediment Analysis: US EPA Method 8082 Units: Milligrams per kilogram (mg/kg), dry weight Laboratory Results in: Appendix E (also Appendices D, F, and H)

Characterization Samples

Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion	
	SUF	RFACE SOIL		SOIL	
SS-AA	0.0-0.3	4/3/02 (4/8/02)	ND<0.50	10.0	
SS-AA (1)	0.3-1.3	4/3/02 (4/8/02)	0.83	10.0	
SS-BB	0.0-0.3	4/3/02 (4/8/02)	ND<0.50	10.0	
SS-BB	0.3-1.3	4/3/02 (4/8/02)	ND<0.50	10.0	
SS-PP	0.0-0.3	4/4/02 (4/8/02)	ND<0.50	10.0	
SS-PP	1.0-1.3	4/4/02 (4/8/02)	ND<0.50	10.0	
SS-I	0.2-0.8	5/2/01 (5/4/01)	ND<0.50	10.0	
SS-J	0.2-0.8	5/2/01 (5/4/01)	ND<0.50	10.0	
SS-K	0.2-0.8	5/2/01 (5/4/01)	ND<0.50	10.0	
PCB-11 (2)	1	6/11/98 (6/23/98)	ND<1.0	10.0	
PCB-12 (2)	1	6/11/98 (6/23/98)	ND<1.0	10.0	
PCB-13 (2)	0.5	6/11/98 (6/23/98)	ND<1.0	10.0	
PCB-14 (2)	1	6/11/98 (6/23/98)	ND<1.0	10.0	
PCB-15 (2)	0.5	6/11/98 (6/23/98)	ND<1.0	10.0	
PCB-16 (2)	1	6/11/98 (6/23/98)	ND<1.0	10.0	
PCB-18 (2)	1	6/11/98 (6/23/98)	ND<1.0	10.0	
PCB-18A (2)	2	6/11/98 (6/23/98)	ND<1.0	10.0	
PCB-19 (2)	0.5	6/11/98 (6/23/98)	ND<1.0	10.0	
PCB-19A (2)	· 2.5	6/11/98 (6/23/98)	ND<1.0	10.0	
	SUMP SEDIMENT SUMP				
PCB-5 ⁽²⁾	0.5	6/11/98 (6/23/98)	ND<1.0	10.0	

Notes for Table 3.4:

^{(1) =} Sample also tested for leachable PCBs using the Synthetic Precipitation Leachate Procedure (SPLP). SPLP PCBs were not detected. (2) = Result reported by GEI Consultants, Inc.

Table 3.5 (page 1 of 2) Capacitor Release and PCB Remediation Areas—test boring (page 1 of 2)

AOC #: 5 and 6

Cleanup Area Description: Capacitor release and PCB remediation areas: test boring soil

Location Reference: Sample Matrix: Soil

Analysis: US EPA Method 8082

Units: Laboratory Results In: Appendix E (also Appendices D, F, and H)

Characterization Samples

Characterization Samples				
Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
TB-S	0–1	5/15/01 (5/18/01)	ND<0.50	10.0
TB-S	2.0-3.3	5/15/01 (5/18/01)	ND<0.50	10.0
TB-S	5–7	5/15/01 (5/18/01)	ND<0.50	10.0
TB-S	10–12	5/15/01 (5/18/01)	ND<0.50	10.0
TB-T	0–2	5/15/01 (5/18/01)	ND<0.50	10.0
TB-T	2-4	5/15/01 (5/18/01)	ND<0.50	10.0
TB-T	5–7	5/15/01 (5/18/01)	ND<0.50	10.0
TB-T	10–12	5/15/01 (5/18/01)	ND<0.50	10.0
TB-BBB (1)	1–3	2/13/02 (2/15/02)	15	10.0
TB-BBB (2)	5-7	2/13/02 (2/15/02)	15	10.0
TB-BBB	10-13	2/13/02 (2/15/02)	ND<0.50	10.0
TB-XXX/MW-L (3)	0.0-0.3	4/2/02 (4/5/02)	1.5	10.0
TB-XXX/MW-L (3)	0.3-1.3	4/2/02 (4/5/02)	1.2	10.0
TB-XXX/MW-L	2.3-4.3	4/2/02 (4/5/02)	ND<0.50	10.0
TB-XXX/MW-L	4.3-6.3	4/2/02 (4/5/02)	ND<0.50	10.0
TB-XXX/MW-L	10–12	4/2/02 (4/5/02)	ND<0.50	10.0
TB-XXX/MW-L	15-16	4/2/02 (4/5/02)	ND<0.50	10.0
TB-XXX/MW-L	16–17	4/2/02 (4/5/02)	ND<0.50	10.0
TB-YYY	0.0-0.3	4/3/02 (4/8/02)	ND<0.50	10.0
TB-YYY (3)	0.3-1.3	4/3/02 (4/8/02)	9.4	10.0
TB-YYY (4)	2.3-3.3	4/3/02 (4/8/02)	3.1	10.0
TB-YYY	3.3–4.3	4/3/02 (4/8/02)	ND<0.50	10.0
TB-YYY	5.3-6.3	4/3/02 (4/8/02)	ND<0.50	10.0
TB-YYY	11–12	4/3/02 (4/8/02)	ND<0.50	10.0
TB-YYY	15–17	4/3/02 (4/8/02)	ND<0.50	10.0
TB-AAAA	0.0-0.3	4/3/02 (4/8/02)	ND<0.50	10.0
TB-AAAA	0.3-1.3	4/3/02 (4/8/02)	ND<0.50	10.0
TB-AAAA	2.5-3.0	4/3/02 (4/8/02)	ND<0.50	10.0
TB-AAAA	4–6	4/3/02 (4/8/02)	ND<0.50	10.0
TB-AAAA	15–17	4/3/02 (4/8/02)	ND<0.50	10.0
TB-BBBB	0.0-0.3	4/3/02 (4/6/02)	ND<0.50	10.0
TB-BBBB	0.3-1.3	4/3/02 (4/6/02)	ND<0.50	10.0
TB-BBBB	2.3-4.3	4/3/02 (4/6/02)	ND<0.50	10.0
TB-BBBB	4.3–6.3	4/3/02 (4/6/02)	ND<0.50	10.0
TB-BBBB	10–12	4/3/02 (4/6/02)	ND<0.50	10.0
TB-BBBB	15–17	4/3/02 (4/6/02)	ND<0.50	10.0
TB-IIII	0.0-0.3	4/4/02 (4/8/02)	ND<0.50	10.0
TB-IIII (4)	0.3-1.3	4/4/02 (4/8/02)	1.9	10.0
TB-IIII	4.3-6.3	4/4/02 (4/8/02)	ND<0.50	10.0

Table 3.5 (page 2 of 2)

Capacitor Release and PCB Remediation Areas—test boring (page 2 of 2)

AOC#:	5 and 6
Cleanup Area Description:	Capacitor release and PCB remediation areas: test boring soil
Location Reference:	Figure 6.1
Sample Matrix:	Soil
Analysis:	US EPA Method 8082
Units:	Milligrams per kilogram (mg/kg), dry welght
Laboratory Results in:	Appendix E (also Appendices D, F, and H)

Notes for Table 3.5:

(1) = Not enough residual sample to test for leachable PCBs.
(2) = Samples collected at 3–5 feet and 5–7 feet below grade were also tested for leachable PCBs using the Synthetic Precipitation Leachate Procedure (SPLP). Leachable PCBs were detected at concentrations of 0.74 and 0.72 micrograms per liter (µg/L), respectively.

(3) = Not enough residual sample to analyze for leachable PCBs. Additional sample was collected for leachable (SPLP) PCB testing on May 8, 2002. SPLP PCBs were not detected.

(4) = Sample also tested for leachable PCBs using SPLP. SPLP PCBs were not detected.

Table 4

SUMMARY OF SITE CHARACTERIZATION RESULTS FOR PCB AREA 4: SOUTHWEST CORNER

Table 4.1 (page 1 of 1)

Transformer and Capacitor Areas—concrete core and hand auger (page 1 of 1)

AOC #: 9

Cleanup Area Description: Transformer and capacitor areas: porous concrete pad and surface soil

Location Reference: Figure 7

Sample Matrix: Concrete / soil

US EPA 8082

Units: US EPA 8082

Milligrams per kilogram (mg/kg), dry weight

Appendix F (also Appendix H)

Characterization Samples

	Charact	terization Samples		
Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
Former West Transformers:				West Trans.:
	CO	NCRETE PAD		CONCRETE
TXFP-2 1	0	02/06/02 (2/11/02)	8.1	1.0
TXFP-2 2	0	02/06/02 (2/11/02)	ND<0.50	1.0
	SU	IRFACE SOIL		SOIL
PCB-3 (1)	0.0-0.3	6/11/98 (6/23/98)	ND<1.0	10.0
PCB-4 (1)	0.0-0.3	6/11/98 (6/23/98)	ND<1.0	10.0
PCB-7 (1)	0.5	6/11/98 (6/23/98)	ND<1.0	10.0
PCB-8 (1)	0.8	6/11/98 (6/23/98)	ND<1.0	10.0
PCB-9 (1)	0.8	6/11/98 (6/23/98)	1	10.0
PCB-10 (1)	0.5	6/11/98 (6/23/98)	ND<1.0	10,0
PCB-33 (1)	0.0-0.3	7/7/98 (7/10/98)	ND<1.0	10.0
PCB-34 (1)	0.0-0.3	7/7/98 (7/10/98)	ND<1.0	10.0
PCB-35 (1)	0.0-0.3	7/7/98 (7/10/98)	ND<1.0	10.0
Southwest Transformer:				SW Trans.:
SURFACE SOIL			SOIL	
HA-1 ⁽¹⁾	1	3/30/00 (4/4/00)	29	10.0
PCB-1 (1)	1	6/11/98 (6/23/98)	440	10.0
PCB-31 (1)	0.0-0.3	7/7/98 (7/10/98)	94	10.0
PCB-32 (1)	0.0-0.3	7/7/98 (7/10/98)	53	10.0
Former Capacitor Bank No. 4:				Cap. Bank 4:
CONCRETE PAD			CONCRETE	
CS-6 (1)	0	6/19/98 (NA)	ND<1.0	1.0
SURFACE SOIL				SOIL
PCB-2 (1)	1.5	6/11/98 (6/23/98)	2,300	10.0
PCB-20 (1)	0.7	6/18/98 (NA)	ND<1.0	10.0
PCB-21 (1)	0.5	6/18/98 (NA)	ND<1.0	10.0

Notes for Table 4.1:

(1) = Result reported by GEI Consultants, Inc.

NA = Not available.

Transformer and Capacitor Areas—test boring (page 1 of 1)

AOC#: 9 Cleanup Area Description: Transformer and capacitor areas: test boring soil Location Reference: Figure 7 Sample Matrix: Soil Analysis: Milligrams per kilogram (mg/kg), dry weight Units: US EPA 8082 Laboratory Results In: Appendix F (also Appendix H)

Characterization Samples

Sample ID	Depth (feet)	Sampling Date	Sample Result	Cleanup
•		(Analysis Date)		Criterion
TB-CCC	0–2	2/13/02 (2/15/02)	ND<0.50	10.0
TB-CCC	2.0-2.5	2/13/02 (2/26/02)	ND<0.50	10.0
TB-CCC	5–7	2/13/02 (2/26/02)	ND<0.50	10.0
TB-CCC	10–13	2/13/02 (2/26/02)	ND<0.50	10.0
TB-DDD	0-2	2/13/02 (2/15/02)	ND<0.50	10.0
TB-FFF	0–2	2/13/02 (2/26/02)	ND<0.50	10.0
TB-FFF	2–4	2/13/02 (2/26/02)	ND<0.50	10.0
TB-FFF	5–7	2/13/02 (2/26/02)	ND<0.50	10.0
TB-FFF	10–12	2/13/02 (2/15/02)	ND<0.50	10.0
TB-214 (1)	3.0-3.3	3/30/00 (4/4/00)	2	10.0
TB-215 (1)	2.0-2.2	3/30/00 (4/4/00)	4	10.0
TB-115 (1)	5–7	7/1/98 (7/9/98)	ND<1.0	10.0
TB-116 (1)	5–7	7/1/98 (7/9/98)	ND<1.0	10.0
MW-14D (1)	26-28	6/11/98 (6/23/98)	ND<1.0	10.0
MW-14S (1)	1–3	6/1/98 (NA)	ND<1.0	10.0
MW-13 (1)	1315	6/1/98 (6/10/98)	ND<1.0	10.0

Notes for Table 4.2:

^{(1) =} Result reported by GEI Consultants, Inc. NA = Not available.

Table 5

SUMMARY OF SITE CHARACTERIZATION RESULTS FOR **PCB AREA 5: SOUTHEAST CORNER**

Table 5.1 (page 1 of 1)

Former Oil/Waste Oil Storage and Waste Water Treatment Facility Areas—sediment and hand auger (page 1 of 1)

AOC#:	7, 8, and 13
Cleanup Area Description:	
	facility areas: surface soil and catch basin sediment
Location Reference: Figure 8	
Sample Matrix:	Soil / catch basin sediment
Analysis:	US EPA Method 8082
Units:	Milligrams per kilogram (mg/kg), dry weight
Laboratory Results in:	Appendix H

Characterization Samples

Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
	SU	RFACE SOIL		SOIL
SS-04 (1)	0.0-0.3	3/31/00 (4/5/00)	3	10.0
SS-05 (1)	0.0-0.3	3/31/00 (4/5/00)	2	10.0
SS-06 (1)	0.0-0.3	3/31/00 (4/5/00)	1	10.0
SS-07 (1)	0.0-0.3	3/31/00 (4/5/00)	ND<1.0	10.0
SS-08 (1)	0.0-0.3	3/31/00 (4/5/00)	1	10.0
AST-1 (1)	1–2	6/11/98 (6/23/98)	2	10.0
SS-1D (1)	0.5	6/19/98 (6/30/98)	14	10.0
SS-1S (1)	0.0	6/19/98 (6/30/98)	1	10.0
CATCH BASIN SEDIMENT				SEDIMENT
SED-2 (1)	0.5	6/12/98 (6/23/98)	1	1.0

Notes for Table 5.1:

^{(1) =} Result reported by GEI Consultants, Inc. NA = Not available.

Former Oil/Waste Oil Storage and Waste Water Treatment Facility Areas-test boring (pg. 1 of 1)

AOC #: 7, 8, and 13

Cleanup Area Description: Former oil/waste oil storage and waste water treatment facility areas: test boring soil

Location Reference: Figure 8

Sample Matrix: Analysis: US EPA 8082

Units: Laboratory Results in: Appendix H

Characterization Samples

Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
MW-16 (1)	6–8	5/29/98 (6/9/98)	ND<1.0	10.0
MW-17D (1)	26-28	6/10/98 (6/18/98)	ND<1.0	10.0
MW-17S (1)	46	5/29/98 (6/6/98)	ND<1.0	10.0
MW-18 (1)	14-16	5/29/98 (6/6/98)	ND<1.0	10.0
MW-21 (1)	15–17	5/29/98 (6/6/98)	ND<1.0	10.0
TB-21 (1)	0-2	5/29/98 (6/6/98)	ND<1.0	10.0
TB-219 (1)	3.0-3.3	3/31/00 (4/5/00)	ND<1.0	10.0
TB-219 (1)	7.0-7.3	3/31/00 (4/5/00)	.ND<1.0	10.0
TB-220 (1)	1.5-1.8	3/31/00 (4/5/00)	ND<1.0	10.0
TB-220 (1)	3.5-3.8	3/31/00 (4/5/00)	ND<1.0	10.0
TB-220 (1)	5.0-5.3	3/31/00 (4/5/00)	ND<1.0	10.0
TB-221 (1)	5.0-5.3	3/31/00 (4/5/00)	ND<1.0	10.0
TB-222 (1)	1.7-2.0	3/31/00 (4/5/00)	ND<1.0	10.0
TB-222 (1)	5.9-6.2	3/31/00 (4/5/00)	ND<1.0	10.0
TB-223 (1)	3.5-3.8	3/31/00 (4/5/00)	ND<1.0	10.0
TB-224 (1)	1.0-1.3	3/31/00 (4/5/00)	5	10.0
TB-224 (1)	2–3	3/31/00 (4/5/00)	7	10.0
TB-225 (1)	3.7-4.0	3/31/00 (4/5/00)	4	10.0
TB-225 (1)	1.7-2.0	3/31/00 (4/5/00)	14	10.0
TB-24 (1)	6–8	5/29/98 (6/6/98)	ND<1.0	10.0

Notes for Table 5.2:

^{(1) =} Result reported by GEI Consultants, Inc.

Table 6

SUMMARY OF SITE CHARACTERIZATION RESULTS FOR NON-PCB AREAS: BALANCE OF SITE

Table 6.1 (page 1 of 1)

Site-Wide—sediment and hand auger

AOC #:	2, 11, and 12	
Cleanup Area Description:	Site-Wide: asphalt, surface soil and catch basin	
•	sediment	
Location Reference:	Figure 9	
Sample Matrix:	Asphalt / soil / catch basin sediment	
Analysis:	US EPA Method 8082	
Units:	Milligrams per kilogram (mg/kg), dry weight	
Laboratory Results in:	Appendix G (also Appendices D, E, F, and H)	

Characterization Samples

Sample ID	Depth (feet)	Sampling Date	Sample Result	Cleanup
Cultiple 12	2	(Analysis Date)		Criterion
	-	ASPHALT		ASPHALT
SS-M1	0.0-0.2	5/2/01 (5/4/01)	ND<0.50	10.0
		3/12/02		
AOC-2 CS6	0.0-0.25	(3/14/02)	ND<0.50	1.0
	SUF	RFACE SOIL		SOIL
SS-L	0.2-0.8	5/2/01 (5/4/01)	ND<0.50	10.0
SS-M2	0.2-0.8	5/2/01 (5/4/01)	ND<0.50	10.0
AOC-2 CS2	0-2	3/12/02 (3/14/02)	ND<0.50	1.0
AOC-2 CS2	2–4	3/12/02 (3/14/02)	ND<0.50	1.0
AOC-2 CS2	5–7	3/12/02 (3/14/02)	ND<0.50	1.0
AOC-2 CS6	0.25–2.0	3/12/02 (3/14/02)	ND<0.50	1.0
AOC-2 CS6	2–4	3/12/02 (3/14/02)	ND<0.50	1.0
AOC-2 CS6	5–7	3/12/02 (3/14/02)	ND<0.50	1.0
CATCH BASIN SEDIMENT				SEDIMENT
CB-4	NA	7/25/01 (7/30/01)	ND<0.50	10.0
SED-1 ⁽¹⁾	1	6/12/98 (6/23/98)	ND<1.0	10.0

Notes for Table 6.1: (1) = Result reported by GEI Consultants, Inc.

NA = Not applicable.

Table 6.2 (page 1 of 4)

Site-Wide-test boring (page 1 of 4)

AOC #: 1, 2, 11, and 12

Cleanup Area Description: Site-Wide: asphalt and test boring soil

Figure 9

Asphalt / soil

US EPA Method 8082

Units: US EPA Method 8082

Units: Laboratory Results in: Appendix G (also Appendices D, E, F, and H)

Characterization Samples

Characterization Samples												
Sample ID	Depth (feet)	(Analysis Date)	Sample Result	Cleanup Criterion								
	AS	SPHALT (1)		ASPHALT								
ТВ-ННН	0.0-0.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-III	0.0-0.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-JJJ	0.0-0.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-KKK	0.0-0.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-LLL	0.0-0.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-MMM	0.0-0.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-NNN	0.0-0.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-000	0.0-0.3	4/1/02(4/2/02)	ND<0.50	10.0								
TB-PPP	0.0-0.3	4/1/02 (4/3/02)	ND<0.50	10.0								
TB-QQQ	0.0-0.3	4/1/02 (4/3/02)	ND<0.50	10.0								
TB-RRR	0.0-0.3	4/2/02 (4/5/02)	ND<0.50	1.0								
TB-SSS	0.0-0.3	4/2/02 (4/5/02)	ND<0.50	1.0								
ТВ-ТТТ	0.0-0.3	4/2/02 (4/5/02)	ND<0.50	10.0								
TB-UUU	0.0-0.3	4/2/02 (4/5/02)	ND<0.50	1.0								
TB-VVV	0.0-0.3	4/2/02 (4/5/02)	ND<0.50	10.0								
TB-WWW	0.0-0.3	4/2/02 (4/5/02)	ND<0.50	10.0								
TB-FFFF	0.0-0.3	4/4/02 (4/8/02)	ND<0.50	1.0								
TB-AAAAA	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	1.0								
TB-BBBBB	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	1.0								
TB-CCCCC	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	1.0								
TB-FFFFF	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	1.0								
TB-GGGGG	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	1.0								
ТВ-ННННН	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	1.0								
TB-IIII	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	1.0								
TB-JJJJJ	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	1.0								
TB-KKKKK	0.0-0.3	4/5/02 (4/10/02)	ND<0.50	1.0								
		SOIL		SOIL								
TB-L	2-4	5/14/01 (5/18/01)	ND<0.50	1.0								
TB-J	2–4	5/14/01 (5/18/01)	ND<0.50	1.0								
TB-JJ	2-4	4/1/02 (4/3/02)	ND<0.50	10.0								
TB-KK	2-4	4/1/02 (4/3/02)	ND<0.50	10.0								
TB-00	0-2	4/1/02 (4/3/02)	ND<0.50	10.0								
TB-RR	2–4	4/1/02 (4/3/02)	ND<0.50	1.0								
TB-VV	5.0-5.5	4/1/02 (4/3/02)	ND<0.50	10.0								
ТВ-ННН	1.3-2.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-HHH	2.3-4.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-HHH	4.3-6.3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-III	1–3_	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-III	3.5-4.5	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-III	5–7	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-III	10–12	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-JJJ	1–3	4/1/02 (4/2/02)	ND<0.50	10.0								
TB-JJJ	5–7	4/1/02 (4/2/02)	ND<0.50	10.0								

Table 6.2 (page 2 of 4)

Site-Wide—test boring (page 2 of 4)

AOC #: 1, 2, 11, and 12

Cleanup Area Description: Site-Wide: asphalt and test boring soil

Figure 9

Asphalt / soil

Analysis: US EPA Method 8082

Units: Laboratory Results in: Appendix G (also Appendices D, E, F, and H)

Characterization Samples

Sample ID				Cleanup
Sample ID	Deptil (lest)	(Analysis Date)	Campio modeli	Criterion
		SOIL		SOIL
TB-KKK	1–3	4/1/02 (4/2/02)	ND<0.50	. 10.0
TB-KKK	3–5	4/1/02 (4/2/02)	ND<0.50	10.0
TB-KKK	5-7	4/1/02 (4/2/02)	ND<0.50	10.0
TB-LLL	1–3	4/1/02 (4/2/02)	ND<0.50	10.0
TB-LLL	57	4/1/02 (4/2/02)	ND<0.50	10.0
TB-MMM	0.3-1.3	4/1/02 (4/2/02)	ND<0.50	10.0
TB-MMM	2–4	4/1/02 (4/2/02)	ND<0.50	10.0
TB-NNN	0.3-2.3	4/1/02 (4/2/02)	ND<0.50	10.0
TB-NNN	2.3-4.3	4/1/02 (4/2/02)	ND<0.50	10.0
TB-NNN	4.3-6.3	4/1/02 (4/3/02)	ND<0.50	10.0
TB-000	0.3–1.3	4/1/02 (4/3/02)	ND<0.50	10.0
TB-000	3.0-3.5	4/1/02 (4/3/02)	ND<0.50	10.0
TB-000	4-6	4/1/02 (4/3/02)	ND<0.50	10.0
TB-PPP	0.3-2.3	4/1/02 (4/3/02)	ND<0.50	10.0
TB-PPP	2.5–3.0	4/1/02 (4/3/02)	ND<0.50	10.0
TB-PPP	3.5-4.0	4/1/02 (4/3/02)	ND<0.50	10.0
TB-PPP	4.3-6.3	4/1/02 (4/3/02)	ND<0.50	10.0
TB-QQQ	0.3–2.3	4/1/02 (4/3/02)	ND<0.50	10.0
TB-QQQ	2.3–4.3	4/1/02 (4/3/02)	ND<0.50	10.0
TB-QQQ	4.3-5.0	4/1/02 (4/3/02)	ND<0.50	10.0
TB-RRR	0.3-0.6	4/2/02 (4/5/02)	ND<0.50	1.0
TB-RRR	0.6-2.6	4/2/02 (4/5/02)	ND<0.50	1.0
TB-RRR	4.6-6.6	4/2/02 (4/5/02)	ND<0.50	1.0
TB-SSS	0.3-0.6	4/2/02 (4/5/02)	ND<0.50	1.0
TB-SSS	2.6-4.6	4/2/02 (4/5/02)	ND<0.50	1.0
TB-SSS	6.6–8.6	4/2/02 (4/5/02)	ND<0.50	1.0
TB-TTT	0.3-0.6	4/2/02 (4/5/02)	ND<0.50	10.0
TB-TTT	0.6–2.6	4/2/02 (4/5/02)	ND<0.50	10.0
TB-TTT	4.6-6.6	4/2/02 (4/5/02)	ND<0.50	10.0
TB-UUU	0.3-0.6	4/2/02 (4/5/02)	ND<0.50	1.0
TB-UUU	4.6-6.6	4/2/02 (4/5/02)	ND<0.50	1.0
TB-UUU	15–17	4/2/02 (4/5/02)	ND<0.50	1.0
TB-VVV	0.3-0.6	4/2/02 (4/5/02)	ND<0.50	10.0
TB-VVV	2.0–2.6	4/2/02 (4/5/02)	ND<0.50	10.0
TB-VVV	2.6-4.6	4/2/02 (4/5/02)	ND<0.50	10.0
TB-VVV	4.6-6.6	4/2/02 (4/5/02)	ND<0.50	10.0
TB-WWW	0.3–2.0	4/2/02 (4/5/02)	ND<0.50	10.0
TB-WWW	2-4	4/2/02 (4/5/02)	ND<0.50	10.0
TB-WWW	4-6	4/2/02 (4/5/02)	ND<0.50	10.0
TB-WWW	20–22	4/2/02 (4/5/02)	ND<0.50	10.0
TB-FFFF	0.5-0.8	4/4/02 (4/8/02)	ND<0.50	1.0
	2.5-3.5	4/4/02 (4/8/02)	ND<0.50	1.0
TB-FFFF		4/4/02 (4/8/02)	ND<0.50	1.0
TB-FFFF	3.5-4.5	414102 (410102)	140.00	1.0

Table 6.2 (page 3 of 4)

Site-Wide—test boring (page 3 of 4)

AOC #: 1, 2, 11, and 12

Cleanup Area Description: Site-Wide: asphalt and test boring soil

Location Reference: Figure 9

Sample Matrix: Asphalt / soil

US EPA Method 8082

Units: US EPA Method 8082

Milligrams per kilogram (mg/kg), dry weight

Appendix G (also Appendices D, E, F, and H)

Characterization Samples

	Characte	rization Samples		
Sample ID	Depth (feet)	Sampling Date	Sample Result	Cleanup
		(Analysis Date)		Criterion
		SOIL		SOIL
TB-AAAAA	0.5-2.5	4/5/02 (4/10/02)	ND<0.50	1.0
ТВ-ВВВВВ	0.5-2.5	4/5/02 (4/10/02)	ND<0.50	1.0
TB-BBBBB	2.5-4.5	4/5/02 (4/10/02)	ND<0.50	1.0
TB-BBBBB	4.5-5.5	4/5/02 (4/10/02)	ND<0.50	1.0
TB-CCCC	2–4	4/5/02 (4/10/02)	ND<0.50	1.0
TB-CCCC	4–5	4/5/02 (4/10/02)	ND<0.50	1.0
TB-FFFFF	0.5-0.8	4/5/02 (4/10/02)	ND<0.50	1.0
TB-GGGGG	0.5-1.2	4/5/02 (4/10/02)	ND<0.50	1.0
ТВ-ННННН	0.5-2.5	4/5/02 (4/10/02)	ND<0.50	1.0
ТВ-ННННН	2.5-4.5	4/5/02 (4/10/02)	ND<0.50	1.0
TB-JJJJJ	0.3-2.3	4/5/02 (4/10/02)	ND<0.50	1.0
TB-JJJJJ	2.3-4.3	4/5/02 (4/10/02)	ND<0.50	1.0
TB-KKKKK	1–2	4/5/02 (4/10/02)	ND<0.50	1.0
TB-KKKKK	4-5	4/5/02 (4/10/02)	ND<0.50	1.0
TB-AAA	2–4	2/13/02 (2/26/02)	ND<0.50	10.0
TB-AAA	5–7	2/13/02 (2/26/02)	ND<0.50	10.0
TB-AAA	10–12	2/13/02 (2/26/02)	ND<0.50	10.0
TB-AAA	0-2	2/13/02 (2/26/02)	ND<0.50	10.0
TB-II	5–7	2/8/02 (2/14/02)	ND<0.50	10.0
TB-JJ	2–4	2/8/02 (2/14/02)	ND<0.50	10.0
TB-KK	0–2	2/8/02 (2/14/02)	ND<0.50	10.0
TB-MM	2–4	2/8/02 (2/14/02)	ND<0.50	10.0
TB-QQ	0-2	2/8/02 (2/14/02)	ND<0.50	1.0
TB-QQ	10–12	2/8/02 (2/14/02)	ND<0.50	1.0
TB-UU	2–4	2/8/02 (2/14/02)	ND<0.50	10.0
TB-VV	2–4	2/8/02 (2/14/02)	ND<0.50	10.0
TB-VV	4–6	2/8/02 (2/21/02)	ND<0.50	10.0
TB-U/MW-G	1–3	5/15/01 (5/18/01)	ND<0.50	10.0
TB-W/MW-H	2-4	5/15/01 (5/18/01)	ND<0.50	10.0
TB-Z/MW-I	2-4	5/15/01 (5/18/01)	ND<0.50	10.0

Table 6.2 (page 4 of 4)

Site-Wide—test boring (page 4 of 4)

AOC #: 1, 2, 11, and 12 Cleanup Area Description: Site-Wide: asphalt and test boring soil Location Reference: Figure 9 Sample Matrix: Asphalt / soil Analysis: US EPA Method 8082 Units: Milligrams per kilogram (mg/kg), dry weight Laboratory Results In: Appendix G (also Appendices D, E, F, and H)

Characterization Samples

Sample ID	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
		SOIL		SOIL
TB-200 (2)	5–7	7/2/98 (7/9/98)	ND<1.0	10.0
MW-4D (2)	36-40	6/10/98 (6/18/98)	ND<1.0	1.0
MW-10 (2)	9–11	6/9/98 (6/19/98)	ND<1.0	10.0
MW-3 (2)	1517	6/4/98 (6/12/98)	ND<1.0	1.0
TB-6 ⁽²⁾	1-7	6/4/98 (6/12/98)	ND<1.0	1.0
TB-7 ⁽²⁾	5	6/4/98 (6/12/98)	ND<1.0	1.0
TB-7A (2)	7-9	6/4/98 (6/12/98)	ND<1.0	1.0
MW-2 (2)	13–17	6/2/98 (6/10/98)	ND<1.0	1.0
TB-1 (2)	7–8	6/2/98 (6/10/98)	ND<1.0	1.0
MW-12 (2)	2–4	6/1/98 (6/10/98)	ND<1.0	10.0
TB-25 (2)	2–4	5/29/98 (6/6/98)	ND<1.0	10.0
TB-18 (2)	12–14	5/28/98 (6/6/98)	ND<1.0	10.0
TB-18A (2)	16-18	5/28/98 (6/6/98)	ND<1.0	10.0
MW-20 (2)	11–13	5/27/98 (6/7/98)	ND<1.0	10.0
MW-5 (2)	2-4	5/26/98 (6/7/98)	ND<1.0	10.0
MW-9A (2)	0–2	5/26/98 (6/7/98)	ND<1.0	10.0

Notes for Table 6.2:

^{(1) =} Sample may include some base material (e.g., cobbles or gravel).
(2) = Result reported by GEI Consultants, Inc.

Sampling Dates: May 2 and 14, 2001

		Cumpi	ng Dates: I	nay Z all	14, 200						
			Pollutant								
		<u> </u>	Mobility								
Analyte		sure Criteria	Criteria for								
Analyte	101 501	l (mg/kg) Industrial/	Soil (mg/kg)	Surface Soil Sample Concentrations (ppm)							
	Residential	Commercial	GB Area	SS-A	SS-B	ss-c	SS-D1	SS-D2	SS-E	SS-F	
Depth Below Grade (ft.)				(0-1)	(0-1)	(0-1)	(0-1)	(0-0.5)	(0.5-1)	(0.3-1)	
							1	(* 5.5,	(0.0 1)	(0.0-1)	
USEPA Method 8270 Polynuclear	ĺ		!	<u> </u>			1				
Aromatic Hydrocarbons (PAHs)					<u> </u>		1	l		ı	
Acenaphthene	1,000	2,500	84	NT NT	NT	NT	ND<0.20	ND<0.20	NT	NT	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	ND<0.20	ND<0.20	NT	NT	
Anthracene	1,000	2,500	400	NT	NT	NT	ND<0.20	ND<0.20	NT	NT	
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	0.87	ND<0.20	NT	NT	
Benzo[a]pyrene	1	1	1	NT	NT	NT	0.79	ND<0.20	NT	NT	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	1.7	ND<0.20	NT	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	0.72	ND<0.20	NT	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	0.64	ND<0.20	NT	NT	
Chrysene	84	780	1	NT	NT	NT	0.87	ND<0.20	NT	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	ND<0.20	ND<0.20	NT	NT	
Fluoranthene	1,000	2,500	56	NT	NT	NT	1.5	ND<0.20	NT	NT	
Fluorene	1,000	2,500	56	NT	NT	NT	ND<0.20	ND<0.20	NT	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	0.70	ND<0.20	NT	·NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.20	ND<0.20	NT	NT	
Phenanthrene	1,000	2,500	40	NT	NT	NT	0.88	ND<0.20	NT	NT	
Pyrene	1,000	2,500	40	NT	NT	NT	1.3	ND<0.20	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CT ETPH)	500	2,500	2,500	NT :	NT	NT	99	ND<50	ND -FO	NT	
retroleum nyurocatbons (CT ETFA)	- 555		2,000				99	NDCSU	ND<50	NT_	
Total Metals						 -	 				
Arsenic	10	10	NA	ND<2.0	ND<2.0	7.4	14	ND<2.0	51	930	
Barium	4,700	140,000	NA	NT	NT	NT	30	25	NT		
Cadmium	34	1,000	NA	NT	NT	NT	ND<1.0	ND<1.0	NT	NT NT	
Chromium	100*	100°	NA	NT	NT	NT	11	8	NT	NT	
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT	NT	
Lead	500	1,000	NA	NT	NT	NT	64				
Mercury	20	610	NA NA	NT	NT	NT		31	NT	NT	
Nickel	1,400	7,500	NA NA	NT	NT	NT	0.72	ND<0.20	NT	NT	
	1,700	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	INA	[4.]	<u> </u>	NI	NT	NT	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030
Table 3 Page 1 of 6

Sampling Dates: May 2 and 14, 2001

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)		Surface Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	SS-A	SS-B	ss-c	SS-D1	SS-D2	SS-E	SS-F			
Depth Below Grade (ft.)				(0-1)	(0-1)	(0-1)	(0-1)	(0-0.5)	(0.5-1)	(0.3-1)			
Selenium	340	10,000	NA	NT	NT	NT	ND<1.0	ND<1.0	NT	NT			
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT	NT			
SPLP Metals			·			<u> </u>							
Arsenic	NA	NA	0.5	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05			
Barium	NA	NA	10	NT	NT	NT	0.56	0.73	NT NT	NT			
Lead	NA	NA	0.15	NT	NT	NT	ND<0.013	0.034	NT	NT			
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)				<u> </u>						<u> </u>			
PCB-1248	1	10	NA	NT	NT	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50			

Notes:

ma/kg = milligrams per kilogram.

ppm = parts per million (comparable to mg/kg).

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.
NA = Not applicable.

SPLP = Test performed on leachate from Synthetic Precipitation

Leaching Procedure (SPLP). Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Sampling Dates: May 2 and 14, 2001

		Campi	ing Dates: I	riay Z ant	u 14, 200	<u> </u>					
Analyte		osure Criteria	Pollutant Mobility Criteria for	ility ia for							
Analyte	107 501	I (mg/kg) Industrial/	Soil (mg/kg)		Sur	face Soil Sa	mple Conce	ntrations (p	pm)		
	Residential	Commercial	GB Area	SS-G	SS-H	SS-I	ss-J	SS-K	SS-L	SS-M1	
Depth Below Grade (ft.)	<u> </u>			(0.5-1)	(0.2-0.8)	(0.2-0.8)	(0.2-0.8)	(0.2-0.8)	(0.2-0.8)	(0.0-0.2)	
HOTDA MAIL AGOS STATE								(0.2 0.0)	(0.2 0.0)	(0.0-0.2)	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)											
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	NT	ND<0.20			
Acenaphthylene	1,000	2,500	84	NT	NT	ND<0.20	NT	ND<0.20	NT	NT	
Anthracene	1,000	2,500	400	NT	NT	0.37	NT	ND<0.20	NT	NT	
Benzo[a]anthracene	1	7.8	1	NT	NT	1.7	NT	0.94	NT NT	NT	
Benzo[a]pyrene	1	1	1	NT	NT	1.5	NT	0.65	NT	NT	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	2.7	NT	1.3		NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	0.99	NT	0.50	NT NT	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	1.1	NT	0.52	NT	NT	
Chrysene	84	780	1	NT	NT	1.7	NT	0.90	NT	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	0.22	NT	ND<0.20	NT	NT NT	
Fluoranthene	1,000	2,500	56	NT	NT	3.3	NT	1.1	NT	NT	
Fluorene	1,000	2,500	56	NT	NT	ND<0.20	NT	ND<0.20	NT	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	0.87	NT	0.40	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	0.41	NT	ND<0.20	NT	NT	
Phenanthrene	1,000	2,500	40	NT	NT	2.4	NT	0.80	NT	NT	
Pyrene	1,000	2,500	40	NT	NT	2.7	NT	1.1	NT	NT	
Connecticut Extractable Total	-										
Petroleum Hydrocarbons (CT ETPH)	500 ,	2,500	2,500	140	NT	140	NT	220	NT	NT ,	
Total Metals											
Arsenic	10	10	NA	85	110	100	86	- 60			
Barium	4,700	140,000	NA NA	NT	NT	NT	NT	69	30	NT	
Cadmium	34	1,000	NA NA	NT	NT	NT	NT NT	NT	NT	NT	
Chromium	100*	100°	NA NA	NT	NT NT	NT	NT	NT	NT	NT	
Copper	2,500	76,000	NA NA	NT	NT	NT		NT	NT	NT	
Lead	500	1,000	NA NA	NT	NT	NT	NT NT	NT NT	TN	NT	
Mercury	20	610	NA	NT NT	NT	NT	NT	NT	NT	NT	
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT NT	NT NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030
Table 3 Page 3 of 6

Sampling Dates: May 2 and 14, 2001

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soli (mg/kg)		Surface Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	SS-G	SS-H	SS-I	SS-J	SS-K	SS-L	SS-M1			
Depth Below Grade (ft.)				(0.5-1)	(0.2-0.8)	(0.2-0.8)	(0.2-0.8)	(0.2-0.8)	(0.2-0.8)	(0.0-0.2)			
Selenium	340	10,000	NA NA	NT	NT	NT	NT	NT	NT	NT			
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT	NT			
SPLP Metals					<u> </u>	!							
Arsenic	NA	NA	0.5	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	NT			
Barium	NA	NA	10	NT	NT	NT	NT	NT NT	NT	NT			
Lead	NA	NA	0.15	NT	NT	NT	NT	NT	NT	NT			
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)													
PCB-1248	1	10	NA	ND<0.50	0.63	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			

Notes:

mg/kg = milligrams per kilogram.

ppm = parts per million (comparable to mg/kg).

ND = Not detected above taboratory minimum detection limit.

NT = Not tested.

NA = Not applicable.

SPLP = Test performed on leachate from Synthetic Precipitation

Leaching Procedure (SPLP). Units are milligrams per liker (mg/L).

= 100 mg/kg for hexavalent chromlum.

Sampling Dates: May 2 and 14, 2001

			impling Date	es: May	2 and 14,	, 2001					
		osure Criteria	Pollutant Mobility Criteria for								
Analyte	for Soi	l (mg/kg)	Soil (mg/kg)	Surface Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	00.140	22.11	1					
Depth Below Grade (ft.)	11COICETILIA	Commercial	GB Area	SS-M2	SS-U	SS-V	SS-W	SS-W	SS-X	SS-Y	SS-Z
()	 			(0.2-0.8)	(0-2)	(0-1.5)	(0-2)	(2-3)	(0-0.6)	(0-0.6)	(0-0.6)
USEPA Method 8270 Polynuclear	 			ļ	<u> </u>	 				<u> </u>	
Aromatic Hydrocarbons (PAHs)						Ì			ł		
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	ND to so	.	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	ND<0.20	ND<0.20	ND<0.20
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	ND<0.20	ND<0.20	ND<0.20
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	ND<0.20	ND<0.20	ND<0.20
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	0.93	0.21	ND<0.20
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	0.68	0.22	ND<0.20
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	1.1	0.85	ND<0.20
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	0.49	0.31	ND<0.20
Chrysene	84	780	1	NT	NT	NT	NT	NT	1.1	0.21	ND<0.20
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	ND<0.20	1.2 ND<0.20	ND<0.20
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	1.6		ND<0.20
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.20	0.74	ND<0.20
indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	0.41	ND<0.20	ND<0.20
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.20	0.28	ND<0.20
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	0.78	ND<0.20 0.94	ND<0.20
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	1.8	0.94	ND<0.20
						1			1.0	0.42	ND<0.20
Connecticut Extractable Total									 		
Petroleum Hydrocarbons (CT ETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	270	240	700
Total Metals								·			
Arsenic	10	10	NA	ND<2.0	37	40					
Barium	4,700	140,000	NA NA	NT NT		18	20	26	30	37	ND<2.0
Cadmium	34	1,000	NA NA	NT	NT NT	NT NT	NT	NT NT	40	28	38
Chromium	100°	100*	NA NA	NT	NT NT	NT	NT	NT	1.3	2.1	1.6
Copper	2,500	76,000	NA NA	NT			NT	NT	13	28	19
Lead	500	1,000	NA NA		NT	NT	NT	NT	170	29	100
Mercury	20	610	NA NA	NT NT	NT	NT	NT	NT	130	52	810
Nickel	1,400	7,500	NA NA	NT NT	NT	NT	NT	NT	ND<0.20	0.48	1.2
	1,700	7,300	INA	NI NI	NT	NT	NT	NT	24	21	11

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030 Table 3 Page 5 of 6

Sampling Dates: May 2 and 14, 2001

			mpining Dute		ulla 17,	2001					
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant - Mobility Criteria for Soil (mg/kg)			Surface S	oil Sample (Concentrati	one (nnm)		
	Residential	Industrial/ Commercial	GB Area	SS-M2	SS-U	SS-V	SS-W	ss-w	SS-X	SS-Y	SS-Z
Depth Below Grade (ft.)				(0.2-0.8)	(0-2)	(0-1.5)	(0-2)	(2-3)	(0-0.6)	(0-0.6)	(0-0.6)
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	2.2	6.4	ND<1.0
Zinc	20,000	610,000	NA NA	NT	NT	NT	NT	NT	88	16	200
SPLP Metals							 _		 		
Arsenic	NA	NA	0.5	ND<0.05	NT	NT	NT	NT	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	NT	NT
Lead	NA	NA	0.15	NT	NT	NT	NT	NT	NT	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1248	1	10	NA	ND<0.50	NT	NT	NT	NT	ND<0.50	ND<0.50	ND<0.50

Notes:

mg/kg = milligrams per kilogram.

ppm = parts per million (comparable to mg/kg).

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.
NA = Not applicable.

SPLP = Test performed on leachate from Synthetic Precipitation

Leaching Procedure (SPLP). Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			Pollutant	may 5, 10,	11, 14, and	13, 2001	· · · · · · · · · · · · · · · · · · ·					
			Mobility	i				•				
	Direct Expo	sure Criteria	Criteria for	1								
Analyte		(mg/kg)	Soil (mg/kg)		Soil Sample Concentrations (ppm)							
	10, 00,	Industrial/	Oon (mg/kg)	 	T -	5011	Sample Cond	entrations ((ppm)	,	,	
	Residential	Commercial	GB Area	ТВ-А	TB-A	TB-A	TB-A	ТВ-В	70.0			
Depth Below Grade (ft.)			007400	(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	TB-B (2-4)	TB-B (5-7)	TB-B (10-12)	
USEPA Method 8270 Polynuclear Aromatics									\= ./_	(0-1)	(10-12)	
Acenaphthene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	NT	NT	NT	
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	NT	NT		
Anthracene	1,000	2,500	400	NT	ND<0.20	NT	NT	NT	NT	NT	NT	
Benzo[a]anthracene	1	7.8	1	NT	0.30	NT	NT	NT	NT	NT	NT NT	
Benzo[b]fluoranthene	1	7.8	1	NT	0.35	NT	NT	NT	NT	NT	NT	
Benzo(g,h,i)perylene	1,000	2,500	42	NT	ND<0.20	NT	NT	NT	NT	NT	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	ND<0.20	NT	NT	NT	NT	NT	NT	
Benzo[a]pyrene	1	1	1	NT	ND<0.20	TNT	NT	NT	NT	NT	NT	
Chrysene	84	780	1	NT	1.3	NT	NT	NT	NT	NT	NT	
Dibenz[a,h]anthracene	1	1	1	NT	ND<0.20	NT	NT	NT	NT	NT	NT	
Fluoranthene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	NT	NT	NT	
-Fluorene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	NT	NT	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	ND<0.20	NT	NT	NT	NT	NT	NT	
Naphthalene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	NT	NT	NT	
Phenanthrene	1,000	2,500	40	NT	0.90	NT	NT	NT	NT	NT	NT	
Pyrene	1,000	2,500	40	NT	0.28	NT	NT	NT	NT	NT	NT	
USEPA Method 8260 Volatile Organic Compounds (VOCs)												
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT	
tert-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT	
1,1-Dichloroethane	500	1,000	14	ΝΤ	NT	NT	NT	NT	NT	NT	NT	
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT	NT	NT	
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	NT	
n-Propyibenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT	NT	NT	

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			Pollutant	may 3, 10, 1	1, 14, and	15, 2001						
			Mobility	ļ					<u> </u>			
·	Direct Expo	sure Criteria	Criteria for									
Analyte		(mg/kg)										
	101 301	Industrial/	Soil (mg/kg)	Soil Sample Concentrations (ppm)								
	Residential	Commercial	GB Area	TB-A	TB-A	TB-A	TB-A	TB-B				
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	TB-B (2-4)	TB-B (5-7)	TB-B	
Total Metals							10 12/	(0-2)	(2-4)	(3-7)	(10-12)	
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT	NIT.		
Arsenic	10	10	NA	2.6	6.1	240	300	5.8	34	NT	NT	
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT NT	110	9.3	
Beryllium	2	2	NA	NT	NT	NT	NT	NT		NT	NT	
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT	NT	NT	
Chromium	100*	100°	NA	NT	NT	NT	NT		NT	NT	NT	
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT NT	NT	NT	NT	
Lead	500	1,000	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	
Mercury	20	610	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	
Nickel	1,400	7,500	NA	NT	NT	NT	NT		NT	NT	NT	
Selenium	340	10,000	NA NA	NT	NT	NT	NT	NT NT	NT	NT NT	NT	
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT NT	NT NT	NT NT	
SPLP Metals												
Arsenic	NA	NA	0.5	ND<0.05	NT	NT	NT	ND<0.05	ND -0.05			
Barium	NA	NA	10	NT NT	NT	NT	NT		ND<0.05	NT_	NT	
Zinc	NA	NA	50.0	NT	NT	NT	NT	NT NT	NT NT	NT NT	NT NT	
										141		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	NT	NT	NT	NT	NT	NT	NT	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Comparison of Test Boring Soll Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Central Portion, New Haven, CT Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	7		mpling Dates: Pollutant	may 5, 10,	11, 14, and	13, 2001					
	}		Mobility								
1	Direct Expo	sure Criteria	Criteria for								
Analyte		(mg/kg)	Soil (mg/kg)			C-II	Samula Can		· · · · · · · · · · · · · · · · · · ·		
	10.00.	Industrial/	oon (mg/xg/			3011	Sample Con	centrations ((ppm)		,
1	Residential	Commercial	GB Area	TB-C	тв-с	TB-C	TB-C	TB-D	TB-D	TB-D	TB-D
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	(2-4)	(5-7)	(10-12)
USEPA Method 8270 Polynuclear											(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Aromatics	!			İ							
Acenaphthene	1,000	2,500	84	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Anthracene	1,000	2,500	400	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	ND<0.20	NT	NT	0.58	NT	NT	NT
Benzo[b]fluoranthene	1_	7.8	1	NT	ND<0.20	NT	NT	0.94	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	ND<0.20	NT	NT	0.36	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	ND<0.20	NT	NT	0.28	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	ND<0.20	NT	NT	0.45	NT	NT	NT
Chrysene	84	780	1	NT	ND<0.20	NT	NT	0.78	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	ND<0.20	NT	NT	1.2	NT	NT	NT
Fluorene	1,000	2,500	56	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	ND<0.20	NT	NT	0.30	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	0.23	NT	NT	1.0	NT	NT	NT
Pyrene	1,000	2,500	40	NT	ND<0.20	NT	NT	1.1	NT	NT	NT
USEPA Method 8260 Volatile											
Organic Compounds (VOCs)											
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	ND<0.005	NT	NT
tert-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	ND<0.005	NT	NT
1,1-Dichloroethane	500	1,000	14	NT	NT	NT	NT	NT	ND<0.005	NT	NT
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	ND<0.005	NT	NT
isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	ND<0.005	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.005	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	ND<0.005	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	ND<0.005	NT	NT

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			Pollutant	<u>, 0, 10,</u>	11, 17, 4114	10, 2001			_	·	
	1		Mobility								
	Direct Expo	sure Criteria	Criteria for								
Analyte		(mg/kg)	Soil (mg/kg)	l		Soli	Sample Con	centrations (
	13. 33.	Industrial	our (mg.ng)			3011	Jampie Com	centrations (ppm)		
	Residential	Commercial	GB Area	TB-C	тв-с	TB-C	TB-C	TB-D	TB-D	TB-D	TB-D
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	(2-4)	(5-7)	(10-12)
Total Metals	 										
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	ND<2.0	NT	NT
Arsenic	10	10	NA	2.1	670	61	13	34	5.9	5.7	22
Barium	4,700	140,000	NA	NT	28	NT	NT	NT	38	NT	NT
Beryllium	2	2	NA	NT	NT	NT	NT	NT	ND<1.0	NT	NT
Cadmium	34	1,000	NA	NT	3	NT	NT	NT	ND<1.0	NT	NT
Chromium	100*	100*	NA	NT	7.1	NT	NT	NT	12	NT	NT
Copper	2,500	76,000	NA	NT	23	NT	NT	NT	75	NT	NT
Lead	500	1,000	NA	NT	59	NT	NT	NT	110	NT	NT
Mercury	20	610	NA	NT	0.80	NT	NT	NT	0.48	NT	NT
Nickel	1,400	7,500	NA	NT	6.30	NT	NT	NT	7.4	NT	NT
Selenium	340	10,000	NA	NT	15	NT	NT	NT	2.0	NT	NT
Zinc	20,000	610,000	NA NA	NT	ND<2.0	NT	NT	NT	53	NT	NT
SPLP Metals											
Arsenic	NA	NA NA	0.5	NT	ND<0.05	NT	NT	ND<0.05	NT	NT	NT
Barium	NA	NA	10	NT	0.38	NT	NT	NT	NT	NT	NT
Zinc	NA	NA	50.0	NT	0.16	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	ND<50	NT	NT	110	NT	NT	NT

Notes:

mg/kg = milligrams per kllogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Table 4

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	'1	Sa	mpling Dates: Pollutant	May 9, 10,	17, 14, and	15, 2001					
			Mobility								
	Direct Evne	sure Criteria	Criteria for	ŀ							
Analyte		(mg/kg)	Soil (mg/kg)	ļ		6-11	0				
Analyte	101 3011	Industrial/	Son (mg/kg)	 		2011	Sample Con	centrations (opm)	·	
	Residential	Commercial	GB Area	TB-E	TB-E	TB-E	TB-E	TB-F	TO E		
Depth Below Grade (ft.)	1		CD74ca	(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	TB-F (2-4)	TB-F (5-7)	TB-F (10-12)
USEPA Method 8270 Polynuclear										\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	(10 12)
Aromatics								1			
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Benzo(b)fluoranthene	1	7.8	1	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Chrysene	84	780	1	NT	NT	NT	NT	0.35	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	NT	NT	NT
. Fluorene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	0.36	NT	NT	NT
Pyrene -	1,000	2,500	40	NT	NT	NT	NT	ND<0.20	NT	NT	NT
USEPA Method 8260 Volatile					 						
Organic Compounds (VOCs)				ł						ļ	İ
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	ND<0.010	NT	NT	NT
tert-Butylbenzene	500	1,000	14	NT	NT	NT	NT	ND<0.010	NT	NT	NT
1,1-Dichloroethane	500	1,000	14	NT	NT	NT	NT	ND<0.010	NT	NT	NT
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	ND<0.010	NT	NT	NT
Isopropyibenzene	500	1,000	132	NT	NT	NT	NT	ND<0.010	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.010	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	ND<0.010	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	ND<0.010	NT	NT	NT

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			Pollutant Mobility		i i j i i j unici		· · · · · · · · · · · · · · · · · · ·				-		
	Direct Expo	sure Criteria	Criteria for										
Analyte	for Soil	(mg/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)									
	Residential	Industrial/ Commercial	GB Area	TB-E	TB-E	TB-E	TB-E	TB-F	TB-F	TB-F	TB-F		
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	(2-4)	(5-7)	(10-12)		
Total Metals													
Antimony	27	8,200	NA	NT	NT	NT	NT	ND<2.0	NT	NT	NT		
Arsenic	10	10	NA	11	320	30	46	14	32	6.1	3.2		
Barium	4,700	140,000	NA	NT	NT	NT	NT	17	NT	NT	NT		
Beryllium	2	2	NA	NT	NT	NT	NT	ND<1.0	NT	NT	NT		
Cadmium	34	1,000	NA	NT	ND<1.0	NT	NT	ND<1.0	NT	NT	NT		
Chromium	100°	100°	NA	NT	NT	NT	NT	ND<2.0	NT	NT	NT		
Copper	2,500	76,000	NA	NT	NT	NT	NT	11	NT	NT	NT		
Lead	500	1,000	NA	NT	NT	NT	NT	6.4	NT	NT	NT		
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT	NT	NT		
Nickel	1,400	7,500	NA	NT	NT	NT	NT	ND<2.0	NT	NT	NT		
Selenium	340	10,000	NA	NT	· NT	NT	NT	2.3	NT	NT	NT		
Zinc	20,000	610,000	NA	NT	NT	NT	NT	2.7	NT	NT	NT		
SPLP Metals		 					 						
Arsenic	NA	NA	0.5	NT	ND<0.05	NT	NT	ND<0.05	NT	NT	NT		
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	NT	NT		
Zinc	NA_	NA	50.0	NT	NT	NT	NT	NT	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	ND<50	NT	ИТ	NT		

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Hole 4

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			Pollutant Pollut								
	ľ		Mobility								
	Direct Expo	sure Criteria	Criteria for								
Analyte		l (mg/kg)	Soil (mg/kg)	1		Soil	Sample Cond	contrations ((mmm)		
		Industrial/				1		endations ((ppiii)		· · · · · · · · · · · · · · · · · · ·
	Residential	Commercial	GB Area	TB-G	TB-G	TB-G	TB-G	тв-н	тв-н	TB-H	ТВ-Н
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	(2-4)	(5-7)	(10-12)
USEPA Method 8270 Polynuclear Aromatics										(0.7)	(10-12)
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	N.T.	 	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT NT	NT	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT	NT NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT			NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	NT	NT	NT
Chrysene	84	780	1	NT	NT	NT	NT	NT	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	NT
· Fluorene	1,000	2,500	56	NT	NT	NT	NT		NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT NT	NT	NT	NT
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT NT	NT NT	NT NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)											IVI
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
tert-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethane	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT		NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT		NT	NT
		.,				141	141	INI	NT	NT	NT

|||||||||

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Central Portion, New Haven, CT

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	,		Pollutant	viay 3, 10,	11, 14, anu	13, 2001		· · · · · · · · · · · · · · · · · · ·			
	ļ		Mobility								
	Dimet Evne	sure Criteria	Criteria for								
Analyte	1	i i							_		
Allalyte	101 301	(mg/kg) Industrial/	Soll (mg/kg)			Soll	Sample Con	centrations (ppm)		
	Residential	Commercial	GB Area	TB-G	TB-G	TB-G	TB-G	тв-н	тв-н	тв-н	тв-н
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	(2-4)	(5-7)	(10-12)
Total Metals											,,
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT	NT	NT
Arsenic	10	10	NA	6.9	93	7.6	ND<2.0	17	110	4.5	2.9
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Beryllium	2	2	NA	NT	NT	NT	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Chromium	100*	100°	NA	NT	NT	77	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
SPLP Metals											
Arsenic	NA	NA	0.5	NT	ND<0.05	NT	NT	ND<0.05	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	NA	NA	50.0	NT	NT	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	460	79	NT	NT	NT	NT	NT	NT

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Central Portion, New Haven, CT Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			mpling Dates:	may 9, 10,	11, 14, and	15, 2001					
			Pollutant	1							
	Direct Even	ausa Csitasia	Mobility								
Analyte		sure Criteria (mg/kg)	Criteria for	1							
Analyte	101 3011	(mg/kg) Industrial/	Soil (mg/kg)		T	Soil	Sample Con	centrations (ppm)		
	Residential	Commercial	GB Area	TB-I						1	
Depth Below Grade (ft.)	- Acold Citalar	Commercial	OB Alea	(0-2)	TB-1 (2-4)	TB-I (10-12)	TB-J (0-1)	TB-J (2-4)	TB-K (0-5)	TB-K (2-3)	TB-L (1-2)
USEPA Method 8270 Polynuclear								<u> </u>	(0-0)	(2-3)	(1-2)
Aromatics											
Acenaphthene	1,000	2,500	84	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Anthracene	1,000	2,500	400	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	ND<0.20	NT	NT	0.31	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	ND<0.20	NT	NT	0.36	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	ND<0.20	NT	NT	0.25	NT	NT	NT
Chrysene	84	780	1	NT	0.22	NT	NT	0.30	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	ND<0.20	NT	NT	0.61	NT	NT	NT
Fluorene	1,000	2,500	56	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Indeno[1,2,3-cd]pyrene	_ 1	7.8	1	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	ND<0.20	NT	NT	ND<0.20	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	0.27	NT	NT	0.28	NT	NT	NT
Pyrene	1,000	2,500	40	NT	ND<0.20	NT	NT	0.55	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
tert-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethane	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	NT
n-Propyibenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT	NT	NT

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			Pollutant	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>						
		l	Mobility								
		sure Criteria	Criteria for							•	
Analyte	for Soil	(mg/kg)	Soil (mg/kg)			Soil	Sample Con	centrations (ppm)		
	Residential	Industrial/ Commercial	GB Area	TB-I	TB-I	TB-I	TB-J	TB-J	тв-к	тв-к	TB-L
Depth Below Grade (ft.)				(0-2)	(2-4)	(10-12)	(0-1)	(2-4)	(0-5)	(2-3)	(1-2)
Total Metals											
Antimony	27	8,200	NA	NT	ND<2.0	NT	NT	3.7	NT	NT	NT
Arsenic	10	10	NA	2.2	3.9	5.3	ND<2.0	6.4	3.8	29	2.8
Barium	4,700	140,000	NA	NT	11	NT	NT	74	NT	NT	NT
Beryllium	2	2	NA	NT	ND<1.0	NT	NT	ND<1.0	NT	NT	NT
Cadmium	34	1,000	NA	NT	ND<1.0	NT	NT	1.7	NT	NT	NT
Chromium	100°	100°	NA	NT	4.4	NT	NT	8.1	NT	NT	NT
Copper	2,500	76,000	NA	NT	33	NT	NT	760	NT	NT	NT
Lead	500_	1,000	NA	NT	21	NT	NT	1,000	NT	NT	NT
Mercury	20	610	NA	NT	0.71	NT	NT	1.9	NT	NT	NT
Nickel	1,400	7,500	NA	NT	4.7	NT	NT	11	NT	NT	NT
Selenium	340	10,000	NA	NT	ND<1.0	NT	NT	ND<1.0	NT	NT	NT
Zinc	20,000	610,000	NA	NT	28	NT	NT	1,000	NT	NT	NT
SPLP Metals	 										
Arsenic	NA	NA	0.5	NT	ND<0.05	NT	NT	ND<0.05	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	NA	NA	50.0	NT	NT	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	ND<50	NT	ND<50	330	NT	NT	NT

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	T		Pollutant	lutant							
			Mobility								
1	Direct Expo	sure Criteria	Criteria for								
Analyte	_	(mg/kg)	Soil (mg/kg)			Soil	Sample Cond	centrations (nnm)		-
		Industrial/		· · · · · ·	<u> </u>	1		, character (ррину	<u> </u>	TB-P/
	Residential	Commerciai	GB Area	TB-L	TB-L	TB-L	ТВ-М	тв-о	TB-O	тв-о	MW-D
Depth Below Grade (ft.)				(2-4)	(5-6)	(10-12)	(0.5-1)	(0.5-2)	(5-7)	(10-12)	(0.5-1.5)
USEPA Method 8270 Polynuclear	<u> </u>			 							
Aromatics										ľ	
Acenaphthene	1,000	2,500	84	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Anthracene	1,000	2,500	400	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Benzo[a]pyrene	1	1	1	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Chrysene	84	780	1	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Fluoranthene	1,000	2,500	56	0.21	NT	NT	NT .	NT	NT	NT	NT
Fluorene	1,000	2,500	56	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Phenanthrene	1,000	2,500	40	ND<0.20	NT	NT	NT	NT	NT	NT	NT
Pyrene	1,000	2,500	40	0.20	NT	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile	 										
Organic Compounds (VOCs)					ł					ļ	
sec-Butylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	NT
tert-Butylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	ND<0.005	. NT	NT	NT	NT
1,1-Dichloroethane	500	1,000	14	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	NT
Ethylbenzene	500	1,000	10.1	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	NT

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	, .		mpling Dates:	may 3, 10, 1	1, 14, and	13, 2001					
			Pollutant								
	Di		Mobility								
Amakaa		sure Criteria	Criteria for								
Analyte	tor Soi	(mg/kg)	Soil (mg/kg)			Soil	Sample Con	centrations (ppm)		
	Residential	Industrial/ Commercial	CD Asse								TB-P/
Depth Below Grade (ft.)	Residential	Confinercial	GB Area	TB-L	TB-L	TB-L	TB-M	ТВ-О	TB-O	TB-O	MW-D
Department Grade (it.)				(2-4)	(5-6)	(10-12)	(0.5-1)	(0.5-2)	(5-7)	(10-12)	(0.5-1.5)
Total Metals											
Antimony	27	8,200	NA	4.1	NT	NT	NT	NT	NT	NT	NT
Arsenic	10	10	NA	62	11	ND<2.0	ND<2.0	36	7.1	2.6	ND<2.0
Barium	4,700	140,000	NA NA	23	NT	NT	NT	NT	NT	NT	NT
Beryllium	2	2	NA	3.2	NT	NT	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA	ND<1.0	NT	NT	NT	NT	NT	NT	NT
Chromium	100*	100°	NA	17	NT	NT	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	210	NT	NT	NT	NT	NT	NT	NT
Lead	500	1,000	NA	160	NT	NT	NT	NT	NT	NT	NT
Mercury	20	610	NA	0.93	NT	NT	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA	70	NT	NT	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	ND<1.0	NT	NT	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	130	NT	NT	NT	NT	NT	NT	NT
SPLP Metals											
Arsenic	NA	NA	0.5	ND<0.05	NT	NT	NT	ND<0.05	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	NA	NA	50.0	NT	NT	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	390	NT	NT	NT	NT	NT	NT	NT

Notes;

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	T		mpling Dates:	May 9, 10,	11, 14, and	15, 2001					
			Mobility								
	Direct Expo	sure Criteria	Criteria for								
Analyte		(mg/kg)	Soil (mg/kg)			Soil	Sample Con	centrations (·1		
		Industrial/	(gg/	TB-P/	TB-P/	TB-P/	TB-Q/	TB-Q/	TB-Q/	TB-R/	TD 04
	Residential	Commercial	GB Area	MW-D	MW-D	MW-D	MW-E	MW-E	MW-E	MW-F	TB-R/ MW-F
Depth Below Grade (ft.)				(2-4)	(5-7)	(10-12)	(2-4)	(8-10)	(10-12)	(0-2)	(2-4)
USEPA Method 8270 Polynuclear Aromatics										- (0 2)	(24)
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	NT	\	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT NT	NT	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT	NT NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT	+	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	NT	NT	NT NT
Chrysene	84	780	1	NT	NT	NT	NT	NT	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT ·	NT	NT	NT	NT	NT	NT NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	NT NT
. Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT	NT	NT NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	NT NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT	NT	NT NT
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT	NT	NT NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	ND<0.005	ND<0.005
tert-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	ND<0.005	
1,1-Dichloroethane	500	1,000	14	NT	NT	NT	NT	NT	NT	ND<0.005	
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT	ND<0.005	ND<0.005
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT	ND<0.005	ND<0.005
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	ND<0.005	
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	ND<0.005	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT	ND<0.005	ND<0.005
							***	141	141	[ND-0.003	ן פטטיטארועדן

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	1	- 02	Pollutant	1	1, 17, and	10, 2001			 · · · · · · · · · · · · · · · · · 		-
			Mobility								
	Direct Expo	sure Criteria	Criteria for								•
Analyte		(mg/kg)	Soil (mg/kg)			Soil S	Sample Con	entrations (nom)		
		Industrial/		TB-P/	TB-P/	TB-P/	TB-Q/	TB-Q/	TB-Q/	TB-R/	TB-R/
	Residential	Commercial	GB Area	MW-D	MW-D	MW-D	MW-E	MW-E	MW-E	MW-F	MW-F
Depth Below Grade (ft.)				(2-4)	(5-7)	(10-12)	(2-4)	(8-10)	(10-12)	(0-2)	(2-4)
Total Metals											
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT	NT	NT
Arsenic	10	10	NA	ND<2.0	7.4	ND<2.0	34	ND<2.0	ND<2.0	2.2	26
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Beryllium	2	2	NA	NT	NT	NT	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Chromium	100°	100*	NA	NT	NT	NT	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT	NT	NT
SPLP Metals					-						
Arsenic	NA_	_ NA	0.5	NT	NT	NT	0.09	NT	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	NA	NA	50.0	NT	NT	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	140	ND<50	NT	ND<50	ND<50

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Central Portion, New Haven, CT Sampling Dates: May 9, 10, 11, 14, and 15, 2001

		34	mpling Dates:	may 9, 10,	11, 14, and	15, 2001	 _				
	i		Mobility	1							
	Direct Expo	sure Criteria	Criteria for	1							
Analyte		(mg/kg)	Soil (mg/kg)	l		lio2	Sample Con		/\		
		Industrial/	- con (mgmg)	TB-R/	TB-R/	3011	Jampie Con	Centrations ((ppm)		1
	Residential	Commercial	GB Area	MW-F	MW-F	TB-S	TB-S	TB-S	TB-S	ТВ-Т	ТВ-Т
Depth Below Grade (ft.)				(5-7)	(10-12)	(0-1)	(2-3.3)	(5-7)	(10-12)	(0-2)	(2-4)
USEPA Method 8270 Polynuclear											
Aromatics					İ				1		
Acenaphthene	1,000	2,500	84	5.0	NT	NT	NT	ND<0.20	NT	. NT	NT
Acenaphthylene	1,000	2,500	84	2.0	NT	NT	NT	ND<0.20	NT	NT	NT
Anthracene	1,000	2,500	400	9.3	NT	NT	NT	ND<0.20	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	22	NT	NT	NT	1.4	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	25	NT	NT	NT	2.4	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	9.3	NT	NT	NT	1.7	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	8.7	NT	NT	NT	0.87	NT	NT	NT
Benzo[a]pyrene	1	1	1	17	NT	NT	NT	1.9	NT	NT	NT
Chrysene	84	780	1	21	NT	NT	NT	2.3	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	2.5	NT	NT	NT	0.49	NT	NT	NT
Fluoranthene	1,000	2,500	56	65	NT	NT	NT	1.7	NT	NT	NT
· Fluorene	1,000	2,500	56	7.6	NT	NT	NT	ND<0.20	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	9.6	NT	NT	NT	1.2	NT	NT	NT
Naphthalene	1,000	2,500	56	3.4	NT	NT	NT	ND<0.20	NT	NT	NT
Phenanthrene	1,000	2,500	40	71	NT	NT	NT	0.90	NT	NT	NT
Pyrene	1,000	2,500	40	57	NT	NT	NT	1.9	NT	NT	NT
USEPA Method 8260 Volatile											
Organic Compounds (VOCs)	1								1		
sec-Butylbenzene	500	1,000	14	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT
tert-Butylbenzene	500	1,000	14	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT
1,1-Dichloroethane	500	1,000	14	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	0.011	NT	NT
Ethylbenzene	500	1,000	10.1	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT
Isopropylbenzene	500	1,000	132	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT
Naphthalene	1,000	2,500	56	0.38	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT
n-Propylbenzene	500	1,000	14	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.005	NT	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.005	ND<0.005	NT	0.039	ND<0.005	0.023	NT	NT

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			Pollutant	, 0, 10,	11, 11, 41,4	10, 2001					
	1		Mobility	1							
	Direct Expo	sure Criteria	Criteria for	}							
Analyte	for Soi	l (mg/kg)	Soll (mg/kg)	Ŀ		Soil	Sample Con	centrations (npm)		
		Industrial/		TB-R/	TB-R/		T -	1	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	
	Residential	Commercial	GB Area	MW-F	MW-F	TB-S	TB-S	TB-S	TB-S	TB-T	ТВ-Т
Depth Below Grade (ft.)	 			(5-7)	(10-12)	(0-1)	(2-3.3)	(5-7)	(10-12)	(0-2)	(2-4)
Total Metals											
Antimony	27	8,200	NA	3.6	NT	NT	NT	ND<2.0	NT	NT	NIT
Arsenic	10	10	NA	60	43	23	50	19	19	2.7	NT 4.0
Barium	4,700	140,000	NA	28	NT	NT	NT	33	NT	NT NT	NT
Beryllium	2	2	NA	ND<1.0	NT	NT	NT	ND<1.0	NT	NT	NT
Cadmium	34	1,000	NA	ND<1.0	NT	NT	NT	ND<1.0	NT	NT	NT
Chromium	100°	100*	NA	10	NT	NT	NT	10	NT	NT	NT
Copper	2,500	76,000	NA	75	NT	NT	NT	82	NT	NT	NT
Lead	500	1,000	NA	880	NT	NT	NT	62	NT	NT	NT
Mercury	20	610	NA	4.4	NT	NT	NT	0.21	NT	NT	NT
Nickel	1,400	7,500	NA	7.8	NT	NT	NT	16	NT	NT	NT
Selenium	340	10,000	NA	5.4	NT	NT	NT	1.3	NT	NT	NT
Zinc	20,000	610,000	NA NA	28	NT	NT	NT	80	NT	NT	NT
SPLP Metals											
Arsenic	NA	NA	0.5	NT	NT	NT	ND<0.05	NT	NT	NT	ND -0.05
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT		ND<0.05
Zinc	NA	NA	50.0	NT	NT	NT	NT	NT	NT	NT NT	NT NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	7,500	710	260	ND<50	480	860	ND<50	ND<50

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

| ||||_e4

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			Pollutant	,,,,,,,	11, 17, and	10, 2001					-
1			Mobility								i
1	Direct Expo	sure Criteria	Criteria for	1							
Analyte		(mg/kg)	Soil (mg/kg)		<u>.</u>	Soil S	Sample Cond	centrations ((mgg)		
		Industrial/				TB-U/	TB-U/	TB-U/	TB-U/		<u> </u>
	Residential	Commercial	GB Area	ТВ-Т	тв-т	MW-G	MW-G	MW-G	MW-G	тв-v	TB-V
Depth Below Grade (ft.)	<u> </u>		<u> </u>	(5-7)	(10-12)	(1-3)	(3-5)	(5-7)	(10-12)	(0-2)	(2-4)
USEPA Method 8270 Polynuclear Aromatics											
Acenaphthene	1,000	2,500	84	NT	0.76	ND<0.20	NT	NT	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	0.55	ND<0.20	NT	NT	NT	NT	NT
Anthracene	1,000	2,500	400	NT	1.6	ND<0.20	NT	NT	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	5.7	ND<0.20	NT	NT	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	6.5	ND<0.20	NT	NT	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	3.2	ND<0.20	NT	NT	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	2.0	ND<0.20	NT	NT	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	4.8	ND<0.20	NT	NT	NT	NT	NT
Chrysene	84	780	1	NT	4.7	ND<0.20	NT	NT	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	0.74	ND<0.20	NT	NT	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	13	ND<0.20	NT	NT	NT	NT	NT
· Fluorene	1,000	2,500	56	NT	0.79	ND<0,20	NT	NT	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	2.9	ND<0.20	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	0.41	ND<0.20	NT	NT	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	4.7	ND<0.20	NT	NT	NT	NT	NT
Pyrene	1,000	2,500	40	NT	11	ND<0.20	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
tert-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethane	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT	NT	NT

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

			Pollutant	1	,,	10, 2001					
			Mobility	i							
	Direct Expo	sure Criteria	Criteria for								
Analyte	for Sol	l (mg/kg)	Soil (mg/kg)	1		Soil 5	Sample Con	centrations (nnm)		
	Desidentist	Industrial/				TB-U/	TB-U/	TB-U/	TB-U/		
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-T	TB-T	MW-G	MW-G	MW-G	MW-G	TB-V	TB-V
				(5-7)	(10-12)	(1-3)	(3-5)	(5-7)	(10-12)	(0-2)	(2-4)
Total Metals	<u> </u>										
Antimony	27	8,200	NA	NT	38	2.6	NT	NT	NT	NT	NT
Arsenic	10	10	NA	ND<2.0	3.5	11	10	7.1	5.0	ND<2.0	29
Barium	4,700	140,000	NA	NT	13	20	NT	NT	NT	NT	NT
Beryllium	2	2	NA	NT	ND<1.0	ND<1.0	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA	NT	ND<1.0	ND<1.0	NT	NT	NT	NT	NT
Chromium	100*	100*	NA	NT	7.5	6.8	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	150	25	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	57	11	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	1.8	ND<0.20	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	12	18	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	ND<1.0	1.4	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	70	15	NT	NT	NT	NT	NT
SPLP Metals											
Arsenic	NA	NA	0.5	NT	NT	ND<0.05	NT	NT	NT	NT	0.065
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	NT	0.065 NT
Zinc	NA	NA	50.0	NT	NT	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	300	ND<50	NT	NT	NT	NT	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Jillie 4

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	T		Pollutant	may 5, 10,	11, 17, and	13, 2001					
			Mobility								
	Direct Expo	sure Criteria	Criteria for								
Analyte		(mg/kg)	Soil (mg/kg)	}		Soil	Sample Con	centrations (nnm)		
		Industrial/			TB-W/	TB-W/	TB-W/	TB-W/	ppiny	Γ	
	Residential	Commercial	GB Area	TB-V	MW-H	MW-H	MW-H	MW-H	TB-X	TB-X	TB-X
Depth Below Grade (ft.)				(5-6.8)	(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	(2-4)	(5-7)
USEPA Method 8270 Polynuclear Aromatics											
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	NT	NT	NT	NT	\
Acenaphthylene	1,000	2,500	84	NT	NT	ND<0.20	NT	NT	NT	NT	NT NT
Anthracene	1,000	2,500	400	NT	NT	0.46	NT	NT	NT	NT NT	
Benzo[a]anthracene	1	7.8	1	NT	NT	1.2	NT	NT	NT	NT	NT NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	1.6	NT	NT	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	0.79	NT	NT	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	0.47	NT	NT	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	NT	1.0	NT	NT	NT	NT	NT
Chrysene	84	780	1	NT	NT	1.2	NT	NT	NT	NT	NT
Dibenz[a,h]anthracene	11	1	1	NT	NT	0.21	NT	NT	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	3.2	NT	NT	NT	NT	NT
Fluorene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	0.67	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	1.4	NT	NT	NT	NT	NT
Pyrene	1,000	2,500	40	NT	NT	2.9	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
sec-Butylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	0.035	ND<0.005	NT	NT	NT
tert-Butylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	0.0092	ND<0.005	NT	NT	NT
1,1-Dichloroethane	500	1,000	14	NT	ND<0.005	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT
Ethylbenzene	500	1,000	10.1	NT	ND<0.005	ND<0.005	0.0061	ND<0.005	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	ND<0.005	ND<0.005	0.040	ND<0.005	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	ND<0.005	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	0.037	ND<0.005	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.005	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Central Portion, New Haven, CT

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	1		Pollutant	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	i i, i i, allu	10, 2001					
	1		Mobility	Ī							
	Direct Expo	sure Criteria	Criteria for								
Analyte	for Soi	(mg/kg)	Soil (mg/kg)			Soil S	Sample Con	centrations ((mnm)		
		Industrial/			TB-W/	TB-W/	TB-W/	TB-W/	(РРШ)		
	Residential	Commercial	GB Area	TB-V	MW-H	MW-H	MW-H	MW-H	TB-X	TB-X	тв-х
Depth Below Grade (ft.)	<u> </u>			(5-6.8)	(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	(2-4)	(5-7)
Total Metals				 							
Antimony	27	8,200	NA	NT	NT	ND<2.0	NT	NT	NT	NT	NT
Arsenic	10	10	NA	3.3	2.7	6.9	3.4	5.8	ND<2.0	ND<2.0	ND<2.0
Barium	4,700	140,000	NA	NT	NT	31	NT	NT	NT NT	NT NT	NT
Beryllium	2	2	NA	NT	NT	ND<1.0	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA	NT	NT	ND<1.0	NT	NT	NT	NT	NT
Chromium	100°	100*	NA	NT	NT	11	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	54	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	31	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	1.0	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	7.9	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	1.1	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	51	NT	NT	NT	NT	NT
SPLP Metals	 	-									
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	ND<0.05	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT NT	NT	NT
Zinc	NA	NA	50.0	NT	NT	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2.522	0.500			-					
red oledin riyulucatbolis (CTETPR)	500	2,500	2,500	NT	NT	270	NT	NT	2,800	NT	NT

Notes;

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, Central Portion, New Haven, CT Sampling Dates: May 9, 10, 11, 14, and 15, 2001

<u> </u>	γ	Sa	mpling Dates:	may 9, 10,	11, 14, and	15, 2001					
			Mobility								
	Direct Expo	sure Criteria	Criteria for								
Analyte		(mg/kg)	Soli (mg/kg)	Ì		Soils	Sample Cond	rentratione	(nnm)		
		Industrial/	(3 3,			1	l	TB-Z/	TB-Z/	TB-Z/	TB-Z/
	Residential	Commercial	GB Area	TB-X	TB-Y	TB-Y	TB-Y	MW-I	MW-I	MW-l	MW-I
Depth Below Grade (ft.)				(7)	(0-2)	(2-4)	(5-7)	(0-2)	(2-4)	(5-7)	(10-12)
USEPA Method 8270 Polynuclear Aromatics	1										(13.13)
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	ND<0.20	NT	NT
Acenaphthylene ·	1,000	2,500	84	NT	NT	NT	NT	NT	ND<0.20	NT	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	ND<0.20	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	0.67	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	0.91	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	0.53	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	0.32	NT	NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	0.59	NT	NT
Chrysene	84	780	1	NT	NT	NT	NT	NT	0.62	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	ND<0.20	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	1.3	NT	NT
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.20	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	0.40	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.20	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	0.64	NT	NT
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	1.2	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
tert-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethane	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT	NT	NT

Sampling Dates: May 9, 10, 11, 14, and 15, 2001

	<u> </u>		Pollutant	11127 0, 10, 1	1, 17, 4114	13, 200 1					
			Mobility								
	Direct Eyno	sure Criteria	Criteria for								
Analyte		l (mg/kg)	Soil (mg/kg)	İ		9 - W 4			_		
7 1001/10	101 00.	Industrial/	Son (ing/kg)			50113	Sample Con	centrations (
	Residential	Commercial	GB Area	TB-X	TB-Y	TB-Y	TB-Y	TB-Z/ MW-I	TB-Z/	TB-ZJ	TB-ZI
Depth Below Grade (ft.)			0571100	(7)	(0-2)	(2-4)	(5-7)	(0-2)	MW-I (2-4)	MW-1 (5-7)	MW-I (10-12)
Total Metals								(0 = /	(2-4)	(3-1)	(10-12)
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	ND<2.0	NT	
Arsenic	10	10	NA	ND<2.0	6.7	ND<2.0	ND<2.0	2.1	ND<2.0	ND<2.0	NT 2.5
Barlum	4,700	140,000	NA	NT	NT	NT	NT NT	NT	23	ND-2.0	
Beryllium	2	2	NA	NT	NT	NT	NT	NT	ND<1.0	NT	NT NT
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	ND<1.0	NT	NT
Chromium	100°	100°	NA	NT	NT	NT	NT	NT	7.5	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	45	NT	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT	15	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT	0.24	NT	NT
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	7.8	NT	NT
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	ND<1.0	NT	NT
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	24	NT	NT
SPLP Metals											
Arsenic	NA	NA	0.5	NT	NT	ND<0.05	NT	ND<0.05	NT	NT	NT
Barium	NA	NA NA	10	NT	NT	NT	NT	NT NT	NT	NT	NT
Zinc	NA	NA	50.0	NT	NT	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500 ⁻	NT	NT	520	NT	NT	350	NT	NT

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Comparison of Soil Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-1, New Haven, CT

Sampling Date: May 2, 2001

Analyte		osure Criteria I (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soll Sampi	e Concentra	ations (ppm)		
	Residential	Industrial/ Commercial	GB	SS-N	SS-O	SS-P	SS-Q	SS-R	SS-S	SS-T
Depth Below Grade (ft.)			· ·	(0-1)	(0-0.5)	(0-0.5)	(0-0.5)	(0-0.5)	(0-0.5)	(0-0.5)
USEPA Method 8270 Polynuclear					1	(0 0.0)	(0 0.0)	(0-0.5)	(0-0.5)	(0-0.5)
Aromatic Hydrocarbons (PAHs)					j			1		
Acenaphthene	1,000	2,500	84	NT	ND<0.20	ND<0.20	ND<0.20	0.59	1.3	0.54
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	ND<0.20	ND<0.20	ND<0.20	0.78	ND<0.20
Anthracene	1,000	2,500	400	NT	ND<0.20	0.32	ND<0.20	1.4	3.1	1.5
Benzo[a]anthracene	1	7.8	1	NT	0.34	1.0	0.31	3.6	7.0	4.2
Benzo[a]pyrene	1	1	1	NT	0.29	0.76	0.23	2.7	5.6	3.3
Benzo[b]fluoranthene	1	7.8	1	NT	0.46	1.5	0.53	4.4	9.2	5.4
Benzo[g,h,i]perylene	1,000	2,500	42	NT	ND<0.20	0.55	0.22	1.2	2.6	1.5
Benzo[k]fluoranthene	8.4	78	1	NT	0.20	0.66	0.23	1.1	1.8	1.5
Chrysene	84	780	1	NT	0.34	1.2	0.39	3.4	6.5	3.9
Dibenz[a,h]anthracene	1	1	_ 1	NT	ND<0.20	ND<0.20	ND<0.20	0.27	0.66	0.42
Fluoranthene	1,000	2,500	56	NT	0.52	1.9	0.47	7.3	14	8.9
Fluorene	1,000	2,500	56	NT	ND<0.20	ND<0.20	ND<0.20	0.60	1.2	0.44
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	ND<0.20	0.54	ND<0.20	1.1	2.5	1.6
Naphthalene	1,000	2,500	56	NT	ND<0.20	ND<0.20	ND<0.20	ND<0.20	0.77	0.3
Phenanthrene	1,000	2,500	40	NT	0.33	1.9	0.49	6.9	13	7.2
Pyrene	1,000	2,500	40	NT	0.43	1.6	0.43	6.5	14	7.8
Connecticut Extractable Total										
Petroleum Hydrocarbons (CT ETPH)	500	2,500	2,500	3,200	ND<50	180	ND<50	130	230	450
Total Metals							 			
Arsenic	10	10	NA	12	37	270	48	65	99	62
Barium	4,700	140,000	NA NA	52	62	31	78	51	320	57
Cadmium	34	1,000	NA	1.4	1.3	1.2	ND<1.0	1.5	5.0	2.3
Chromium	100	100	NA	17	8.0	8.3	6.6	8.9	17	12
Lead	500	1,000	NA	470	120	160	160	140	1,700	280

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030
Table 5 Page 1 of 2

Lle 5

Comparison of Soil Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-1, New Haven, CT

Sampling Date: May 2, 2001

Analyte		osure Criteria I (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soil Sampl	e Concentra	itions (ppm)		
	Residential	Industrial/ Commercial	GB	SS-N	SS-O	SS-P	SS-Q	SS-R	SS-S	SS-T
Mercury	20	610	NA	1.4	ND<0.20	ND<0.20	ND<0.20	0.96	1.1	1.3
Selenium	340	10,000	NA	ND<1.0	ND<1.0	1.6	ND<1.0	ND<1.0	ND<1.0	ND<1.0
SPLP Metals ⁽¹⁾										
Arsenic	NA	NA	0.5	ND<0.05	ND<0.05	0.17	ND<0.05	ND<0.05	ND<0.05	ND<0.05
Barium	NA	NA	10	0.30	0.59	0.20	0.28	0.36	0.31	0.40
Mercury	NA	NA	0.02	ND<0.002	ND<0.002	ND<0.002	ND<0.002	ND<0.002		ND<0.002
Selenium	NA_	NA	0.5	ND<0.01	ND<0.01	0.015	ND<0.01	ND<0.01	ND<0.01	ND<0.01
USEPA Method 8082 Polychlorinated Biphenyis (PCBs)	1	· 10	NA	ND	ND	ND	ND	ND	ND	ND
USEPA Method 8260 Volatile Organic Compounds (VOCs)	NA	NA	NA	NT	ND	ND	ND	ND	ND	ND

Notes:

mg/kg = milligrams per kilogram.

ppm = parts per million (comparable to mg/kg).

ND = Not detected above laboratory minimum detection limit.

NC = No criterion established.

NT = Not tested.

NA = Not applicable.

(1) = Test performed on leachate from Synthetic Precipitation

Leaching Procedure (SPLP) or Toxicity Characteristic Leaching Procedure (TCLP).

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Bold results Indicate exceedances of RSR Numerical Criteria.

Table AOC-2.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: February 13, 2002

Analyte	· ·	osure Criteria (mg/kg)	Pollutant Mobility Criteria for Soli (mg/kg)			Soll Sampl	e Concentra	tions (ppm)		
	Residential	Industrial/ Commercial	GB Area	TB-XX	TB-XX	TB-XX	TB-XX	TB-XX	ТВ-ҮҮ	TB-YY
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(15-17)	(0-2)	(2-4)
USEPA Method 8270 Polynuclear Aromatic Hydorcarbons (PAHs)									(0 2)	(2-1)
Acenaphthene	1,000	2,500	84	ND<0.20	0.35	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Anthracene	1,000	2,500	400	ND<0.20	0.62	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Benzo[a]anthracene	1	7.8	1	ND<0.20	1.9	0.37	ND<0.20	NT	ND<0.20	0.66
Benzo[b]fluoranthene	11	7.8	1	ND<0.20	2.3	0.48	ND<0.20	NT	ND<0.20	0.63
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	1.3	0.30	ND<0.20	NT	ND<0.20	0.33
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	0.98	0.21	ND<0.20	NT	ND<0.20	0.31
Benzo[a]pyrene	1	1	1	ND<0.20	1.8	0.36	ND<0.20	NT	ND<0.20	0.54
Chrysene	84	780	1	ND<0.20	1.6	0.32	ND<0.20	NT	ND<0.20	0.53
Dibenz[a,h]anthracene	1	1	1	ND<0.20	0.29	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Fluoranthene	1,000	2,500	56	ND<0.20	4.4	0.50	0.29	NT	ND<0.20	1.03
Fluorene	1,000	2,500	56	ND<0.20	0.27	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	1.3	0.28	ND<0.20	NT	ND<0.20	0.34
Naphthalene	1,000	2,500	56	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Phenanthrene	1,000	2,500	40	ND<0.20	3.4	0.25	ND<0.20	NT	ND<0.20	0.479
Pyrene	1,000	2,500	40	ND<0.20	3.6	0.48	0.30	NT	ND<0.20	0.94
USEPA Method 8260 Volatile Organic Compounds (VOCs)	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Total Metals										
Arsenic	10	10	NA	1.6	ND<1.0	1.6	ND<1.0	ND<1.0	1.9	ND<1.0
Barium	4,700	140,000	NA	NT	16	NT	NT NT	NT	NT	19
Cadmium	34	1,000	NA	NT	0.55	NT	NT	NT	NT	ND<0.50
Chromium	100*	100*	NA	NT	4.5	NT	NT	NT	NT	4.2
Copper	2,500	76,000	NA	NT	23	NT	NT	NT	NT	21
Lead	500	1,000	NA	NT	33	NT	NT	NT	NT	25

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030b2
Table AOC-2.1 Page 1 of 4

T### 0C-2 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: February 13, 2002

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soil Sampl	e Concentra	tions (ppm)		
	Residential	Industrial/ Commercial	GB Area	TB-XX	TB-XX	TB-XX	TB-XX	TB-XX	TB-YY	TB-YY
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(15-17)	(0-2)	(2-4)
Nickel	1,400	7,500	NA	NT	4.3	NT	NT	NT	NT	4.1
Thallium	5.4	160	NA	NT	ND<2.0	NT	NT	NT	/ NT	ND<2.0
Vanadium	470	14,000	NA	NT	14	NT	NT	NT	NT	10
Zinc	20,000	610,000	NA	NT	31	NT	NT	NT	NT	22
SPLP Metals	-									
Barium	NA	NA	10	NT	0.41	NT	NT	NT	NT	0.42
Zinc	NA	NA	50	NT	0.22	NT	NT	NT	NT	0.19
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	220	ND<50	ND<50	NT	53	220

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Ta UC-2.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: February 13, 2002

Analyte		Direct Exposure Criteria for Soil (mg/kg) S				Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-YY	TB-YY	TB-ZZ	TB-ZZ	TB-ZZ	TB-ZZ	TB-ZZ	
Depth Below Grade (ft.)				(5-7)	(10-12)	(0-1.6)	(2.5-3.5)	(5-7)	(10-12)	(15-17)	
USEPA Method 8270 Polynuclear Aromatic Hydorcarbons (PAHs)											
Acenaphthene	1,000	2,500	84	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20	0.86	NT	
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	ND<0.20	0.21	ND<0.20	1.4	NT	
Anthracene	1,000	2,500	400	ND<0.20	ND<0.20	ND<0.20	0.41	ND<0.20	6.7	NT	
Benzo[a]anthracene	1	7.8	1	0.64	0.524	ND<0.20	2.7	0.25	16	NT	
Benzo[b]fluoranthene	1	7.8	1	0.87	0.81	ND<0.20	3.9	0.38	25	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	0.47	0.34	ND<0.20	1.3	ND<0.20	4.2	NT	
Benzo[k]fluoranthene	8.4	78	1	0.44	0.33	ND<0.20	1.4	ND<0.20	6.2	NT	
Benzo[a]pyrene	1	1	1	0.67	0.58	ND<0.20	3.1	0.29	19	NT	
Chrysene	84	780	1	0.54	0.56	ND<0.20	2.3	0.21	13	NT	
Dibenz[a,h]anthracene	1	1	1	ND<0.20	ND<0.20	ND<0.20	0.35	ND<0.20	1.5	NT	
Fluoranthene	1,000	2,500	56	1.00	0.79	ND<0.20	5.8	0.26	54	NT	
Fluorene	1,000	2,500	56	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20	1.7	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.46	0.34	ND<0.20	1.4	ND<0.20	5.0	NT	
Naphthalene	1,000	2,500	56	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20	0.30	NT	
Phenanthrene	1,000	2,500	40	0.49	0.25	ND<0.20	2.0	ND<0.20	17	NT	
Pyrene	1,000	2,500	40	0.90	0.83	ND<0.20	5.6	0.28	50	NT	
USEPA Method 8260 Volatile Organic Compounds (VOCs)	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	
Total Metals											
Arsenic	10	10	NA	1.0	1.3	1.9	1.3	1.5	1.2	ND<1.0	
Barium	4,700	140,000	NA	NT	NT	NT	26	NT	NT	NT	
Cadmium	34	1,000	NA	NT	NT	NT	0.74	NT	NT	NT	
Chromium	100*	100*	NA	NT	NT	NT	7.5	NT	NT	NT	
Copper	2,500	76,000	NA	NT	NT	NT	32	NT	NT	NT	
Lead	500	1,000	NA	NT	NT	NT	36	NT	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030b2

Table AOC-2.1 Page 3 of 4

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: February 13, 2002

Analyte		osure Criteria I (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sampl	Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-YY	TB-YY	TB-ZZ	TB-ZZ	TB-ZZ	TB-ZZ	TB-ZZ
Depth Below Grade (ft.)				(5-7)	(10-12)	(0-1.6)	(2.5-3.5)	(5-7)	(10-12)	(15-17)
Nickel	1,400	7,500	NA	NT	NT	NT	7.0	NT	NT	NT
Thallium	5.4	160	NA	NT	NT	NT	3.1	NT	NT	NT
Vanadium	470	14,000	NA	NT	NT	NT	23	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	NT	36	NT	NT	NT
SPLP Metals										
Barium	NA	NA	10	NT	NT	NT	0.37	NT	NT	NT
Zinc	NA	NA NA	50	NT	NT	NT	0.19	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	60	330	ND<50	180	ND<50	1,200	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

TallLOC-2.2

Comparison of Confirmatory Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

			ation, AUC-2,	11011 114101	, 01				
Analyte		sure Criteria I (mgkg)	Pollutant Mobility Criteria for Soil (mgkg)		(ppm)				
		Industrial		AOC2	AOC2	AOC2	AOC2		C2
	Residential	Commercial	GB Area	CS1	CS1	CS1	CS2		S2
Depth Below Grade (ft.)	<u> </u>			(0-2)	(2-4)	(5-7)	(0-2)	(2-	-4)
Sample Collection Date				1/30/02	1/30/02	1/30/02	3/12/02	1/30/02	3/12/02
USEPA Method 8270 Polynuclear Aromatics (PAHs)			-						
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	0.97	ND<0.20	ND<0.20	NT
Anthracene	1,000	2,500	400	ND<0.20	ND<0.20	0.41	ND<0.20	ND<0.20	NT
Benzo[a]anthracene	1	7.8	1	0.46	1.00	3.50	0.53	0.40	NT
Benzo[b]fluoranthene	1	7.8	1	0.68	1.70	5.80	0.75	0.71	NT
Benzo[g,h,i]perylene	1,000	2,500	42	0.31	0.56	1.50	0.40	0.22	NT
Benzo[k]fluoranthene	8.4	78	1	0.31	0.65	2.10	0.30	0.33	NT
Benzo[a]pyrene	1	_ 1	1	0.55	1.30	4.40	0.54	0.54	NT
Chrysene	84	780	1	0.37	0.90	3.20	0.48	0.35	NT
Dibenz[a,h]anthracene	1	1	1	ND<0.20	ND<0.20	0.44	ND<0.20	ND<0.20	NT
Fluoranthene	1,000	2,500	56	0.68	2.00	6.90	0.72	0.63	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.30	0.62	1.60	0.42	0.23	NT
Phenanthrene	1,000	2,500	40	0.27	0.81	2.10	0.29	0.24	NT
Pyrene	1,000	2,500	40	0.64	1.80	7.80	0.70	0.61	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)	NA	NA	NA	ND	NT	ND	ND	ND	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	NA	NA	NA	NT	NT	NT	ND	NT	ND
Connecticut Extractable Total Petroleum Hydrocarbons (ETPH)	500	2,500	2,500	ND<50	ND<50	71	NT	520	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above faboratory minimum detection limit.

NT = Not tested.

Comparison of Confirmatory Soll Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2. New Haven, CT

QLE LIGHTS I GLEGOTI, ACC-2, NEW HAVER, CT										
Analyte		sure Criteria I (mgkg)	Pollutant Mobility Criteria for Soil (mgkg)			Soil Sampl	e Concentra	tions (ppm)		
	5	Industrial)C2	AOC2	AOC2	AOC2	AOC2	AOC2
Don'th Dolon Cond. (6)	Residential	Commercial	GB Area		S2	CS3	CS3	CS4	CS4	CS4
Depth Below Grade (ft.)					-7)	(2-4)	(5-7)	(0-2)	(2-4)	(5-7)
Sample Collection Date				1/30/02	3/12/02	1/30/02	1/30/02	1/30/02	1/30/02	1/30/02
USEPA Method 8270 Polynuclear Aromatics (PAHs)			· · · ·							
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20
Anthracene	1,000	2,500	400	ND<0.20	NT	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20
Benzo[a]anthracene	1	7.8	1	0.72	NT	0.29	0.64	ND<0.20	0.61	0.59
Benzo[b]fluoranthene	1	7.8	1	1.40	NT	0.49	1.10	ND<0.20	1.20	1.20
Benzo[g,h,i]perylene	1,000	2,500	42	0.36	NT	ND<0.20	0.34	ND<0.20	0.29	0.31
Benzo[k]fluoranthene	8.4	78	1	0.65	NT	0.24	0.48	ND<0.20	0.48	0.52
Benzo[a]pyrene	1	1	1	0.93	NT	0.36	0.85	ND<0.20	0.79	0.82
Chrysene	84	780	1	0.67	NT	0.27	0.58	ND<0.20	0.57	0.55
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20
Fluoranthene	1,000	2,500	56	1,20	NT	0.47	0.87	ND<0.20	1.10	0.99
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.38	NT	ND<0.20	0.39	ND<0.20	0.33	0.34
Phenanthrene	1,000	2,500	40	0.31	NT	ND<0.20	0.29	ND<0.20	0.54	0.35
Pyrene	1,000	2,500	40	1.20	NT	0.44	0.98	ND<0.20	1.00	1.00
USEPA Method 8260 Volatile Organic Compounds (VOCs)	NA	ŅA	NA	NT	ND	NT	ND	NT	NT	ND
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	NA	NA	NA	NT	ND	NT_	NT	NT	NT ·	NT
Connecticut Extractable Total Petroleum Hydrocarbons (ETPH)	500	2,500	2,500	ND<50	NT	ND<50	55	ND<50	ND<50	50

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

Comparison of Confirmatory Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Analyte	•	sure Criteria I (mgkg)	Pollutant Mobility Criteria for Soil (mgkg)			Soil Sample	e Concentra	tions (ppm)		-
		Industrial		AOC2	AOC2	AOC2		C2		C2
Depth Below Grade (ft.)	Residential	Commercial	GB Area	CS5	CS5	CS6		S6		<u>S6</u>
Sample Collection Date				(2-4) 1/30/02	(5-7) 1/30/02	(0-0.25) 3/12/02	1/30/02	-2) 3/12/02	1/30/02	-4)
USEPA Method 8270 Polynuclear Aromatics (PAHs)										
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	NT	ND<0.20	NT	ND<0.20	NT
Anthracene	1,000	2,500	400	ND<0.20	ND<0.20	NT	ND<0.20	NT	ND<0.20	NT
Benzo[a]anthracene	11	7.8	1	0.34	0.57	NT	ND<0.20	NT	0.57	NT
Benzo[b]fluoranthene	1	7.8	1	0.62	1.00	NT	ND<0.20	NT	1.20	NT
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	0.27	NT	ND<0.20	NT	0.36	NT
Benzo[k]fluoranthene	8.4	78	1	0.30	0.56	NT	ND<0.20	NT	0.60	NT
Benzo[a]pyrene	1	1	1	0.40	0.77	NT	ND<0.20	NT	0.87	NT
Chrysene	84	780	1	0.28	0.51	NT	ND<0.20	NT	0.51	NT
Dibenz[a,h]anthracene	1	1	1	ND<0.20	ND<0.20	NT	ND<0.20	NT	ND<0.20	NT
Fluoranthene	1,000	2,500	56	0.55	0.86	NT	ND<0.20	NT	0.96	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	0.33	NT	ND<0.20	NT	0.35	NT
Phenanthrene	1,000	2,500	40	ND<0.20	0.31	NT	ND<0.20	NT	0.48	NT
Pyrene	1,000	2,500	40	0.51	0.91	NT	ND<0.20	NT	0.92	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)	NA	NA	NA	NT	ND	NT	NT	ND	ND_	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	NA	NA	NA	NT	NT	ND	NT	ND	NT	ND
Connecticut Extractable Total Petroleum Hydrocarbons (ETPH)	500	2,500	2,500	ND<50	56	NT	ND<50	NT	80	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

Comparison of Confirmatory Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2. New Haven, CT

Analyte		sure Criteria I (mgkg)	Pollutant Mobility Criteria for Soil (mgkg)	Soil Sample Concentrations (ppm)								
		Industrial			C2	AOC2	AOC2	AOC2	AOC2			
Depth Below Grade (ft.)	Residential	Commercial	GB Area		<u>56</u>	CS7	CS7	CS8	CS9			
Sample Collection Date					-7)	(2-4)	(5-7)	(7-7.5)	(7-7.5)			
Sample Conection Date	<u> </u>			1/30/02	3/12/02	1/30/02	1/30/02	1/30/02	1/30/02			
USEPA Method 8270 Polynuclear Aromatics (PAHs)												
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	0.20	ND<0.20	ND<0.20	ND<0.20			
Anthracene	1,000	2,500	400	ND<0.20	NT	0.37	ND<0.20	ND<0.20	ND<0.20			
Benzo[a]anthracene	1	7.8	11_	0.90	NT	1.10	0.91	0.26	0.46			
Benzo[b]fluoranthene	1	7.8	1	2.10	NT	2.00	1.90	0.59	0.96			
Benzo[g,h,i]perylene	1,000	2,500	42	0.45	NT	0.50	0.51	ND<0.20	0.25			
Benzo[k]fluoranthene	8.4	78	1	0.76	NT	1.10	0.72	0.33	0.51			
Benzo[a]pyrene	11	1	1	1.30	NT	1.50	1.40	0.43	0.66			
Chrysene	84	780	1	0.77	NT	0.92	0.80	0.23	0.41			
Dibenz[a,h]anthracene	1	11	1	ND<0.20	NT	ND<0.20	ND<0.20	ND<0.20	ND<0.20			
Fluoranthene	1,000	2,500	56	1.70	NT	2.10	1.70	0.39	0.69			
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.48	NT	0.61	0.55	ND<0.20	0.28			
Phenanthrene	1,000	2,500	40	0.67	NT	0.94	0.55	ND<0.20	0.28			
Pyrene	1,000	2,500	40	1.60	NT	2.10	1.80	0.41	0.73			
USEPA Method 8260 Volatile Organic Compounds (VOCs)	NA	NA	NA	ND	NT	ND	ND	ND	NT			
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	NA	NA	NA NA	NT	ND	NT	NT	NT	NT			
Connecticut Extractable Total Petroleum Hydrocarbons (ETPH)	500	2,500	2,500	130	NT	55	170	ND<50	ND<50			

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: July 18, 2001

Analyte		sure Criteria I (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-AAV MW-J	TB-AA/ MW-J	TB-AAV MW-J	TB-AA/ MW-J	TB-BB/ MW-K	TB-BB/ MW-K		
Depth Below Grade (ft.)	Trestaction	Commercial	OBAICE	(0-2)	(2-4)	(5-6.5)	(10-12)	(0-2)	(2-4)		
USEPA Method 8270 Polynuclear Aromatics											
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	ND<0.2	ND<0.2		
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	ND<0.2	ND<0.2		
Anthracene	1,000	2,500	400	NT	NT	NT	NT	ND<0.2	ND<0.2		
Benzo[a]anthracene	1	7.8	11	NT	NT	NT	NT	0.39	0.65		
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	0.45	0.91		
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	0.38	0.55		
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	ND<0.2	0.48		
Benzo(a)pyrene	1	1	1	NT	NT	NT	NT	0.39	0.73		
Chrysene	84	780	1	NT	NT	NT	NT	0.24	0.39		
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	ND<0.2	ND<0.2		
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	0.52	1.1		
Fluorene	1,000	2,500	56	NT	NT _	NT	NT	ND<0.2	ND<0.2		
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	0.36	0.51		
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.2	ND<0.2		
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	0.21	0.48		
Pyrene	1,000	2,500	40	NT	NT	NT	NT	0.52	0.80		
Total Metals											
Arsenic	10	10	NA	1.7	1,1	ND<1.0	1.0	1.1	1.2		
Barium	4,700	140,000	NA	62	120	27	20	38	41		
Cadmium	34	1,000	NA	0.82	0.59	0.69	ND<0.50	0.55	0.53		
Chromium	100*	100*	NA	18	8.0	10	5.8	11	10		
Copper	2,500	76,000	NA	27	23	39	23	36	30		
Lead	500	1,000	NA	8.8	28	30	36	35	42		

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: July 18, 2001

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial		TB-AA/	TB-AA/	TB-AA/	TB-AA/	TB-BB/	TB-BB/		
Double Date of the Control	Residential	Commercial	GB Area	MW-J	L-WM	L-WM	L-WM	MW-K	MW-K		
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-6.5)	(10-12)	(0-2)	(2-4)		
Nickel	1,400	7,500	NA	16	6.6	12	5.2	8.0	7.6		
Silver	340	10,000	NA	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
Zinc	20,000	610,000	NA	37	41	38	35	39	47		
SPLP Metals								•			
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	NT		
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT		
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	230	520		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.
= Concentration exceeds associated criterion.

Table AOC-24

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: July 18, 2001

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-BB/ MW-K	TB-BB/ MW-K	TB-CC	TD CC	TD 00	70.00		
Depth Below Grade (ft.)			GEACA	(5-5.9)	(10-12)	(0-2)	TB-CC (2-4)	TB-CC (5-7)	TB-CC (10-12)		
USEPA Method 8270 Polynuclear Aromatics						(5.27	(2 +)	(5-7)	(10-12)		
Acenaphthene	1,000	2,500	84	ND<0.2	ND<0.2	NT	ND<0.2	ND<0.2	NT		
Acenaphthylene	1,000	2,500	84	0.25	ND<0.2	NT	ND<0.2	ND<0.2	NT		
Anthracene	1,000	2,500	400	0.41	ND<0.2	NT	ND<0.2	ND<0.2	NT		
Benzo[a]anthracene	1	7.8	1	1.6	0.47	NT	0.53	1.0	NT		
Benzo[b]fluoranthene	1	7.8	1	1.8	0.59	NT	0.68	1.5	NT		
Benzo[g,h,i]perylene	1,000	2,500	42	0.81	0.58	NT	0.45	0.89	NT		
Benzo[k]fluoranthene	8.4	78	1	0.76	0.31	NT	0.33	0.58	NT		
Benzo[a]pyrene	1	1	1	1.8	0.54	NT	0.61	1.2	NT		
Chrysene	84	780	1	1.0	0.28	NT	0.25	0.62	NT		
Dibenz[a,h]anthracene	1	1	1	0.26	ND<0.2	NT	ND<0.2	0.27	NT		
Fluoranthene	1,000	2,500	56	4.2	0.67	NT	0.89	1.8	NT		
Fluorene	1,000	2,500	56	ND<0.2	ND<0.2	NT	ND<0.2	ND<0.2	NT		
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.84	0.41	NT	0.40	0.80	NT		
Naphthalene	1,000	2,500	56	ND<0.2	ND<0.2	NT	ND<0.2	ND<0.2	NT		
Phenanthrene	1,000	2,500	40	0.96	0.26	NT	0.43	0.65	NT		
Pyrene	1,000	2,500	40	5.0	0.64	NT	0.57	1.8	NT		
Total Metals											
Arsenic	10	10	NA	ND<1.0	1.0	1.5	1.0	1.6	1.1		
Barium	4,700	140,000	NA	42	50	41	33	41	32		
Cadmium	34	1,000	NA	0.56	ND<0.50	0.56	0.53	0.76	ND<0.50		
Chromium	100°	100*	NA	10	11	8.9	9.4	11	7.3		
Copper	2,500	76,000	NA	31	24	94	35	34	27		
Lead	500	1,000	NA	28	29	29	45	39	37		

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, AOC-2, New Haven, CT

Sampling Date: July 18, 2001

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industria!/ Commercial	CD A	TB-BB/	TB-BB/						
Depth Below Grade (ft.)		Commercial	GB Area	MW-K (5-5.9)	MW-K (10-12)	TB-CC (0-2)	TB-CC (2-4)	TB-CC (5-7)	TB-CC (10-12)		
Nickel	1,400	7,500	NA	8.1	7.6	7.8	7.7	8.7	6.0		
Silver	340	10,000	NA	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
Zinc	20,000	610,000	NA	31	37	38	55	42	35		
SPLP Metals											
Arsenic	NA	NA	0.5	NT	NT	NT	ND<0.05	NT	NT		
Barium	NA	NA	10	NT	NT	NT	0.37	NT	NT		
Zinc	NA	NA	50	NT	NT	NT	0.18	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	790	140	NT	270	210	NT		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tall Loc-2.4

Comparison of Test Boring Soll Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: July 18, 2001

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-DD	TB-DD	TB-DD	TB-DD	TB-EE	TB-EE		
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-6)	(10-12)	(0-2)	(2-4)		
USEPA Method 8270 Polynuclear Aromatics											
Acenaphthene	1,000	2,500	84	ND<0.2	ND<0.2	ND<0.2	NT	NT	8.3		
Acenaphthylene	1,000	2,500	84	ND<0.2	ND<0.2	ND<0.2	NT	NT	2.6		
Anthracene	1,000	2,500	400	ND<0.2	ND<0.2	ND<0.2	NT	NT	20		
Benzo[a]anthracene	11	7.8	1	ND<0.2	0.48	0.98	NT	NT	17		
Benzo[b]fluoranthene	1	7.8	1	ND<0.2	0.73	2.6	NT	NT	60		
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.2	0.50	1.2	NT	NT	6.0		
Benzo[k]fluoranthene	8.4	78	1	ND<0.2	0.36	0.98	NT	NT	16		
Benzo[a]pyrene	1	1	1	ND<0.2	0.64	2.0	NT	NT	35		
Chrysene	84	780	1	ND<0.2	0.26	0.52	NT	NT	19		
Dibenz[a,h]anthracene	1	1	1	ND<0.2	ND<0.2	0.32	NT	NT	2.8		
Fluoranthene	1,000	2,500	56	ND<0.2	0.76	1.6	NT	NT	64		
Fluorene	1,000	2,500	56	ND<0.2	ND<0.2	ND<0.2	NT	NT	10		
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.2	0.42	1.1	NT	NT	7.6		
Naphthalene	1,000	2,500	56	ND<0.2	ND<0.2	ND<0.2	NT	NT	0.55		
Phenanthrene	1,000	2,500	40	ND<0.2	0.55	0.29	NT	NT	70		
Pyrene	1,000	2,500	40	ND<0.2	0.64	1.9	NT	NT	54		
Total Metals	·										
Arsenic	10	10	NA	1.5	ND<1.0	1.1	1.2	1.5	ND<1.0		
Barium	4,700	140,000	NA	47	30	30	37	49	41		
Cadmium	34	1,000	NA	0.77	0.58	ND<0.50	ND<0.50	0.77	0.55		
Chromium .	100*	100°	NA	18	8.5	9.7	9.0	20	11		
Copper	2,500	76,000	NA	27	30	30	27	24	27		
Lead	500	1,000	NA	8.0	34	41	44	8.8	19		

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: July 18, 2001

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-DD	TB-DD	TB-DD	TB-DD	TB-EE	TB-EE		
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-6)	(10-12)	(0-2)	(2-4)		
Nickel	1,400	7,500	NA	17	6.4	8.5	6.9	17	8.8		
Silver	340	10,000	NA	ND<2.0	ND<2.0	3.3	ND<2.0	ND<2.0	ND<2.0		
Zinc	20,000	610,000	NA	38	42	44	43	39	38		
SPLP Metals	 			<u> </u>			<u> </u>				
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	NT		
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT		
Zinc	NA_	NA	50	NT	NT	NT	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	220	310	NT	NT	NT		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tall OC-2.4

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: July 18, 2001

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	TB-EE	TB-EE	TB-FF	TB-FF	TD 55	TD 00			
Depth Below Grade (ft.)	113312311421		057404	(5-7)	(10-11)	(0-2)	(2-4)	TB-FF (5-7)	TB-GG (0-2)			
USEPA Method 8270 Polynuclear Aromatics								(5.1)				
Acenaphthene	1,000	2,500	84	ND<0.2	ND<0.2	NT	NT	ND<0.2	NT			
Acenaphthylene	1,000	2,500	84	ND<0.2	ND<0.2	NT	NT	0.21	NT			
Anthracene	1,000	2,500	400	ND<0.2	ND<0.2	NT	NT	ND<0.2	NT			
Benzo[a]anthracene	1	7.8	1	0.60	1.0	NT	NT	0.99	NT			
Benzo[b]fluoranthene	1	7.8	1	0.92	1.7	NT	NT	1.7	NT			
Benzo[g,h,i]perylene	1,000	2,500	42	0.46	0.72	NT	NT	0.94	NT			
Benzo[k]fluoranthene	8.4	78	1	0.44	0.86	NT	NT	0.74	NT			
Benzo[a]pyrene	1	1	1	0.55	1.0	NT	NT	1.4	NT			
Chrysene	84	780	1	0.25	0.56	NT	NT	0.64	NT			
Dibenz[a,h]anthracene	1	1	1	ND<0.2	0.23	NT	NT	0.23	NT			
Fluoranthene	1,000	2,500	56	0.74	1.6	NT	NT	1.3	NT			
Fluorene	1,000	2,500	56	ND<0.2	ND<0.2	NT	NT	ND<0.2	NT			
Indeno[1,2,3-cd]pyrene	1	7.8	11	0.42	0.77	NT	NT	0.85	NT			
Naphthalene	1,000	2,500	56	ND<0.2	ND<0.2	NT	NT	ND<0.2	NT			
Phenanthrene	1,000	2,500	40	ND<0.2	0.44	NT	NT	0.26	NT			
Pyrene	1,000	2,500	40	0.80	1.7	NT	NT	1.7	NT			
Total Metals	· · ·			<u> </u>								
Arsenic	10	10	NA	ND<1.0	ND<1.0	1.5	ND<1.0	1.0	2.6			
Barium	4,700	140,000	NA	37	31	51	36	36	41			
Cadmium	34	1,000	NA	0.60	ND<0.50	0.82	0.53	0.55	1.1			
Chromium	100*	100*	NA ·	9.9	6.4	21	7.2	8.4	39			
Copper	2,500	76,000	NA	30	15	27	22	28	31			
Lead	500	1,000	NA	33	15	7.4	30	59	6,1			

Table 40C-2.4

Comparison of Test Boring Soll Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: July 18, 2001

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-EE	TB-EE	TB-FF	TB-FF	TB-FF	TB-GG		
Depth Below Grade (ft.)				(5-7)	(10-11)	(0-2)	(2-4)	(5-7)	(0-2)		
Nickel	1,400	7,500	NA	7.6	5.0	16	6.1	7.1	22		
Silver	340	10,000	NA	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
Zinc	20,000	610,000	NA	220	22	39	34	38	42		
SPLP Metals	 										
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	NT		
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT		
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, AOC-2, New Haven, CT

Sampling Date: July 18, 2001

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	TB-GG	TR CC	TD (11)	70.00					
Depth Below Grade (ft.)	resideritial	Commercial	GBAlea	(2-4)	TB-GG (5-7)	TB-HH (0-2)	TB-HH (2-4)	TB-HH (5-7)	TB-HH (10-12)			
USEPA Method 8270 Polynuclear Aromatics									(10.12)			
Acenaphthene	1,000	2,500	84	ND<0.2	NT	ND<0.2	ND<0.2	ND<0.2	ND<0.2			
Acenaphthylene	1,000	2,500	84	ND<0.2	NT	ND<0.2	ND<0.2	ND<0.2	ND<0.2			
Anthracene	1,000	2,500	400	ND<0.2	NT	ND<0.2	ND<0.2	ND<0.2	ND<0.2			
Benzo[a]anthracene	1	7.8	1	0.65	NT	0.36	0.39	0.59	0.22			
Benzo[b]fluoranthene	1	7.8	1	1.0	NT	0.51	0.71	1.3	0.29			
Benzo[g,h,i]perylene	1,000	2,500	42	0.54	NT	0.21	0.41	0.95	ND<0.2			
Benzo[k]fluoranthene	8.4	78	1	0.58	NT	0.33	0.37	0.73	ND<0.2			
Benzo[a]pyrene	1	1	1	0.91	NT	0.46	0.41	1.0	0.39			
Chrysene	84	780	1	0.42	NT	0.22	0.25	0.31	ND<0.2			
Dibenz[a,h]anthracene	1	1	1	0.21	NT	ND<0.2	ND<0.2	ND<0.2	ND<0.2			
Fluoranthene	1,000	2,500	56	1.4	NT	0.72	0.59	0.74	ND<0.2			
Fluorene	1,000	2,500	56	ND<0.2	NT	ND<0.2	ND<0.2	ND<0.2	ND<0.2			
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.56	NT	0.29	0.38	0.86	ND<0.2			
Naphthalene	1,000	2,500	56	ND<0.2	NT	ND<0.2	ND<0.2	ND<0.2	ND<0.2			
Phenanthrene	1,000	2,500	40	0.53	NT	0.87	0.36	0.26	ND<0.2			
Pyrene	1,000	2,500	40	0.84	NT	0.51	0.50	0.59	0.24			
Total Metals	1	_						 	<u> </u>			
Arsenic	10	10	NA	1.4	1.7	1.1	1.5	1.6	ND<1.0			
Barium	4,700	140,000	NA	44	40	42	38	33	37			
Cadmium	34	1,000	NA	0.56	0.65	0.57	0.61	0.53	ND<0.50			
Chromium	100*	100*	NA	8.7	10	12	19	8.8	7.5			
Copper	2,500	76,000	NA	28	43	26	31	35	18			
Lead	500	1,000	NA	29	39	24	23	43	16			

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, AOC-2, New Haven, CT Sampling Date: July 18, 2001

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-GG	TB-GG	ТВ-НН	тв-нн	Тв-нн	тв-нн		
Depth Below Grade (ft.)				(2-4)	(5-7)	(0-2)	(2-4)	(5-7)	(10-12)		
Nickel	1,400	7,500	NA	8.1	14	8.7	8.8	7.7	5.6		
Silver	340	10,000	NA	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
Zinc	20,000	610,000	NA	42	86	34	41	44	31		
SPLP Metals			-					 	-		
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	NT		
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT		
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	130	230	710		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate

Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Table YY Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Southwest Portion, New Haven, CT Sampling Date: February 13, 2002

			Pollutant	<u> </u>						
	•	sure Criteria	Mobility Criteria for							
Analyte	for Soil	(mg/kg)	Soil (mg/kg)			Soil Sampl	e Concentrat	lons (ppm)	· · · · · · · · · · · · · · · · · · ·	
	Residential	Industrial/ Commercial	OD 1		TD 444 .					_
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-AAA	TB-AAA	TB-AAA	TB-AAA	TB-AAA	TB-BBB	TB-BBB
				(0-2)	(2-4)	(5-7)	(10-12)	(15-17)	(1-3)	(3-5)
USEPA Method 8270 Polynuclear										
Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Anthracene	1,000	2,500	400	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	ND<0,20	ND<0.20
Benzo[a]anthracene	1	7.8	1	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	0.91	ND<0.20
Benzo[b]fluoranthene	1	7.8	1	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	1.33	ND<0.20
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	0.24	ND<0.20
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	0.51	ND<0.20
Benzo[a]pyrene	1	1	1	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	0.74	ND<0.20
Chrysene	84	780	1	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	0.92	ND<0.20
Dibenz[a,h]anthracene	1	1	1	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Fluoranthene	1,000	2,500	56	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	1,0	ND<0.20
Fluorene	1,000	2,500	56	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	0.30	ND<0.20
Naphthalene	1,000	2,500	56	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	ND<0,20	ND<0.20
Phenanthrene	1,000	2,500	40	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	0.37	ND<0.20
Pyrene	1,000	2,500	40	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	0.88	ND<0.20
USEPA Method 8082 Polychlorinated						 				
Biphenyls (PCBs)										
PCB-1260	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	ND<0.50	15
SPLP PCBs										
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT	0.00074
USEPA Method 8260 Volatile								- i.		<u> </u>
Organic Compounds (VOCs)									<u> </u>	
4-Isopropyltoluene	500	1,000	41.8	NT	NT	0.0075	NT	NT	NT	NT

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Southwest Portion, New Haven, CT

Sampling Date: February 13, 2002

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soll (mg/kg)			Soil Sample	e Concentrat	lons (ppm)		
	Residential	Industrial/ Commercial	GB Area	TB-AAA	TB-AAA	TB-AAA	TB-AAA	TB-AAA	TB-BBB	тв-ввв
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(15-17)	(1-3)	(3-5)
SPLP Metals										
Bartum	NA	NA	10	0.50	NT	NT	NT	NT	0.35 -	NT
Lead	NA	NA	0.15	ND<0.013	NT	NT	NT	NT	ND<0.013	NT
Vanadium	NA	NA	0.50	ND<0.05	NT	NT	NT	NT	ND<0.05	NT
Zinc	NA	NA	50	0.20	NT	NT	NT	NT	0.26	NT
Total Metals	 									
Arsenic	10	10	NA	ND<1.0	ND<1.0	3.4	5.9	4.2	17	ND<1.0
Barium	4,700	140,000	NA	19	NT	NT	NT	NT	34	NT
Cadmium	34	1,000	NA	ND<0.50	NT	NT	NT	NT	1.4	NT
Chromium	100°	100°	NA	3.5	NT	NT	NT	NT	5.8	NT
Copper	2,500	76,000	NA	5.2	NT	NT	NT	NT	40	NT
Lead	500	1,000	NA	43	NT	NT	NT	NT	58	NT
Mercury	20	610	NA	ND<0.20	NT	NT	NT	NT	0.61	NT
Nickel	1,400	7,500	NA	2.4	NT	NT	NT	NT	7.3	NT
Thallium	5.4	160	NA	ND<2.0	NT	NT	NT	NT	5.1	NT
Vanadium	470	14,000	NA	6.4	NT	NT	NT	NT	11	NT
Zinc	20,000	610,000	NA	13	NT	NT	NT	NT	35	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	ND<50	ND<50	ND<50	NT	ND<50	210
RSR Pesticides/Herbicides	NA	NA	NA	NT	NT	NT	, NT	NT	NT	NT

Notes:

mg/kg= milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

RSR = Remediation Standard Regulations.

SPLP Test performed on leachate from Synthetic Precipitation Leachate

= Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

HHIII YY

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Southwest Portion, New Haven, CT

Sampling Date: February 13, 2002

Analyte	Poliutant Mobility Direct Exposure Criteria Criteria for for Soil (mg/kg) Soil Sample Concentration							lions (ppm)		
	Residential	Industrial/ Commercial	CD Assa	TO DOD	*** ****					
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-BBB (5-7)	TB-BBB (10-13)	TB-CCC (0-2)	TB-CCC (2-2.5)	TB-CCC (5-7)	TB-CCC	TB-DDD
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)				(0.7)	(10 10)	(0-2)	(2-2.5)	(3-1)	(10-13)	(0-2)
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	NT	ND<0.20	ND<0.20	ND<0.20
Acenaphthylene	1,000	2,500	84	NT	NT	ND<0.20	NT	ND<0.20	ND<0.20	ND<0.20
Anthracene	1,000	2,500	400	NT	NT	ND<0.20	NT	ND<0.20	ND<0.20	ND<0.20
Benzo[a]anthracene	1	7.8	1	NT	NT	0.52	NT	ND<0.20	ND<0.20	0.83
Benzo[b]fluoranthene	1	7.8	1	NT	NT	0.70	NT	ND<0.20	0.21	1.43
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	0.21	NT	ND<0.20	ND<0.20	0.28
Benzo[k]fluoranthene	8.4	78	1	NT	NT	0.35	NT	ND<0.20	ND<0.20	0.28
Benzo[a]pyrene	1	1	1	NT	NT	0.47	NT	ND<0.20	ND<0.20	0.83
Chrysene	84	780	1	NT	NT	0.50	NT	ND<0.20	ND<0.20	0.83
Dibenz[a,h]anthracene	1	1	1	NT	NT	ND<0.20	NT	ND<0.20	ND<0.20	ND<0.20
Fluoranthene	1,000	2,500	56	NT	NT	0.87	NT	ND<0.20	0.23	1.4
Fluorene	1,000	2,500	56	NT	NT	ND<0.20	NT	ND<0.20	ND<0.20	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	ND<0.20	NT	ND<0.20	ND<0.20	0.34
Naphthalene	1,000	2,500	56	NT	NT	ND<0.20	NT	ND<0.20	ND<0.20	0.80
Phenanthrene	1,000	2,500	40	NT	NT	0.69	NT	ND<0.20	ND<0.20	0.67
Pyrene	1,000	2,500	40	NT	NT	0.73	NT	ND<0.20	0.31	1.3
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)										
PCB-1260	1	10	NA	15	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs										
PCB-1260	NA	NA	0.005	0.00072	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
4-Isopropyltoluene	500	1,000	41.8	ND<0.005	NT	NT	NT NT	NT	NT	NT

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Southwest Portion, New Haven, CT Sampling Date: February 13, 2002

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soll (mg/kg)			Soll Sample	Concentrat	ions (nnm)		
	Residential	Industrial/ Commercial	GB Area	TB-BBB	TB-BBB	TB-CCC	TB-CCC	TB-CCC	TD 000	
Depth Below Grade (ft.)	710014671444	- Committee	OBAlea	(5-7)	(10-13)	(0-2)	(2-2.5)	(5-7)	TB-CCC (10-13)	(0-2)
SPLP Metals										
Barium	NA	NA .	10	NT	NT	0.32	NT	NT	NT	NT
Lead	NA NA	NA	0.15	NT	NT	ND<0.013	NT	NT	NT	NT
Vanadium	NA	NA NA	0,50	NT	NT	ND<0.05	NT	NT	NT	NT
Zinc	NA	NA	50	NT	NT	0.49	NT	NT	NT	NT
Total Metals							-			
Arsenic	10	10	NA	5.6	5.4	36	21	11	4.5	29
Barlum	4,700	140,000	NA	NT	NT	44	NT	NT	NT	NT
Cadmium	34	1,000	NA	NT	NT	0.81	NT	NT	NT	NT
Chromium	100°	100°	NA	NT	NT	4.8	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	47	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	57	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	0.84	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	7.3	NT	NT	NT	NT
Thallium	5.4	160	NA	NT	NT	2.5	NT	NT	NT	NT
Vanadium	470	14,000	NA	NT	NT	14	NT	NT	NT	NT
Zinc	20,000	610,000	NA_	NT	NT	76	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	1,100	ND<50	ND<50	NT	ND<50	ND<50	ND<50
RSR Pesticides/Herbicides	NA	NA	NA NA	NT	NT	ND	NT	NT	NT	ND

Notes:

mg/kg= milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

RSR = Remediation Standard Regulations.

SPLP Test performed on leachate from Synthetic Precipitation Leachate

= Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

THEYY

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Southwest Portion, New Haven, CT Sampling Date: February 13, 2002

Analyte	_	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soil Sample	e Concentra	tions (ppm)		
	Residential	Industrial/ Commercial	GB Area	TB-DDD	TB-DDD	TB-DDD	TB-EEE	TB-EEE	TB-EEE	TB-EEE
Depth Below Grade (ft.)				(2-4)	(5-7)	(10-12)	(1-3)	(3-5)	(5-7)	(10-12)
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									<u>-</u>	
Acenaphthene	1,000	2,500	84	ND<0.20	0.51	ND<0.20	ND<0.20	ND<0.20	NT	NT
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	NT
Anthracene	1,000	2,500	400	ND<0.20	1.0	ND<0.20	ND<0.20	ND<0.20	NT	NT
Benzo[a]anthracene	1	7.8	1	ND<0.20	2.3	0.43	0.21	ND<0.20	NT	NT
Benzo[b]fluoranthene	1	7.8	1	0.26	2.6	0.52	0.33	ND<0.20	NT	NT
Benzo(g,h,i)perylene	1,000	2,500	42	ND<0.20	0.51	ND<0.20	ND<0.20	ND<0.20	NT	NT
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	1.1	0.26	ND<0.20	ND<0.20	NT	NT
Benzo[a]pyrene	1	1	1	ND<0.20	2.1	0.41	0.22	ND<0.20	NT	NT
Chrysene	84	780	1	ND<0.20	1.9	0.39	ND<0.20	ND<0.20	NT	NT
Dibenz[a,h]anthracene	1	1	1	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20	NT	NT
Fluoranthene	1,000	2,500	56	0.32	6.2	0.62	0.34	ND<0.20	NT	NT
Fluorene	1,000	2,500	56	ND<0.20	0.59	ND<0.20	ND<0.20	ND<0.20	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	0.64	ND<0.20	ND<0.20	ND<0.20	NT	NT
Naphthalene	1,000	2,500	56	ND<0.20	0.52	ND<0.20	ND<0.20	ND<0.20	NT	NT
Phenanthrene	1,000	2,500	40	ND<0.20	5.1	0.30	ND<0.20	ND<0.20	NT	NT
Pyrene	1,000	2,500	40	0.31	5.1	0.69	0.34	ND<0.20	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)			-							
PCB-1260	11	10	NA NA	NT	NT	NT	NT	NT	NT	NT
SPLP PCBs										
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
4-1sopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	NT	NT

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Southwest Portion, New Haven, CT

Sampling Date:	February 13, 2	2002
----------------	----------------	------

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Sall Samul	• Composite	dana (num)	•	
ratalyto	10, 00,	Industrial/	Con (mg/kg)			Son Sampi	e Concentrat	ions (ppm)		
	Residential	Commercial	GB Area	TB-DDD	TB-DDD	TB-DDD	TB-EEE	TB-EEE	TB-EEE	TB-EEE
Depth Below Grade (ft.)				(2-4)	(5-7)	(10-12)	(1-3)	(3-5)	(5-7)	(10-12)
SPLP Metals										
Barium	NA	NA NA	10	0.40	NT	NT	0.46	NT	NT	NT
Lead	NA	NA NA	0.15	0.02	NT	NT	ND<0.013	NT	NT	NT
Vanadium	NA	NA NA	0.50	ND<0.05	NT	NT	ND<0.05	NT	NT	NT
Zinc	NA	NA NA	50	0.18	NT	NT	0.31	NT	NT	NT
Total Metals										
Arsenic	10	10	NA	4.2	12	22	3.5	3.5	3.8	5.8
Barium	4,700	140,000	NA	35	NT	NT	22	NT	NT	NT
Cadmium	34	1,000	NA	0.97	NT	NT	0.94	NT	NT	NT
Chromium	100°	100°	NA	10	NT	NT	11	NT	NT	NT
Copper	2,500	76,000	NA	15	NT	NT	20	NT	NT	NT
Lead	500	1,000	NA	94	NT	NT	15	NT	NT	NT
Mercury	20	610	NA	0.55	NT	NT	ND<0.20	NT	NT	NT
Nickel	1,400	7,500	NA	6.2	NT	NT	6.8	NT	NT	NT
Thallium	5.4	160	NA	2.8	NT	NT	3.2	NT	NT	NT
Vanadium	470	14,000	NA	16	NT	NT	15	NT	NT	NT
Zinc	20,000	610,000	NA	40	NT	NT	26	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	ND<50	NT	ND<50	ND<50	NT	NT
RSR Pesticides/Herbicides	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

RSR = Remediation Standard Regulations.

SPLP Test performed on leachate from Synthetic Precipitation Leachate

= Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

₩|| ΥΥ

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Southwest Portion, New Haven, CT Sampling Date: February 13, 2002

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-FFF	TB-FFF	TB-FFF				
Depth Below Grade (ft.)	T CO CO CO CO CO CO CO CO CO CO CO CO CO	Commercial	OD Alea	(0-2)	(2-4)	(5-7)	TB-FFF (10-12)	TB-GGG (0-1.2)	TB-GGG (2-4)	TB-GGG
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)							(10-12)	(0-1.2)	(24)	(5-7)
Acenaphthene	1,000	2,500	84	ND<0.20	ND<0.20	5.5	2.6	ND<0.20	ND<0.20	ND<0.20
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	0.37	0.40	ND<0.20	ND<0.20	ND<0.20
Anthracene	1,000	2,500	400	ND<0.20	ND<0.20	24	2.6	ND<0.20	ND<0.20	ND<0.20
Benzo[a]anthracene	1	7.8	1	ND<0.20	ND<0.20	34	5.6	0.45	ND<0.20	ND<0.20
Benzo[b]fluoranthene	1	7.8	1	ND<0.20	0.24	44	7.3	0.75	0.28	ND<0.20
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	ND<0.20	4.8	1.4	ND<0.20	ND<0.20	ND<0.20
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	ND<0.20	12	2.7	0.33	ND<0.20	ND<0.20
Benzo[a]pyrene	1	1	1	ND<0.20	ND<0.20	79	5.4	0.45	ND<0.20	ND<0.20
Chrysene	84	780	1	ND<0.20	ND<0.20	30	4.6	0.46	ND<0.20	ND<0.20
Dibenz[a,h]anthracene	1	1	1	ND<0.20	ND<0.20	1.6	0.23	ND<0.20	ND<0.20	ND<0.20
Fluoranthene	1,000	2,500	56	0.22	0.27	125	17	0.87	0.29	ND<0.20
Fluorene	1,000	2,500	56	ND<0.20	ND<0.20	5.6	1.8	ND<0.20	ND<0.20	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	ND<0.20	5.7	1.5	ND<0.20	ND<0.20	ND<0,20
Naphthalene	1,000	2,500	56	ND<0.20	ND<0.20	0.22	6.5	ND<0.20	ND<0.20	ND<0.20
Phenanthrene	1,000	2,500	40	ND<0.20	ND<0.20	22	12	0.47	ND<0.20	ND<0.20
Pyrene	1,000	2,500	40	0.21_	0.25	130	16	0.78	0.30	ND<0.20
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)										
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	NT	_ NT
SPLP PCBs										
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
4-Isopropyltoluene	500	1,000	41.8	NT	NT	ND<0.005	ND<0.005	NT	NT	NT

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, Southwest Portion, New Haven, CT Sampling Date: February 13, 2002

		•	sampling bate.	reutuary	13, 2002					
Analyte	•	Direct Exposure Criteria for Soll (mg/kg)				Soil Sample	e Concentra	lions (npm)		
	Residential	Industrial/ Commercial	GB Area	TB-FFF	TB-FFF	TB-FFF	TB-FFF	TB-GGG	TB-GGG	TB-GGG
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(0-1.2)	(2-4)	(5-7)
SPLP Metals								-		
Barium	NA NA	NA NA	10	NT	0.25	NT	NT	NT	0.37	NT
Lead	NA	NA	0.15	NT	ND<0.013	NT	NT	NT	ND<0.013	NT
Vanadium	NA	NA	0.50	NT	ND<0.05	NT	NT	NT	0.17	NT
Zinc	NA NA	NA	50	NT	0.16	NT	NT	NT	0.17	NT
Total Metals										
Arsenic	10	10	NA	2.2	1.9	16	6.5	1.8	ND<1.0	ND<1.0
Barlum	4,700	140,000	NA	NT	15	NT	NT	NT NT	22	NT NT
Cadmium	34	1,000	NA	NT	0,50	NT	NT	NT	0.59	NT
Chromium	100*	100°	NA	NT	4.9	NT	NT	NT	5.2	NT
_					 				U	141

NT

NT

NT

NT

NT

NT

NT

ND<50

28

8.7

ND<0.20

5.3

2.4

11

16

ND<50

NT

NT

NT

NT

NT

NT

NT

NT

ND<50

NT

NT

NT

NT

NT

NT

NT

NT

130

NT

NT

NT

NT

NT

NT

NT

NT

ND<50

NT

26

14

ND<0.20

5.6

ND<2.0

27

19

ND<50

NT

NT

NT

NT

NT

NT

NT

NT

ND<50

NT

Notes:	
IACIES:	

Copper

Mercury

Thallium

Vanadium

Lead

Nickel

Zinc

mg/kg= milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)

RSR Pesticides/Herbicides

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

RSR = Remediation Standard Regulations.

SPLP Test performed on leachate from Synthetic Precipitation Leachate

2,500

500

20

1,400

5.4

470

20,000

500

NA

76,000

1.000

610

7,500

160

14,000

610,000

2,500

NA

NΑ

NA

NA

NA

NA

NA

NA

2,500

NA

= Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tabil C-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Sampling Date: February 8, 2002

			sampling Date:	rebluary a	o, 2002					
Analyte	•	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soil Sample	e Concentra	tions (nnm)		
		Industrial/	11 (111-8-11-8)		· ·	T Con Campie	Concentra	nous (bbiii)		
	Residential	Commercial	GB Area	TB-II	TB-II	TB-II	TB-II	TB-JJ	TD	70.11
Depth Below Grade (ft.)			CB7tica	(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	TB-JJ (2-4)	TB-JJ (4-6)
USEPA Method 8270 Polynuclear	<u> </u>							(* =/		(10)
Aromatic Hydrocarbons (PAHs)	Ì	i								
Acenaphthene	1,000	2,500	84	ND<0.20	ND <0.00	ND 40 00	- 4	115 10 50		
Acenaphthylene	1,000	2,500	84	0.20	ND<0.20 ND<0.20	ND<0.20	1.1	ND<0.20	0.48	0.21
Anthracene	1,000	2,500	400	0.20	ND<0.20	ND<0.20	0.96	0.23	0.25	ND<0.20
Benzo[a]anthracene	1,000	7.8	1	1.9	0.72	0.70	7.1	0.49	0.51	0.30
Benzo[b]fluoranthene	1	7.8	1	1.9	0.72	3.3	17	3.2	1.9	1.1
Benzo[g,h,i]perylene	1,000	2,500	42	1.7	ND<0.20	3.0	19	3.8	1.6	0.96
Benzo[k]fluoranthene	8.4	78	1	0.74	0.25	1.6 1.0	4.5	1.9	0.94	0.63
Benzo[a]pyrene	1	1	1	1.8	0.25	2.3	5.5	1.1	0.64	0.34
Chrysene	84	780		1.6	0.65	3.3	13	2.6	1.7	0.98
Dibenz[a,h]anthracene	1	1	1	0.27	ND<0.20	0.51	17	3.3	1.4	0.80
Fluoranthene	1,000	2,500	56	4.4	1.0	8.3	1.4	0.52	0.24	ND<0.20
Fluorene	1,000	2,500	56	ND<0.20	ND<0.20	0.32	94 1.1	8.5 ND<0.20	5.5 0.53	2.2
Indeno[1,2,3-cd]pyrene	1	7.8	1	1.7	ND<0.20	1.9			_	ND<0.20
Naphthalene	1,000	2,500	56	ND<0.20	ND<0.20	0.48	6.0 4.1	2.2	1.2	0.71
Phenanthrene	1,000	2,500	40	1.7	0.66	3.9		0.38	1.1	0.41
Pyrene	1,000	2,500	40	4.0	1.1	7.6	36	3.7 7.9	1.7	0.65
	1,000	2,500	40	4.0	1.1	7.0	88	7.9	4.3	2.0
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	1	10	NA	NT	ŅT	ND<0.50	NT	NT	ND<0.50	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
Ethylbenzene	500	1,000	10,1	NT	NT	ND<0.005	NT	NT	ND<0.005	ND<0.005
Naphthalene	1,000	2,500	56	NT	NT	0.025	NT	NT	0.19	0.0061
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.005	NT	NT	ND<0.005	ND<0.005
Toluene	500	1,000	67	NT	NT	ND<0.005	NT	NT	ND<0.005	ND<0.005
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	0.011	NT	NT	ND<0.005	ND<0.005
	}									
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	0.0068	NT	NT	ND<0.005	ND<0.005

ADVANCED ENVIRONMENTAL INTERFACE, INC.

AEI-00T-030a

Table AOC-12.1 Page 1 of 14

Table AUC-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT Sampling Date: February 8, 2002

		<u> </u>	Sampling Date.	TCDIGGI	0, 2002								
			Pollutant Mobility		-								
	Direct Expo	sure Criteria	Criteria for										
Analyte	for Soil	(mg/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)									
		Industrial/							· · · · · · · · · · · · · · · · · · ·				
	Residential	Commercial	GB Area	TB-II	TB-II	TB-II	TB-II	TB-JJ	TB-JJ	TB-JJ			
Depth Below Grade (ft.)				(0-2)	(2-4)	(5-7)	(10-12)	(0-2)	(2-4)	(4-6)			
SPLP Metals													
Arsenic	NA	NA	0.5	NT	ND<0.05	ND<0.05	NT	ND<0.05	NT	NT			
Barium	NA	NA	10	NT	0.39	NT	NT	0.33	NT	NT			
Zinc	NA	NA	50	NT	0.23	NT	NT	0.13	NT	NT			
Total Metals	<u></u>												
Antimony	27	8,200	NA	NT	ND<2.0	NT	NT	ND<2.0	NT	NT			
Arsenic	10	10	NA	3.9	2.3	48	15	53	ND<1.0	1.9			
Barium	4,700	140,000	NA	NT	24	NT	NT	59	NT	NT			
Cadmium	34	1,000	NA	NT	1.2	NT	NT	2.8	NT	NT			
Chromium	100*	100*	NA	NT	12	NT	NT	14	NT	NT			
Copper	2,500	76,000	NA	NT	54	NT	NT	71	NT	NT			
Lead	500	1,000	NA	NT	24	NT	NT	84	NT	NT			
Mercury	20	610	NA	NT	ND<0.20	NT	NT	4.8	NT	NT			
Nickel	1,400	7,500	NA	NT	8.7	NT	NT	13	NT	NT			
Selenium	340	10,000	NA	NT	ND<1.0	NT	NT	2.5	NT	NT			
Thallium	5.4	160	NA	NT	5.1	8.0	NT	3.9	NT	NT			
Vanadium	470	14,000	NA	NT	33	NT	NT	43	NT	NT			
Zinc	20,000	610,000	NA	NT	42	NT	NT	67	NT	NT			
Connecticut Extractable Total	500	2.500	2.500		450	050	400						
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	220	150	250	420	230	100	120			

Notes;

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.
= Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.1 Page 2 of 14

Tab C-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT Sampling Date: February 8, 2002

		<u>`</u>	Sampling Date:	rebluary	0, 2002					
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)							
		Industrial/					Concentral	(рр.н.)		<u> </u>
	Residential	Commercial	GB Area	TB√JJ	тв-кк	TB-KK	TB-KK	TB-KK	TB-LL	TB-LL
Depth Below Grade (ft.)				(6-7)	(0-2)	(2-4)	(4-6)	(6-7)	(0-2)	(2-4)
USEPA Method 8270 Polynuclear										
Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	NT	ND<0.20	0.63	ND<0.20	NT	ND<0.20	ND<0.20
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20	ND<0.20
Anthracene	1,000	2,500	400	NT	ND<0.20	1.8	ND<0.20	NT	ND<0.20	ND<0.20
Benzo[a]anthracene	1	7.8	1	NT	ND<0.20	4.7	0.25	NT	0.58	0.41
Benzo[b]fluoranthene	1	7.8	1	NT	0.24	5.0	0.20	NT	0.72	0.42
Benzo[g,h,i]perylene	1,000	2,500	42	NT	ND<0.20	2.8	0.23	NT	0.12	ND<0.20
Benzo[k]fluoranthene	8.4	78	1	NT	ND<0.20	1.8	ND<0.20	NT	0.28	ND<0.20
Benzo[a]pyrene	1	1	1	NT	ND<0.20	4.1	0.22	NT	0.57	0.35
Chrysene	84	780	1	NT	ND<0.20	4.0	0.21	NT	0.57	0.31
Dibenz[a,h]anthracene	1	1	1	NT	ND<0.20	0.61	ND<0.20	NT	ND<0.20	ND<0.20
Fluoranthene	1,000	2,500	56	NT	0.28	19	0.44	NT	1.0	0.61
Fluorene	1,000	2,500	56	NT	ND<0.20	0.70	ND<0.20	NT	ND<0.20	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	ND<0.20	2.9	ND<0.20	NT	0.48	ND<0.20
Naphthalene	1,000	2,500	56	NT	ND<0.20	0.34	ND<0.20	NT	ND<0.20	ND<0.20
Phenanthrene	1,000	2,500	40	NT	ND<0.20	9.7	0.29	NT	0.46	0.29
Pyrene	1,000	2,500	40	NT	0.25	16	0.40	NT	0.95	0.57
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	1	10	NA	NT	ND<0.50	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)										<u>.</u>
Ethylbenzene	500	1,000	10.1	NT	ND<0.005	NT	NT	NT	ND<0.005	NT
Naphthalene	1,000	2,500	56	NT	0.0078	NT	NT	NT	ND<0.005	NT
n-Propylbenzene	500	1,000	14	NT	ND<0.005	NT	NT	NT	ND<0.005	NT
Toluene	500	1,000	67	NT	ND<0.005	NT	NT	NT	ND<0.005	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.005	NT	NT	NT	ND<0.005	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.005	NT	NT	NT	ND<0.005	NT
Xylenes (total)	500	1,000	19.5	NT	ND<0.005	NT	NT	NT	ND<0.005	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.

AEI-00T-030a

Table AOC-12.1 Page 3 of 14

Table AGC-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Sampling Date: February 8, 2002

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soil Sample	e Concentra	liono (nnm)		
		Industrial/		· 		Jon Sample	Concentra	nons (ppm)		
	Residential	Commercial	GB Area	TB-JJ	TB-KK	TB-KK	TB-KK	тв-кк	TB-LL	TB-LL
Depth Below Grade (ft.)				(6-7)	(0-2)	(2-4)	(4-6)	(6-7)	(0-2)	(2-4)
SPLP Metals								· · · · · ·		
Arsenic	NA	NA	0.5	NT	NT	ND<0.05	NT	NT	NT	NT
Barium	NA	NA	10	NT	NT	0.23	NT	NT	NT	NT
Zinc	NA	NA	50	NT	NT	0.15	NT	NT	NT	NT
Total Metals										
Antimony	27	8,200	NA	NT	NT	3.2	NT	NT	NT	NT
Arsenic	10	10	NA	2.7	3.1	4.7	ND<1.0	3.5	4.8	2.0
Barium	4,700	140,000	NA	NT	NT	40	NT	NT	NT	NT
Cadmium	34	1,000	NA	NT	NT	2.8	NT	NT	NT	NT
Chromium	100*	100*	NA	NT	NT	17	NT	NT	NT	NT
Copper	2,500	76,000	NÄ	NT	NT	120	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	45	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	0.89	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	17	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	ND<1.0	NT	NT	NT	NT
Thallium	5.4	160	NA	NT	NT	12	NT	NT	NT	NT
Vanadium	470_	14,000	NA	NT	NT	34	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	70	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	110	110	ND<50	NT	220	61

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

= Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.1 Page 4 of 14

Tab C-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Sampling Date: February 8, 2002

			Sampling Date:	February 8	3, 2002					
Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soil Sample	e Concentra	tions (nnm)		
	1	Industrial/	,					iona (ppin)		
	Residential	Commercial	GB Area	TB-LL	TB-LL	ТВ-ММ	TB-MM	ТВ-ММ	TB-MM	TB-NN
Depth Below Grade (ft.)				(5-7)	(10-12)	(0-2)	(2-4)	(5-7)	(10-12)	(0-2)
USEPA Method 8270 Polynuclear	<u> </u>								<u> </u>	
Aromatic Hydrocarbons (PAHs)						1				
Acenaphthene	1,000	2,500	84	ND<0.20	0.31	ND<0.20	ND<1.0	ND<1.0	ND<0.20	ND<0.20
Acenaphthylene	1,000	2,500	84	ND<0.20	0.88	0.23	ND<1.0	ND<1.0	ND<0.20	ND<0.20
Anthracene	1,000	2,500	400	ND<0.20	1.0	ND<0.20	ND<1.0	ND<1.0	ND<0.20	ND<0.20
Benzo[a]anthracene	1	7.8	1	0.65	4.4	1.4	2.2	1.5	0.79	0.88
Benzo[b]fluoranthene	11	7.8	1	0.77	4.5	2.0	2.6	3.3	1.1	0.98
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	2.1	1.0	1.2	2.3	0.46	0.64
Benzo[k]fluoranthene	8.4	78	1	0.27	1.7	0.57	1.1	1.3	0.45	0.33
Benzo[a]pyrene	1	1	1	0.47	4.0	1.4	1.8	2.6	0.99	0.80
Chrysene	84	780	1	0.54	4.4	1.4	2.0	1.4	0.77	0.75
Dibenz[a,h]anthracene	11	1	1	ND<0.20	0.56	0.24	ND<1.0	ND<1.0	ND<0.20	ND<0.20
Fluoranthene	1,000	2,500	56	1.3	15	2.2	3.8	1.7	1.1	1.2
Fluorene	1,000	2,500	56	ND<0.20	0.38	ND<0.20	ND<1.0	ND<1.0	ND<0.20	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	2.4	1.3	1.1	2.1	0.41	0,63
Naphthalene	1,000	2,500	56	ND<0.20	0.90	0.25	ND<1.0	ND<1.0	ND<0.20	ND<0.20
Phenanthrene	1,000	2,500	40	0.72	2.0	1.1	3.2	ND<1.0	0.64	0.55
Pyrene	1,000	2,500	40	1.2	20	2.3	3.3	1.6	1.4	1.3
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	1	10	NA	NT	NT	NT	ND<0.50	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
Ethylbenzene	500	1,000	10.1	NT	NT	NT	ND<0.005	NT	NT	ND<0.005
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.005	NT	NT	ND<0.005
n-Propylbenzene	500	1,000	14	NT	NT	NT	ND<0.005	NT	NT	ND<0.005
Toluene	500	1,000	67	NT	NT	NT	ND<0.005	NT	NT	ND<0.005
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	NT	NT	ND<0.005
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	NT	NT	ND<0.005
Xylenes (total)	500	1,000	19.5	NT	NT	NT	ND<0.005	NT	NT	ND<0.005

ADVANCED ENVIRONMENTAL INTERFACE, INC.

AEI-00T-030a

Table AOC-12.1 Page 5 of 14

Table ADC-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Sampling Date: February 8 2002

			Sampling Date:	· ourdary	-, 2002					
			Pollutant Mobility		-					
		sure Criteria	Criteria for							
Analyte	for Soil	(mg/kg)	Soil (mg/kg)	<u>L</u> .	tions (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-LL	TB-LL	TB-MM	TB-MM	TB-MM	TB-MM	TB-NN
Depth Below Grade (ft.)				(5-7)	(10-12)	(0-2)	(2-4)	(5-7)	(10-12)	(0-2)
SPLP Metals									(10 12)	(0-2)
Arsenic	NA	NA	0.5	NT	NT	ND<0.05	NT	NT	NT	NT
Barium	NA	NA	10	NT	NT	0.39	NT	NT	NT	NT
Zinc	NA	NA	50	NT	NT	0.22	NT	NT	NT	NT
Total Metals										
Antimony	27	8,200	NA	NT	NT	ND<2.0	NT	NT	NT	NT
Arsenic	10	10	NA	3.6	8.5	25	1.3	2.1	1.6	3.6
Barium	4,700	140,000	NA	NT	NT	60	NT	NT	NT NT	NT
Cadmium	34	1,000	NA	NT	NT	1.8	NT	NT	NT	NT
Chromium	100*	100*	NA NA	NT	NT	11	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	69	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	72	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	3.5	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	11	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	1.3	NT	NT	NT	NT
Thallium	5.4	160	NA	NT	NT	4.6	NT	NT	NT	NT
Vanadium	470	14,000	NA	NT	NT	32	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	69	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	500	73	360	280	610	220

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

= Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.1 Page 6 of 14

Table HOC-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT Sampling Date: February 8, 2002

	γ		Sampling Date:	February 8	3, 2002					
Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soil Sampl	e Concentra	tions (ppm)		
		Industrial/				T		(ppin)		 -
	Residential	Commercial	GB Area	TB-NN	TB-NN	TB-NN	TB-00	тв-оо	TB-00	TB-PP
Depth Below Grade (ft.)				(2-4)	(4-6)	(6-7)	(0-2)	(2-4)	(6-7.3)	(0-2)
USEPA Method 8270 Polynuclear										(0'2)
Aromatic Hydrocarbons (PAHs)						}				1
Acenaphthene	1,000	2,500	84	ND<0.20	NT	NT	1,0	ND<0.20		1.5
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	NT	ND<0.20		NT	ND<0.20
Anthracene	1,000	2,500	400	ND<0.20	NT	NT	2.7	ND<0.20 ND<0.20	NT	ND<0.20
Benzo[a]anthracene	1	7.8	1	0.67	NT	NT	12		NT NT	ND<0.20
Benzo[b]fluoranthene	1	7.8	1	0.90	NT	NT	19	1.1 1.3	NT	ND<0.20
Benzo[g,h,i]perylene	1,000	2,500	42	0.31	NT	NT	3.4	0.58	NT	0.25
Benzo[k]fluoranthene	8.4	78	1	0.35	NT	NT	5.5	0.56	NT NT	ND<0.20
Benzo[a]pyrene	1	1	1	0,69	NT	NT	12	1.1	NT	ND<0.20
Chrysene	84	780	1	0.59	NT	NT	12	0.91	NT	ND<0.20 ND<0.20
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	NT	1.1	ND<0.20	NT	ND<0.20
Fluoranthene	1,000	2,500	56	1.1	NT	NT	37	1.7	NT	0.29
Fluorene	1,000	2,500	56	ND<0.20	NT	NT	0.88	ND<0.20	NT	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.39	NT	NT	4.2	0.48	NT	ND<0.20
Naphthalene	1,000	2,500	56	ND<0.20	NT	NT	0.32	ND<0.20	NT	ND<0.20
Phenanthrene	1,000	2,500	40	0.57	NT .	NT	19	1.0	NT	ND<0.20
Pyrene	1,000	2,500	40	0.97	NT	NT	31	1.7	NT NT	0.26
USEPA Method 8082										0.20
Polychlorinated Biphenyls (PCBs)	1	10	NA	NT	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile							 			
Organic Compounds (VOCs)							Ì			1
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	ND<0.005	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.005	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	ND<0.005	NT	NT
Toluene	500	1,000	67	NT	NT	NT	NT	ND<0.005	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	ND<0.005	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	ND<0.005	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	ND<0.005		
			ANCED ENVIDONA			141	141	פטט.טירטאין	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.

AEI-00T-030a

Table AOC-12.1 Page 7 of 14

Tabili HbC-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT Sampling Date: February 8, 2002

	Direct Expo	sure Criteria	Pollutant Mobility Criteria for					· · · · · · · · · · · · · · · · · · ·				
Analyte		(mg/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	TB-NN	TB-NN	TB-NN	TB-00	TB-00	TB-00	TB-PP		
Depth Below Grade (ft.)				(2-4)	(4-6)	(6-7)	(0-2)	(2-4)	(6-7.3)	(0-2)		
SPLP Metals												
Arsenic	NA	NA	0,5	NT	NŤ	NT	NT	NT	NT	NT		
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	NT		
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT	NT		
Total Metals												
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT	NT		
Arsenic	10	10	NA	4.5	2.0	3.2	1.4	3.2	1.6	ND<1.0		
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT	NT		
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT	NT		
Chromium	100*	100*	NA	NT	NT	NT	NT	NT	NT	NT		
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT	NT		
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT	NT		
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT	NT		
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT	NT		
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT	NT		
Thallium	5.4	160	NA	NT	NT	NT	NT	NT	NT	NT		
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT	NT	NT		
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	70	65	NT	910	210	NT	93		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

= Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.1 Page 8 of 14

Table Hbc-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT

Sampling Date: February 8, 2002

			Sampling Date:	rebluary &), ZUUZ						
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)						
		Industrial/		<u> </u>				(PP:11)		,	
	Residential	Commercial	GB Area	TB-PP	TB-PP	TB-QQ	TB-QQ	TB-QQ	TB-RR	TB-RR	
Depth Below Grade (ft.)				(2-4)	(5-6.5)	(0-2)	(5-7)	(10-12)	(0-2)	(2-4)	
USEPA Method 8270 Polynuclear											
Aromatic Hydrocarbons (PAHs)				ļ l							
Acenaphthene	1,000	2,500	84	0.65	NT	ND<1.00	NT	ND<1.0	ND<0.20	ND<1.0	
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	ND<1.00	NT	1.2	ND<0.20	1.2	
Anthracene	1,000	2,500	400	1.5	NT	ND<1.00	NT	1.0	ND<0.20	ND<1.0	
Benzo[a]anthracene	1	7.8	1	6.4	NT	ND<1.00	NT	3.6	0.64	1.7	
Benzo[b]fluoranthene	1	7.8	1	7.9	NT	ND<1.00	NT	6.0	1.2	4.0	
Benzo[g,h,i]perylene	1,000	2,500	42	3.9	NT	ND<1.00	NT	1.8	0.30	1.8	
Benzo[k]fluoranthene	8.4	78	1	2.7	NT	ND<1.00	NT	2.5	0.51	1.4	
Benzo[a]pyrene	1	1	1	6.5	NT	ND<1.00	NT	3.9	0.68	2,3	
Chrysene	84	780	1	5.9	NT	ND<1.00	NT	3.4	0.62	1.5	
Dibenz[a,h]anthracene	1	1	1	0.96	NT	ND<1.00	NT	ND<1.0	ND<0.20	ND<1.0	
Fluoranthene	1,000	2,500	56	27	NT	ND<1.00	NT	7.5	1.0	1.5	
Fluorene	1,000	2,500	56	0.51	NT	ND<1.00	NT	ND<1.0	ND<0.20	ND<1.0	
Indeno[1,2,3-cd]pyrene	1	7.8	1	5.0	NT	ND<1.00	NT	1.9	0.37	1.3	
Naphthalene	1,000	2,500	56	ND<0.20	NT	ND<1.00	NT	ND<1.0	ND<0.20	ND<1.0	
Phenanthrene	1,000	2,500	40	11	NT	ND<1.00	NT	5.2	0.44	ND<1.0	
Pyrene	1,000	2,500	40	25	NT	ND<1.00	NT	6.0	0.93	1.8	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	1	10	NA	NT	NT	ND<0.50	NT	ND<0.50	NT	NT	
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
Ethylbenzene	500	1,000	10.1	ND<0.005	NT	NT	ND<0.005	0.0077	NT	NT	
Naphthalene	1,000	2,500	56	0.039	NT	NT	0.073	0.043	NT	NT	
n-Propylbenzene	500	1,000	14	ND<0.005	NT	NT	ND<0.005	0.0079	NT	NT	
Toluene	500	1,000	. 67	ND<0.005	NT	NT	ND<0.005	0.0066	NT	NT	
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.005	NT	NT	ND<0.005	0.0064	NT	NT	
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.005	NT	NT	ND<0.005	0.015	NT	NT	
Xylenes (total)	500	1,000	19.5	ND<0.005	NT	NT	ND<0.005	0.013	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC.

AEI-00T-030a

Table AOC-12.1 Page 9 of 14

Table-10C-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT Sampling Date: February 8, 2002

		sure Criteria	Pollutant Mobility Criteria for									
Analyte	for Soil	(mg/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	TB-PP	TB-PP	TB-QQ	TB-QQ	TB-QQ	TB-RR	TB-RR		
Depth Below Grade (ft.)				(2-4)	(5-6.5)	(0-2)	(5-7)	(10-12)	(0-2)	(2-4)		
SPLP Metals												
Arsenic	NA	NA	0.5	NT	NT	ND<0.05	NT	ND<0.05	NT	NT.		
Barium	NA	NA	10	NT	NT	0.37	NT	NT NT	NT	NT NT		
Zinc	NA	NA	50	NT	NT	0.23	NT	NT	NT	NT		
Total Metals												
Antimony	27	8,200	NA	NT	NT	ND<2.0	NT	NT	NŤ	NT		
Arsenic	10	10	NA	ND<1.0	ND<1,0	ND<1.0	1.3	83	4.7	1.9		
Barium	4,700	140,000	NA	NT	NT	21	NT	NT NT	NT	NT		
Cadmium	34	1,000	NA	NT	NT	1.2	NT	NT	NT	NT		
Chromium	100*	100°	NA	NT	NT	8.7	NT	NT	NT	NT		
Copper	2,500	76,000	NA	NT	NT	57	NT	NT	NT	NT		
Lead	500	1,000	NA	NT	NT	9.7	NT	NT NT	NT	NT		
Mercury	20	610	NA	NT	NT	ND<0.20	NT	NT	NT	NT		
Nickel	1,400	7,500	NA	NT	NT	11	NT	NT	NT	NT		
Selenium	340	10,000	NA	NT	NT	ND<1.0	NT	NT	NT	NT		
Thallium	5.4	160	NA	NT	NT	5.8	NT	NT	NT	NT		
Vanadium	470	14,000	NA	NT	NT	56	NT	NT	NT	NT		
Zinc	20,000	610,000	NA	NT	NT	22	NT	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	230	NT	840	NT	520	100	NT		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

= Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.1 Page 10 of 14

Tabl **Ш**С-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT Sampling Date: February 8, 2002

			Sampling Date:	rebluary o	3, ZUUZ						
	Direct Exposure Criteria		Pollutant Mobility Criteria for								
Analyte	for Soil	(mg/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-SS	TB-TT	TB-UU	TB-UU	TB-UU	TB-VV	TB-VV	
Depth Below Grade (ft.)				(2-3)	(1-3)	(0-2)	(2-4)	(4-6)	(0-2)	(2-4)	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)											
Acenaphthene	1,000	2,500	84	ND<0.20	ND<1.0	ND<0.20	ND<1.0	NT	ND<0.20	ND<0.20	
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<1.0	ND<0.20	2.3	NT	ND<0.20	ND<0.20	
Anthracene	1,000	2,500	400	ND<0.20	ND<1.0	0.34	3.0	NT	ND<0.20	ND<0.20	
Benzo[a]anthracene	1	7.8	1	ND<0.20	ND<1.0	2.7	22	NT	0.36	0.40	
Benzo[b]fluoranthene	11	7.8	1	ND<0.20	1.2	4.5	33	NT	0.56	0.62	
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	ND<1.0	1.4	8.4	NT	ND<0.20	ND<0.20	
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	ND<1.0	1.58	15	NT	0.25	0.27	
Benzo[a]pyrene	11	1	1	ND<0.20	1.1	3.3	24	NT	0.40	0.43	
Chrysene	84	780	1	ND<0.20	ND<1.0	2.2	17	NT	0.32	0,39	
Dibenz[a,h]anthracene	1	1	1	ND<0.20	ND<1.0	0.40	2.3	NT	ND<0.20	ND<0.20	
Fluoranthene	1,000	2,500	56	ND<0.20	1.3	4.8	43	NT	0.60	0.67	
Fluorene	1,000	2,500	56	ND<0.20	ND<1.0	ND<0.20	ND<1.0	NT	ND<0.20	ND<0.20	
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	1.1	1.5	9.5	NT	0.20	ND<0.20	
Naphthalene	1,000	2,500	_56	ND<0.20	ND<1.0	ND<0.20	1.0	NT	ND<0.20	ND<0.20	
Phenanthrene	1,000	2,500	40	ND<0.20	ND<1.0	1.5	19	NT	0.35	0.34	
Pyrene	1,000	2,500	40	ND<0.20	1.2	4.2	43	NT	0.56	0.59	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	1	10	NA	NT	NT_	NT	ND<0.50	NT	NT	ND<0.50	
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
Ethylbenzene	500	1,000	10.1	ND<0.005	NT	NT	ND<0.005	NT	NT	NT	
Naphthalene	1,000	2,500	56	ND<0.005	NT	NT	0.11	NT	NT	NT	
n-Propylbenzene	500	1,000	14	ND<0.005	NT	NT	ND<0.005	NT	NT	NT	
Toluene	500	1,000	67	ND<0.005	NT	NT	ND<0.005	NT	NT	NT	
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.005	NT	NT	ND<0.005	NT	NT	NT	
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.005	NT	NT	ND<0.005	NT	NT	NT	
Xylenes (total)	500	1,000	19.5	ND<0.005	NT	NT	ND<0.005	NT	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC.

AEI-00T-030a Table AOC-12.1 Page 11 of 14

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT

Sampling Date: February 8, 2002

	r		Sampling Date.	I Chidaly	, 2002					
	Mobility Direct Exposure Criteria Criteria fo		Pollutant Mobility Criteria for							
Analyte			Soil (mg/kg)	Soil Sample Concentrations (ppm)						
		Industrial/	· · · · · · · · · · · · · · · · · ·			l Con Campa	3 Concentia	lions (ppin)		
	Residential	Commercial	GB Area	TB-SS	TB-TT	тв-ии	TB-UU	TB-UU	TB-VV	TB-VV
Depth Below Grade (ft.)				(2-3)	(1-3)	(0-2)	(2-4)	(4-6)	(0-2)	(2-4)
SPLP Metals	· · · · · · · · · · · · · · · · · · ·									
Arsenic	NA	NA	0.5	ND<0.05	NT	NT	NT	NT	NT	ND<0.05
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	0.39
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT	0.27
Total Metals										
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT	ND<2.0
Arsenic	10	10	NA	14	9.0	1.7	2.0	1.9	1.4	1.0
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT	31
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT	0,94
Chromium	100*	100*	NA	NT	NT	NT	NT	NT	NT	8.1
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT	26
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT	19
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT	ND<0.20
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT	8.6
Selenium	340	10,000	NA NA	NT	NT	NT	NT	NT	NT	ND<1.0
Thallium	5.4	160	NA	NT	NT	NT	NT	NT	NT	3.4
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT	NT	28
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT	32
Connecticut Extractable Total									<u> </u>	
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	85	160	170	1,200	1,100	NT	130

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

= Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.1 Page 12 of 14

Table AOC-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT

Sampling Date: February 8, 2002

	T	ipinig Date.	repruary 8, 200				
			Pollutant				<u> </u>
			Mobility				
	Direct Expo	sure Criteria	Criteria for				
Analyte	for Soil	(mg/kg)	Soil (mg/kg)	Soils	Sample Cond	centrations (maa'
		Industrial/					
	Residential	Commercial	GB Area	TB-VV	TB-WW	TB-WW	TB-WW
Depth Below Grade (ft.)				(4-6)	(0-2)	(2-4)	(5-7)
USEPA Method 8270 Polynuclear							
Aromatic Hydrocarbons (PAHs)						·	
Acenaphthene	1,000	2,500	84	12	ND<0.20	ND<1.0	ND<0.20
Acenaphthylene	1,000	2,500	84	28	1.5	ND<1.0	ND<0.20
Anthracene	1,000	2,500	400	63	4.7	1.0	ND<0.20
Benzo[a]anthracene	1	7.8	1	64	9.5	3.6	ND<0.20
Benzo[b]fluoranthene	1	7.8	1	71	12	4.4	ND<0.20
Benzo[g,h,i]perylene	1,000	2,500	42	13	4.9	3.4	ND<0.20
Benzo[k]fluoranthene	8.4	78	1	26	3.7	1.8	ND<0.20
Benzo[a]pyrene	1	1	1	57	9.8	3.8	ND<0.20
Chrysene	84	780	1	58	8.9	2.8	ND<0.20
Dibenz[a,h]anthracene	1	1	1	4,5	0.96	ND<1.0	ND<0.20
Fluoranthene	1,000	2,500	56	220	38	7.4	ND<0.20
Fluorene	1,000	2,500	56	51	1.1	ND<1.0	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	15	5.6	3.2	ND<0.20
Naphthalene	1,000	2,500	56	1.7	0.62	ND<1.0	ND<0.20
Phenanthrene	1,000	2,500	40	360	32	4.7	ND<0.20
Pyrene	1,000	2,500	40	210	37	6.2	ND<0.20
USEPA Method 8082	 						
Polychlorinated Biphenyls (PCBs)	1	10	NA_	ND<0.50	NT	NT	NT
USEPA Method 8260 Volatile							
Organic Compounds (VOCs)		:					
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT
Toluene	500	1,000	67	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	
Xylenes (total)	500	1,000	19.5	NT	NT		NT
1 - /			ENTAL INTERFACE		INI	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.

AEI-00T-030a

Table AOC-12.1 Page 13 of 14

Tab C-12.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT Sampling Date: February 8, 2002

	Jair	iping Date.	rebruary 8, 200	<u></u>					
	Direct Expo	sure Criteria	Pollutant Mobility Criteria for						
Analyte	for Soil	(mg/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-VV	TB-WW	TB-WW	TB-WW		
Depth Below Grade (ft.)				(4-6)	(0-2)	(2-4)	(5-7)		
SPLP Metals									
Arsenic	NA	NA	0.5	NT	NT	0.50	NT		
Barium	NA	NA	10	NT	NT	NT	NT		
Zinc	NA	NA	50	NT	NT	NT	NT		
Total Metals									
Antimony	27	8,200	NA	NT	NT	ND<2,0	NT		
Arsenic	10	10	NA	7.6	ND<1.0	22	3,1		
Barium	4,700	140,000	NA	NT	NT	43	NT		
Cadmium	34	1,000	NA	NT	NT	1,4	NT		
Chromium	100*	100*	NA	NT	NT	12	NT		
Copper	2,500	76,000	NA	NT	NT	100	NT		
Lead	500	1,000	NA	NT	NT	37	NT		
Mercury	20	610	NA ·	NT	NT	1.1	NT		
Nickel	1,400	7,500	NA	NT	NT	12	NT		
Selenium	340	10,000	NA	NT	NT	ND<1.0	NT		
Thallium	5.4	160	NA	NT	NT	5.3	NT		
Vanadium	470	14,000	NA	NT	NT	NT	NT		
Zinc	20,000	610,000	NA	NT	NT	62	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	820	150	150	160		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

= Not applicable.

= Not detected above laboratory minimum detection limit.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

= Concentration exceeds associated criterion.
ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.1 Page 14 of 14

Table AUC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		1		, item riaven						
	for	sure Criteria Soll	Pollutant Mobility Criteria for							
Analyte	(m	g/kg)	Soll (mg/kg)		Soi	Sample Cond	entrations (p	pm)		
		industrial/							_	
	Residential	Commercial	GB Area	TB-JJ	TB-KK	TB-OO	TB-RR	TB-VV	TB-ZZ	
Depth Below Grade (ft.)				(2-4)	(2-4)	(0-2)	(2-4)	(5-5.5)	(26.5-27)	
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/4/2002	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	NT	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT	
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT	
Benzo[a]anthracene	11	7.8	1	NT	NT	NT	NT	NT	NT	
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	NT	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	NT	
Chrysene	84	780	1	NT	NT	NT	NT	NT	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	NT	
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT	
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT	
USEPA Method 8260 Volatile										
Organic Compounds (VOCs)				 						
Ethylbenzene	500	1,000	10.1	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	
Isopropylbenzene	500	1,000	132	NT	ND<0.005	ND<0.005	NT_	ND<0.005	ND<0.005	
4-Isopropyitoluene	500	1,000	41.8	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	
Naphthalene	1,000	2,500	56	NT	ND<0.005	ND<0.005	NT_	3.0	ND<0.005	
n-Propylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	
Tetrachloroethene	12	110	1	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	
Toluene	500	1,000 520	67	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	
Trichloroethene	56		1.0	NT	ND<0.005	ND<0,005	NT	ND<0.005	ND<0.005	
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.005	ND<0.005	NT	0.018	ND<0.005	
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.005	ND<0.005	NT	0.014	ND<0.005	
Xylenes (total)	500	1,000	19.5	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	

Tab. C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			Cinguisti Station	,						
Analyte	for	sure Criteria Soli I/kg)	Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)						
		Industrial/				i Guinpio Goil	i	I	r	
	Residential	Commercial	GB Area	TB-JJ	TB-KK	TD 00	TD 00			
Depth Below Grade (ft.)	Residelling	Collaneidai	GB Area	(2-4)	(2-4)	TB-OO (0-2)	TB-RR	TB-VV	TB-ZZ	
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	(2-4) 4/1/2002	(5-5.5) 4/1/2002	(26.5-27) 4/4/2002	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								17 172302	4/4/2002	
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	
PCB-1248	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	ND<5.0	NT	
SPLP Metals										
Antimony	NA NA	NA	0.06	NT	NT	ND<0.006	NT	NT	NT	
Arsenic	NA	NA	0.5	NT	NT	ND<0.05	NT	NT	NT	
Barium	NA NA	NA	10	NT	NT	0.32	NT	NT	NT	
Copper	NA	NA	13	NT	NT	ND<0.04	NT	NT	NT	
Lead	, NA	NA	0.15	NT	NT	ND<0.013	NT	NT	NT	
Mercury	NA NA	NA	0.02	NT	NT	ND<0.002	NT	NT	NT	
Nickel	NA NA	NA	1.0	NT	NT	ND<0.05	NT	NT	NT	
Selenium	NA	NA	0.50	NT	NT	ND<0.01	NT	NT	NT	
Thallium	NA	NA	0.05	NT	NT	ND<0.005	NT	NT	NT	
Vanadium	NA	NA	0.50	NT	NT	ND<0.05	NT	NT	NT	
Zinc	NA NA	NA	50	NT	NT	0.30	NT	NT	NT	
Total Metals										
Antimony .	27	8,200	NA	NT	NT	ND<2.0	NT	NT	NT	
Arsenic	10	10	NA	NT	NT	2.2	NT	NT	NT	
Barium	4,700	140,000	NA	NT	NT	46	NT	NT	NT	
Beryllium	2	2	NA	NT	NT	ND<1.0	NT	NT	NT	
Cadmium	34	1,000	NA	NT	NT	1.1	NT	NT	NT	
Chromium	100*	100*	NA	NT	NT	8.7	· NT	NT	NT	
Copper	2,500	76,000	NA	NT	NT	43	NT	NT	NT	
Lead	500	1,000	NA	NT	NT	28	NT	NT	NT	
Mercury	20	610	NA	NT	NT	ND<0.20	NT	NT	NT	
Nickel	1,400	7,500	NA	NT	NT	8.6	NT	NT	NT	
Selenium	340	10,000	NA	NT	NT	ND<1.0	NT	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 2 of 117

Ta 77-0C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	osure Criteria · Soli g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soi	ii Sampie Con	centrations (p	pm)	
	Residential	Industrial/	00.1				()		
Depth Below Grade (ft.)	Kesidential	Commercial	GB Area	TB-JJ	TB-KK	TB-00	TB-RR	TB-VV	TB-ZZ
				(2-4)	(2-4)	(0-2)	(2-4)	(5-5.5)	(26.5-27)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/4/2002
Total Metals (Cont'd)									
Silver	340	10,000	NA NA	NT	NT	ND<2.0	NT	157	\
Thallium	5.4	160	NA NA	NT	NT			NT	NT
Vanadium	470	14.000	NA NA	NT		6.3	NT	NT NT	NT
Zinc	20,000				NT	31	NT	NT	NT
	20,000	610,000	NA	NT	NT	53	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	1,300

No	tee.	
140	nes.	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table AOC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	 			,						
	for	sure Criteria Soli	Pollutant Mobility Criteria for							
Analyte	(mg	g/kg)	Soli (mg/kg)		Soi	I Sample Cond	entrations (p	om)		
	1	Industrial/			1					
	Residential	Commercial	GB Area	тв-ннн	тв-ннн	тв-ннн	ТВ-ННН	TB-III	TB-III	
Depth Below Grade (ft.)				(0.0-0.3)	(1.3-2.3)	(2.3-4.3)	(4.3-6.3)	(0.0-0.3)	(1-3)	
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	NT	ND<0.20	ND<0.20	NT	NT	ND<0.20	
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	ND<0.20	NT	NT	ND<0.20	
Anthracene	1,000	2,500	400	NT	ND<0.20	ND<0.20	NT	NT	ND<0.20	
Benzo[a]anthracene	1	7.8	1	NT	0.26	0.57	NT	NT	0.49	
Benzo[a]pyrene	1	11	1	NT	0.32	0.65	NT	NT	0.49	
Benzo[b]fluoranthene	1	7.8	1	NT	0.47	0.62	NT	NT	0.47	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	ND<0.20	1.2	NT	NT	0.75	
Benzo[k]fluoranthene	8.4	78	1	NT	ND<0.20	0.23	NT	NT	ND<0.20	
Chrysene	84	780	1	NT	0.30	0.55	NT	NT	0.49	
Dibenz[a,h]anthracene	1	1	1	NT	ND<0.20	0.23	NT	NT	ND<0.20	
Fluoranthene	1,000	2,500	56	NT	0.39	0.90	NT	NT	0.83	
Fluorene	1,000	2,500	56	NT	ND<0.20	ND<0.20	NT	NT	ND<0.20	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	ND<0.20	0.99	NT	NT	0.82	
Naphthalene	1,000	2,500	56	NT	ND<0.20	ND<0.20	NT	NT	ND<0.20	
Phenanthrene	1,000	2,500	40	NT	0.21	0.39	NT	NT	0.60	
Pyrene	1,000	2,500	40	NT	0.39	0.84	NT	NT	0.68	
USEPA Method 8260 Volatile					·					
Organic Compounds (VOCs)										
Ethylbenzene	500	1,000	10.1	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
Isopropylbenzene	500	1,000	132	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
4-Isopropyltoluene	500	1,000	41.8	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
Naphthalene	1,000	2,500	56	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
n-Propyibenzene	500	1,000	14	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
Tetrachloroethene	12	110	1	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
Toluene	500	1,000	67	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
Trichloroethene	56	520	1.0	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
1,1,1-Trichloroethane	500	1,000	40	ND<0.005	0.032	ND<0.005	NT	NT	0.046	
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	
Xylenes (total)	500	1,000	19,5	ND<0.005	ND<0.005	ND<0.005	NT	NT	ND<0.005	

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 4 of 117

Table 719 C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, item navei	i, C1						
Analyte	for	esure Criteria Soil g/kg)	Pollutant Mobility Criteria for								
Analyte	- (m		Soll (mg/kg)		So	Sample Con	centrations (p	pm)			
	Residential	Industrial/ Commercial	GB Area	тв-ннн	В-ННН ТВ-ННН ТВ-ННН ТВ-ННН ТВ-Ш						
Depth Below Grade (ft.)				(0.0-0.3)	(1.3-2.3)	(2.3-4.3)	(4.3-6.3)	(0.0-0.3)	TB-III (1-3)		
Sample Collection Date			_	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002		
USEPA Method 8082 Polychlorinated Biphenyis (PCBs)											
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1260	1	10	NA _	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT		
SPLP Metals			-								
Antimony	NA NA	NA NA	0.06	NT	ND<0.006	NT	NT	NT	0.010		
Arsenic	NA NA	NA	0.5	NT	ND<0.05	NT	NT	NT	ND<0.05		
Barium	NA NA	NA	10	NT	0.17	NT	NT	NT	0.52		
Copper	NA NA	NA	13	NT	ND<0.04	NT	NT	NT	0.062		
Lead	NA	NA	0.15	NT	ND<0.013	NT	NT	NT	0.068		
Mercury	NA NA	NA	0.02	NT	ND<0.002	NT	NT	NT	ND<0.002		
Nickel	NA	NA	1.0	NT	ND<0.05	NT	NT	NT	ND<0.05		
Selenium	NA NA	NA	0.50	NT	ND<0.01	NT	NT	NT	ND<0.01		
Thallium	NA	NA	0.05	NT	ND<0.005	NT	NT	NT	0.005		
Vanadium	NA	NA	0.50	NT	ND<0.05	NT	NT	NT	ND<0.05		
Zinc	NA NA	NA	50	NT	0.14	П	NT	NT	0.36		
Total Metals											
Antimony	27	8,200	NA	NT	ND<2.0	NT	NT	NT	2.2		
Arsenic	10	10	NA	NT	7.8	NT	NT	NT	70		
Barlum	4,700	140,000	NA	NT	35	NT	NT	NT	46		
Beryllium	2	2	NA	NT	ND<1.0	NT	NT	NT	ND<1.0		
Cadmium	34	1,000	NA	NT	1.1	NT	NT	NT_	2.5		
Chromium	100*	100*	NA	NT	6.7	NT	NT	NT	6.3		
Copper	2,500	76,000	NA	NT	45	NT	NT	NT	220		
Lead	500	1,000	NA	NT	38	NT	NT	NT	140		
Mercury	20	610	NA	NT	ND<0.20	NT	NT	NT	2.4		
Nickel	1,400	7,500	NA	NT	13	NT	NT	NT	11		
Selenium	340	10,000	NA	NT	ND<1.0	NT	NT	NT	2,5		

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 5 of 117

Table A0C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	osure Criteria Soli g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soi	il Sample Cond	centrations (p	(mc	-
	Residential	Industrial/ Commercial	GB Area	ТВ-ННН	ТВ-ННН	тв-ннн	тв-ннн	TB-III	TB-III
Depth Below Grade (ft.)				(0.0-0.3)	(1.3-2.3)	(2.3-4.3)	(4.3-6.3)	(0.0-0.3)	
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	(1-3) 4/1/2002
Total Metals (Cont'd)									17172002
Silver	340	10,000	NA .	NT	ND<2.0	NT	NT	NT	ND co.o.
Thallium	5.4	160	NA	NT	6.6	NT	NT	NT	ND<2.0
Vanadium	470	14,000	NA	NT	18	NT	NT	NT	14
Zinc	20,000	610,000	NA	NT	40	NT	NT	NT	220
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	ND<50	ND<50	NT	NT	ND<50

	-	١.		
N	п		σ.	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on feachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPt.P PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for teachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Tab C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	for	sure Criteria Soll	Pollutant Mobility Criteria for		, , , , , , , , , , , , , , , , , , , ,		- <u>, -</u>		
Analyte	(mg	g/kg)	Soil (mg/kg)		pm)	j			
	Residential	Industrial/ Commercial	GB Area	TB-III	TB-III	TB-III	TB-III	TB-JJJ	TB-JJJ
Depth Below Grade (ft.)				(3.5-4.5)	(5-7)	(10-12)	(20-22)	(0.0-0.3)	(1-3)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	ND<0.20	NT	ND<0.20	ND<0.20	NT	NT
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	ND<0.20	ND<0.20	NT	NT
Anthracene	1,000	2,500	400	ND<0.20	NT	ND<0.20	ND<0.20	NT	NT
Benzo[a]anthracene	1	7.8	1	0.37	NT NT	0.90	ND<0.20	NT	NT
Benzo[a]pyrene	1	1	1	0.45	NT	0.90	ND<0.20	NT	NT
Benzo[b]fluoranthene	1	7.8	1	0.30	NT	0.72	ND<0.20	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	0.85	NT	1.2	ND<0.20	NT	NT
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	NT	ND<0.20	ND<0.20	NT	NT
Chrysene	84	780	1	0.35	NT	0.68	ND<0.20	NT	NT
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	0.23	ND<0.20	NT	NT
Fluoranthene	1,000	2,500	56	0.59	NT	1.6	ND<0.20	NT	NT
Fluorene	1,000	2,500	56	ND<0.20	NT	ND<0.20	ND<0.20	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.67	NT	1.2	ND<0.20	NT	NT
Naphthalene	1,000	2,500	56	ND<0.20	NT	ND<0.20	ND<0.20	NT	NT
Phenanthrene	1,000	2,500	40	0.29	NT NT	0.47	ND<0.20	NT	NT
Pyrene	1,000	2,500	40	0.55	NT	1.4	ND<0.20	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)			· · · · · · · · · · · · · · · · · · ·						
Ethylbenzene	500	1,000	10.1	NT	ND<0.005	ND<0.005	NT	0.056	ND<0.005
Isopropyibenzene	500	1,000	132	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005
4-Isopropyltoluene	500	1,000	41.8	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005
Naphthalene	1,000	2,500	56	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005
n-Propylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005
Tetrachloroethene	12	110	1	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005
Toluene	500	1,000	67	NT	ND<0.005	ND<0.005	NT	0.082	ND<0.005
Trichloroethene	56	520	1.0	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.005	ND<0.005	NT	ND<0.005	0.018
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005
Xylenes (total)	500	1,000	19.5	NT	ND<0.005	ND<0.005	NT	0.337	ND<0.005

Tab###C-12 2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, item mavem	, 01						
Analyte	for	osure Criteria r Soil g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)								
randyto			Soli (mg/kg)	 	501	Sample Con	centrations (p	pm)			
	Residential	Industrial/ Commercial	GB Area	TB-III	_ TB-III						
Depth Below Grade (ft.)				(3.5-4.5)	(5-7)	(10-12)	(20-22)	(0.0-0.3)	TB-JJJ (1-3)		
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002		
USEPA Method 8082 Polychlorinated Biphenyis (PCBs)											
PCB-1242	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50		
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50		
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50		
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50		
Cyanide (total)	1,400	41,000	NA NA	NT	NT			İ			
	1,400	41,000	IVA	INI	NI	NT	NT	NT	NT		
SPLP Metals	_										
Antimony	NA	NA	0.06	ND<0.006	NT	NT	NT	NT	NT		
Arsenic	NA	NA	0.5	ND<0.05	NT	NT	NT	NT	NT		
Barlum	NA	NA NA	10	0.39	NT	NT	NT	NT	NT		
Copper	NA	NA NA	13	ND<0.04	NT	NT	NT	NT	NT		
Lead	NA	NA NA	0.15	ND<0.013	NT NT	NT	NT	NT	NT		
Mercury	NA NA	NA NA	0.02	ND<0.002	NT	NT	NT	NT	NT		
Nickel	NA	NA	1.0	ND<0.05	NT	NT	NT	NT	NT		
Selenium	NA NA	NA NA	0.50	ND<0.01	NT	NT	NT	NT	NT		
Thallium	NA NA	NA NA	0.05	ND<0.005	NT	NT	NT	NT	NT		
Vanadium	NA	NA NA	0.50	ND<0.05	NT	NT	NT	NT	NT		
Zinc	NA NA	NA NA	50	0.18	NT	NT	NT	NT	NT		
Total Metals											
Antimony	27	8,200	NA	3.2	NT	NT	NT	NT	NT		
Arsenic	10	10	NA	35	NT	NT	NT	NT	NT		
Barium	4,700	140,000	NA	34	NT	NT	NT	NT	NT		
Beryllium	2	2	NA	ND<1.0	NT	NT	NT	NT	NT		
Cadmium	34	1,000	NA	1.9	NT	NT	NT	NT	NT		
Chromium	100*	100*	NA	5.0	NT	NT	NT	NT	NT		
Copper	2,500	76,000	NA	65	NT	NT	NT	NT	NT		
Lead	500	1,000	NA	320	NT	NT	NT	NT	NT		
Mercury	20	610	NA	0.57	NT	NT	NT	NT	NT		
Nickel	1,400	7,500	NA	5.6	NT	NT	NT	NT	NT		
Selenium	340	10,000	NA	ND<1.0	NT	NT	NT	NT	NT		

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT

Analyte	for	esure Criteria Soil g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	ty for				pm)		
		Industrial/				<u>'</u>				
	Residential	Commercial	GB Area	TB-III	TB-III	TB-III	TB-III	TB-JJJ	TB-JJJ	
Depth Below Grade (ft.)				(3.5-4.5)	(5-7)	(10-12)	(20-22)	(0.0-0.3)	(1-3)	
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	
Total Metals (Cont'd)										
Silver	340	10,000	NA	ND<2.0	NT	NT	NT	NT	NT	
Thallium	5.4	160	NA	12	NT	NT	NT	NT	NT	
Vanadium	470	14,000	NA	13	NT	NT	NT	NT	NT	
Zinc	20,000	610,000	NA	50	NT	NT	NT	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	NT	ND<50	ND<50	NT	NT	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

* = 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory

minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table HDC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven. CT

		QE/	English Station	, New Haver	ı, CT				
Analyte	for	osure Criteria r Soil g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)						
		industrial/			T	1	()	j,	
	Residential	Commercial	GB Area	TB-JJJ	тв-ккк	тв-ккк	тв-ккк	тв-ккк	TB-LLL
Depth Below Grade (ft.)				(5-7)	(0.0-0.3)	(1-3)	(3-5)	(5-7)	(0.0-0.3)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002
USEPA Method 8270 Polynuclear									
Aromatic Hydrocarbons (PAHs)					ł				}
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	NT	AUT.	
Acenaphthylene	1,000	2,500	84	NT	NT	ND<0.20	NT	NT NT	NT
Anthracene	1,000	2,500	400	NT	NT	ND<0.20	NT	NT	NT NT
Benzo[a]anthracene	1	7.8	1	NT	NT	ND<0.20	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	NT	ND<0.20	NT	NT	NT NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	0.22	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	ND<0.20	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	ND<0.20	NT	NT	NT
Chrysene	84	780	1	NT	NT	0.34	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	ND<0.20	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT
Fluorene	1,000	2,500	56	NT	NT.	ND<0.20	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	ND<0.20	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	0.20	NT	NT	NT
Pyrene	1,000	2,500	40	NT	NT	ND<0.20	NT	NT	NT
USEPA Method 8260 Volatile									
Organic Compounds (VOCs)									
Ethylbenzene	500	1,000	10,1	NT	ND<0.005	ND<0.25	NT	NT	NT
Isopropyibenzene	500	1,000	132	NT	ND<0.005	ND<0.25	NT	NT	NT
4-Isopropyltoluene	500	1,000	41.8	NT	ND<0.005	ND<0.25	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	ND<0.005	ND<0.25	NT	NT	- NT
n-Propylbenzene	500	1,000	14	NT	ND<0.005	ND<0.25	NT	NT	NT
Tetrachloroethene	12	110	1	NT	ND<0.005	ND<0.25	NT	NT	NT
Toluene	500	1,000	67	NT	ND<0.005	ND<0.25	NT	NT	NT
Trichloroethene	56	520	1.0	NT	ND<0.005	ND<0.25	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.005	ND<0.25			
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.005		NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.005	ND<0.25	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	ND<0.005	ND<0.25 ND<0.25	NT NT	NT NT	NT NT

Table AOC-12.2 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	osure Criteria Soil g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)		Co.	1 Samula Cana			
Allalyto			Sou (mg/kg)			l Sample Cond	entrations (p	om)	
	5	Industrial/	00.4	 -	TD 1000				
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-JJJ	TB-KKK	TB-KKK	TB-KKK	TB-KKK	TB-LLL
Sample Collection Date				(5-7) 4/1/2002	(0.0-0.3) 4/1/2002	(1-3) 4/1/2002	(3-5) 4/1/2002	(5-7) 4/1/2002	(0.0-0.3)
				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002
USEPA Method 8082 Polychlorinated Biphenyis (PCBs)									
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT
SPLP Metals		 							
Antimony	NA	NA NA	0.06	NT	NT	ND<0.006	NT	NT	NT
Arsenic	NA NA	NA I	0.5	NT	NT	ND<0.05	NT	NT	NT
Barium	NA NA	NA	10	NT	NT	0.13	NT	NT	NT
Copper	NA NA	NA NA	13	NT	NT	ND<0.04	NT	NT	NT
Lead	NA NA	NA	0.15	NT	NT	ND<0.013	NT	NT	NT
Mercury	NA NA	NA	0.02	NT	NT	ND<0.002	NT	NT	NT
Nickel	NA	NA	1.0	NT	NT	ND<0.05	NT	NT	NT
Selenium	NA NA	NA NA	0.50	NT	NT	ND<0.01	NT	NT	NT
Thallium	NA	NA	0.05	NT	NT	ND<0.005	NT	NT	NT
Vanadium	NA	NA NA	0.50	NT	NT	ND<0.05	NT	NT	NT
Zinc	NA NA	NA_	50	NT	NT	0.12	NT	NT	NT
Total Metals									
Antimony	27	8,200	NA	NT	NT_	ND<2.0	NT	_ NT	NT
Arsenic	10	10	NA	NT	NT	14	NT	NT	NT
Barlum	4,700	140,000	NA	NT	NT	30	NT	NT	NT
Beryllium	2	2	NA	NT	NT	ND<1.0	NT	NT	NT
Cadmium	34	1,000	NA	NT	NT	2.2	NT	NT	NT
Chromium	100*	100*	NA	NT	NT	5.6	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	25	NT	NT	NT
Lead	500	1,000	NA	NT	NT	18	NT	NT	NT
Mercury	20	610	NA	NT	NT	ND<0.20	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	16	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	ND<1.0	NT	NT	NT

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	osure Criteria Soll g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)				om)		
		Industriat/				l '	(μ)			
	Residential	Commercial	GB Area	TB-JJJ	тв-ккк	ТВ-ККК	ТВ-ККК	тв-ккк	TB-LLL	
Depth Below Grade (ft.)				(5-7)	(0.0-0.3)	(1-3)	(3-5)	(5-7)	(0.0-0.3)	
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	
Total Metals (Cont'd)									"172002	
Silver	340	10,000	NA	NT	NT	ND<2.0	NT	NT		
Thallium	5,4	160	NA	NT	NT	12			NT	
Vanadium	470	14,000	NA NA	NT			NT NT	NT	NT_	
Zinc					NT	15	NT	NT	NT	
ZIIIG	20,000	610,000	NA	NT	NT	12	NT	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	ND<50	NT	NT	NT	

81	_	-	_	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Taill Hbc-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		-	English Station	, item Havell	, 01				
Analyte	for	sure Criteria Soil 1/kg)	Criteria for						
Analyto	(11)		Soli (mg/kg)		Sol	I Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-LLL	TB-LLL	ТВ-МММ	ТВ-МММ	ТВ-МММ	TB-NNN
Depth Below Grade (ft.)				(1-3)	(5-7)	(0.0-0.3)	(0.3-1.3)	(2-4)	(0.0-0.3)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT
Anthracene	1,000	2,500	400	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT
Benzo[a]anthracene	1	7.8	1	0.30	NT	NT	ND<0.20	ND<0.20	NT
Benzo[a]pyrene	1	1	1	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT
Benzo[b]fluoranthene	1	7.8	1	0.20	NT	NT	ND<0.20	ND<0.20	NT
Benzo[g,h,i]perylene	1,000	2,500	42	0.20	NT	NT	ND<0.20	ND<0.20	NT
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT
Chrysene	84	780	1	0.37	NT	NT	ND<0.20	ND<0.20	NT
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT
Fluoranthene	1,000	2,500	56	0.26	NT	NT	ND<0.20	ND<0.20	NT
Fluorene	1,000	2,500	56	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT
Naphthalene	1,000	2,500	56	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT
Phenanthrene	1,000	2,500	40	0.34	NT	NT	ND<0.20	ND<0.20	NT
Pyrene	1,000	2,500	40	0.21	NT	NT	ND<0.20	ND<0,20	NT
USEPA Method 8260 Volatile									
Organic Compounds (VOCs)									
Ethylbenzene	500	1,000	10.1	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
Isopropylbenzene	500	1,000	132	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
4-Isopropyitoluene	500	1,000	41.8	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
Naphthalene	1,000	2,500	56	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
n-Propylbenzene	500	1,000	14	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
Tetrachloroethene	12	110	1	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
Toluene	500	1,000	67	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
Trichloroethene	56	520	1.0	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT
Xylenes (total)	500	1,000	19.5	ND<0.25	NT	NT	ND<0.005	ND<0.25	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 13 of 117

Ta C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		osure Criteria Soil	Pollutant Mobility Criteria for						
Analyte	(m	g/kg)	Soil (mg/kg)		Soi	il Sample Con	centrations (p	(ma	
		Industrial/					· ·		
	Residential	Commerciai	GB Area	TB-LLL	TB-LLL	тв-ммм	ТВ-МММ	ТВ-МММ	TB-NNN
Depth Below Grade (ft.)				(1-3)	(5-7)	(0.0-0.3)	(0.3-1.3)	(2-4)	(0.0-0.3)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1242	11	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT
SPLP Metals									
Antimony	NA	NA NA	0.06	ND<0.006	NT	NT	ND<0.006	ND<0.006	NT
Arsenic	NA	NA NA	0.5	ND<0.05	NT	NT	ND<0.05	ND<0.05	NT
Barium	NA NA	NA NA	10	0.52	NT	NT	0.16	0.19	NT
Copper	NA NA	NA	13	ND<0.04	NT	NT	ND<0.04	ND<0.04	NT
Lead	NA	NA	0.15	0.019	NT	NT	ND<0.013	ND<0.013	NT
Mercury	NA	NA	0.02	ND<0.002	NT	NT	ND<0.002	ND<0.002	NT
Nickel	NA	NA	1.0	ND<0.05	NT	NT	ND<0.05	0.16	NT
Selenium	NA	NA	0.50	ND<0.01	NT	NT	ND<0.01	ND<0.01	NT
Thallium	NA	NA	0.05	ND<0.005	NT	NT	ND<0.005	ND<0.005	NT
Vanadium	NA	NA	0.50	ND<0.05	NT	NT	ND<0.05	ND<0.05	NT
Zinc	NA NA	NA	50	0.21	NT	NT	0.12	0.29	NT
Total Metals	T								
Antimony	27	8,200	NA	ND<2.0	NT	NT	ND<2.0	ND<2.0	NT
Arsenic	10	10	NA	14	NT	NT	ND<1.0	9.4	NT
Barium	4,700	140,000	NA	40	NT	NT	25	24	NT
Beryllium	2	2	NA	ND<1.0	NT	NT	ND<1.0	ND<1.0	NT
Cadmium	34	1,000	NA	1.9	NT	NT	1.3	3.2	NT
Chromium	100*	100*	NA	11	NT	NT	8.2	5.9	NT
Copper	2,500	76,000	NA	45	NT	NT	48	27	NT
Lead .	500	1,000	NA	31	NT	NT	5.7	24	NT
Mercury	20	610	NA	0.22	NT	NT	ND<0.20	ND<0.20	NT
Nickel	1,400	7,500	NA	13	NT	NT	11	17	NT
Selenium	340	10,000	NA	ND<1.0	NT	NT	ND<1.0	ND<1.0	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 14 of 117

Table History

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven. CT

Analyte Depth Below Grade (ft.)	for	sure Criteria Soll g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Sol	I Sample Con	centrations (p	om)	
	Residential	Industrial/ Commercial	GB Area	TB-LLL	TB-LLL	тв-ммм	тв-ммм	TB-MMM	TB-NNN
Depth Below Grade (ft.)				(1-3)	(5-7)	(0.0-0.3)	(0.3-1.3)	(2-4)	(0.0-0.3)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002
Total Metals (Cont'd)									
Silver	340	10,000	NA	ND<2.0	NT	NT	ND<2.0	ND<2.0	NT
Thallium	5.4	160	NA	9.1	NT	NT	7.9	17	NT
Vanadium	470	14,000	NA	23	NT	NT	52	12	NT
Zinc	20,000	610,000	NA	34	NT	NT	24	15	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	NT	NT	1,100	ND<50	NT

R.	_	١.	_	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

* = 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Ta CC-12 2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, item ilavei	i, C1				
Analyte	for	osure Criteria r Soil	Pollutant Mobility Criteria for						
Allalyte	<u>(m</u>	g/kg)	Soil (mg/kg)		Soi	I Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-NNN	TB-NNN	TB-NNN	TB-000	TB-000	TB-000
Depth Below Grade (ft.)				(0.3-2.3)	(2.3-4.3)	(4.3-6.3)	(0.0-0.3)	(0.3-1.3)	(3-3.5)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	ND<0.20	ND<0.20	NT	NT	NT	0.69
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	NT	NT	NT NT	0.30
Anthracene	1,000	2,500	400	ND<0.20	ND<0.20	NT	NT	NT	6.8
Benzo[a]anthracene	1	7.8	1	ND<0.20	ND<0.20	NT	NT	NT	34
Benzo[a]pyrene	1	1	11	ND<0.20	ND<0.20	NT	NT	NT	6.0
Benzo[b]fluoranthene	1	7.8	1	ND<0.20	ND<0.20	NT	NT	NT	45
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	ND<0.20	NT	NT	NT	20
Benzo[k]fluoranthene	8.4	78	11	ND<0.20	ND<0.20	NT	NT	NT	6.0
Chrysene	84	780	1	ND<0.20	ND<0.20	NT	NT	NT	42
Dibenz[a,h]anthracene	1	11	1	ND<0.20	ND<0.20	NT	NT	NT	7.8
Fluoranthene	1,000	2,500	56	ND<0.20	ND<0.20	NT	NT	NT	2.8
Fluorene	1,000	2,500	56	ND<0.20	ND<0.20	NT	NT	NT	0.60
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	ND<0.20	NT	NT	NT	25
Naphthalene	1,000	2,500	56	ND<0.20	ND<0.20	NT	NT	NT	0.51
Phenanthrene	1,000	2,500	40	ND<0.20	ND<0.20	NT	NT	NT	4.7
Pyrene	1,000	2,500	40	ND<0.20	ND<0.20	NT	NT	NT	1.8
USEPA Method 8260 Volatile									1.0
Organic Compounds (VOCs)									
Ethylbenzene	500	1,000	10.1	ND<0.005	ND<0.005	NT	0.019	ND<0.005	ND<0,25
Isopropylbenzene	500	1,000	132	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.25
4-isopropyltoluene	500	1,000	41.8	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.25
Naphthalene	1,000	2,500	56	ND<0.005	ND<0.005	· NT	0.016	ND<0.005	ND<0.25
n-Propylbenzene	500	1,000	14	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.25
Tetrachloroethene	12	110	1	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.25
Toluene	500	1,000	67	ND<0.005	ND<0.005	NT	0.044	ND<0.005	ND<0.25
Trichloroethene	56	520	1.0	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.25
1,1,1-Trichloroethane .	500	1,000	40	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.25
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.25
1,3,5-Trimethylbenzene	. 500	1,000	70	ND<0.005	ND<0.005	NT	ND<0.005	ND<0.005	ND<0.25
Xylenes (total)	500	1,000	19.5	ND<0.005	ND<0.005	NT	0.118	ND<0.005	ND<0.25

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 15 of 117

Tall HDC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, ivew ilavell	, 61				
Analyte	for	sure Criteria Soli 1/kg)	Pollutant Mobility Criteria for Soll (mg/kg)	lity a for					
			con (mg/kg)		301	i Sample Cond	centrations (p	pm)	,
	Residential	Industrial/ Commercial	GB Area	TB-NNN	TB-NNN	TB-NNN	TB-000	TB-000	TB-000
Depth Balow Grade (ft.)				(0.3-2.3)	(2.3-4.3)	(4.3-6.3)	(0.0-0.3)	(0.3-1.3)	(3-3.5)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1242	1	10	-NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000							
Cyanide (total)	1,400	41,000	NA	NT_	NT	NT	NT NT	NT	NT
SPLP Metals								<u> </u>	
Antimony	NA	NA	0.06	ND<0.006	ND<0.006	NT	NT	NT	0.009
Arsenic	NA	NA	0.5	ND<0.05	ND<0.05	NT	NT	NT	ND<0.05
Barium	NA	NA	10	0.32	0.38	NT	NT	NT	0.41
Copper	NA	NA	13	ND<0.04	ND<0.04	NT	NT	NT	ND<0.04
Lead	NA	NA	0.15	ND<0.013	ND<0.013	NT	NT	NT	0.032
Mercury	NA NA	_ NA	0.02	ND<0.002	ND<0.002	NT	NT	NT	ND<0.002
Nickel	NA	NA	1.0	ND<0.05	ND<0.05	NT	NT	NT	ND<0.05
Selenium	NA	NA	0.50	ND<0.01	ND<0.01	NT	NT	NT	ND<0.01
Thallium	NA	NA NA	0.05	ND<0.005	ND<0.005	NT	NT	NT	ND<0.005
Vanadium	NA NA	NA	0.50	ND<0.05	ND<0.05	NT	NT	NT	ND<0.05
Zinc	NA	NA	50	0.32	0.30	NT	NT	NT	0.20
Total Metals									
Antimony	27	8,200	NA	ND<2.0	11	NT	NT	NT	ND<2.0
Arsenic	10	10	NA NA	ND<1.0	2.3	NT	NT	NT	60
Barlum	4,700	140,000	NA	51	230	NT	NT	NT	120
Beryllium	2	2	NA	ND<1.0	7.4	NT	NT	NT	ND<1.0
Cadmium	34	1,000	NA	1.0	5.4	NT	NT	NT	2.9
Chromium	100*	100*	NA	9.6	120 ⁽³⁾	NT	NT	NT	13
Copper	2,500	76,000	NA	15	1,400	NT	NT	NT	110
Lead	500	1,000	NA	9,9	1,000	NT	NT	NT	320
Mercury	20	610	NA	ND<0.20	ND<0.20	NT	NT	NT	1.8
Nickel	1,400	7,500	NA	7.5	500	NT	NT	NT	14
Selenium	340	10,000	NA NA	ND<1.0	1.4	NT	NT	NT	1.9

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 17 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	industrial/ Commercial	GB Area	TB-NNN	TB-NNN	TB-NNN	TB-000	TB-000	TB-000	
Depth Below Grade (ft.)				(0.3-2.3)	(2.3-4.3)	(4.3-6,3)	(0.0-0.3)	(0.3-1,3)	(3-3.5)	
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	
Total Metals (Cont'd)			· · · · · · · · · · · · · · · · · · ·							
Silver	340	10,000	NA	ND<2.0	ND<2.0	NT	NT	NT	ND<2.0	
Thallium	5.4	160	NA	5.9	29	NT	NT	NT	8.8	
Vanadium	470	14,000	NA	22	25	NT	NT	NT	15	
Zinc	20,000	610,000	NA	20	2,700	NT	NT	NT	170	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	ND<50	NT	NT	NT	510	

N	n	۱e	•	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromlum.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection fimit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table HOC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	 ,		English Station	, ivew maven	, 01				
Analyte	for	sure Criteria Soil g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)		5 0.	I Samula Cara			
Zaralyto	(11)		Gon (mg/kg)		301	l Sample Cond	entrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-000	TB-PPP	TB-PPP	TB-PPP	TB-PPP	TB-PPP
Depth Below Grade (ft.)				(4-6)	(0-0.3)	(0.3-2.3)	(2.5-3)	(3.5-4)	(4.3-6.3)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	NT	0.25	NT	NT	NT
Anthracene	1,000	2,500	400	NT	NT	0.23	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	2.0	NT	NT	NT
Benzo[a]pyrene	1	11	1	NT	NT	2.8	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	3.2	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	2.5	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	1.2	NT	NT	NT
Chrysene	84	780	1	NT	NT	1.8	NT	NT	NT
Dibenz[a,h]anthracene	11	1	1	NT	NT	0.50	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	· 3.0	NT	NT	NT
Fluorene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	2.8	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	1.1	NT	NT	NT
Pyrene	1,000	2,500	40	NT	NT	2.9	NT	NT	NT
USEPA Method 8260 Volatile									
Organic Compounds (VOCs)			·						
Ethylbenzene	500	1,000	10.1	NT	NT	ND<0.25	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	ND<0.25	NT	NT	NT
4-Isopropyltoluene	500	1,000	41.8	NT	NT	ND<0.25	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	ND<0.25	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.25	NT	NT	NT
Tetrachloroethene	12	110	1	NT	NT	ND<0.25	NT	NT	NT
Toluene	500	1,000	67	NT	NT	ND<0.25	NT	NT	NT
Trichloroethene	56	520	1.0	NT	NT	ND<0.25	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	ND<0.25	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.25	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.25	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	ND<0.25	NT	NT	NT

Table AOC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	T		Pollutant								
		osure Criteria	Mobility	ŀ							
1	L L	r Soll	Criteria for	Ī							
Analyte	(m	g/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	ł	Industrial/									
	Residential	Commercial	GB Area	TB-000	TB-PPP	TB-PPP	TB-PPP	TB-PPP	TB-PPP		
Depth Below Grade (ft.)				(4-6)	(0-0.3)	(0.3-2.3)	(2.5-3)	(3.5-4)	(4.3-6.3)		
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002		
USEPA Method 8082 Polychlorinated											
Biphenyis (PCBs)		1		ł	ļ	1		ŀ			
PCB-1242	11	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1260	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT				
	-,,,,,,,	11,000			NI -	INI	NI.	NT	NT		
SPLP Metals											
Antimony	NA	NA	0.06	NT	NT	ND<0.006	NT	NT	NT		
Arsenic	NA	NA	0.5	NT	NT	ND<0.05	NT	NT	NT		
Barlum	NA	NA NA	10	NT	NT	0.25	NT	NT	NT		
Copper	NA NA	NA NA	13	NT	NT	ND<0.04	NT	NT	NT		
Lead	NA NA	NA	0.15	NT	NT	ND<0.013	NT	NT	NT		
Mercury	NA NA	NA NA	0.02	NT	NT	ND<0.002	NT	NT	NT		
Nickel	NA NA	NA NA	1.0	NT	NT	ND<0.05	NT	NT	NT		
Selenium	NA NA	NA NA	0.50	NT	NT	ND<0.01	NT	NT	NT		
Thallium	NA NA	NA NA	0.05	NT	NT	ND<0.005	NT	NT	NT		
Vanadium	NA NA	NA NA	0.50	NT	NT	ND<0.05	NT	NT	NT		
Zinc	NA NA	NA NA	50	NT	NT	0.27	NT	NT	NT		
Total Metals											
Antimony	27	8,200	NA	NT	NT	ND<2.0	NT	NT	NT		
Arsenic	10	10	NA	NT	NT	6.8	NT	NT	NT		
Barium	4,700	140,000	NA	NT	NT	76	NT	NT	NT		
Beryllium	2	2	NA	NT	NT	ND<1.0	NT	NT	NT		
Cadmium	34	1,000	NA	NT	NT	1.4	NT	NT	NT		
Chromium	100*	100*	NA	NT	NT	16	NT	NT	NT		
Copper	2,500	76,000	NA	NT	NT	55	NT	NT	NT		
Lead	500	1,000	NA	NT	NT	51	NT	NT	NT		
Mercury	20	610	NA	NT	NT	0.23	NT	NT	NT		
Nickel	1,400	7,500	NA	NT	NT	12	NT	NT	NT		
Selenium	340	10,000	NA	NT	NT	ND<1.0	NT	NT	NT		

Table AOC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven, CT

Analyte	Direct Exposure Criteria for Soli (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/						,		
Denth Balan Canda (61)	Residential	Commercial	GB Area	TB-000	TB-PPP	TB-PPP	TB-PPP	TB-PPP	TB-PPP	
Depth Below Grade (ft.)				(4-6)	(0-0.3)	(0.3-2.3)	(2.5-3)	(3.5-4)	(4.3-6.3)	
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/1/2002	
Total Metals (Cont'd)										
Silver	340	10,000	NA	NT	NT	ND<2.0	NT	NT	NT	
Thallium	5.4	160	NA .	NT	NT	7.9	NT	NT	NT	
Vanadium	470	14,000	NA NA	NT	NT	41	NT	NT		
Zinc	20,000	610,000	NA NA	NT	NT	68	NT	NT NT	NT NT	
Connecticut Extractable Total										
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	ND<50	NT	NT	NT	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

ТаШШС-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		40.	engush Station	, INCW Haven	1, 61				
Analyte	for	osure Criteria r Soil	Pollutant Mobility Criteria for Soil (mg/kg)						
Atlatyte	<u> </u>	g/kg)	Soli (mg/kg)		Soi	I Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-QQQ	TB-QQQ	TB-QQQ	TB-QQQ	TB-RRR	TB-RRR
Depth Below Grade (ft.)				(0-0,3)	(0.3-2.3)	(2.3-4.3)	(4.3-5)	(0.0-0.3)	(0.3-0.6)
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/2/2002	4/2/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	NT
Chrysene	84	780	1	NT	NT	NT	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile									
Organic Compounds (VOCs)									
Ethylbenzene	500	1,000	10.1	NT	ND<0.25	NT	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	ND<0.25	NT	NT	NT	NT
4-Isopropyitoluene	500	1,000	41.8	NT	ND<0.25	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	ND<0.25	NT	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	ND<0.25	NT	NT	NT	NT
Tetrachloroethene	12	110	1	NT	ND<0.25	NT	NT	NT	NT
Toluene	500	1,000	67	NT	ND<0.25	NT	NT	NT	NT
Trichloroethene	56	520	1.0	NT	ND<0.25	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.25	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.25	NT	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.25	NT	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	ND<0.25	NT	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 22 of 117

Table ACC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			english Station	, IVEW HAVEH	, 01			_	
Analyte	for	sure Criteria Soil g/kg)	Pollutant Mobility Criteria for						
Zarajyto	(11)		Soil (mg/kg)	ļ	Soi	il Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-QQQ	TB-QQQ	TB-QQQ	TB-QQQ	TB-RRR	TB-RRR
Depth Below Grade (ft.)				(0-0.3)	(0.3-2.3)	(2.3-4.3)	(4.3-5)	(0.0-0.3)	(0.3-0.6)
Sample Collection Date	_			4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/2/2002	4/2/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	NT	ŇŤ	NT	NT	NT	NT NT
SPLP Metals									
Antimony	NA NA	NA NA	0.06	AUT	1	<u> </u>			
Arsenic	NA NA	NA NA	0.5	NT	NT	NT	NT	NT	NT
Barium	NA NA	NA NA	10	NT NT	NT	NT	NT NT	NT	NT
Copper	NA NA	NA NA	13	NT	NT NT	NT	NT	NT	NT
Lead	NA NA	NA NA	0.15	NT	NT	NT	NT	NT	NT
Mercury	NA NA	NA NA	0.02	NT	NT	NT NT	NT	NT	NT
Nickel	NA NA	NA NA	1.0	NT	NT	NT	NT	NT	NT
Selenium	NA NA	NA NA	0.50	NT	NT	NT	NT NT	NT	NT
Thallium	NA NA	NA NA	0.05	NT	NT	NT		NT	NT
Vanadium	NA NA	NA NA	0.50	NT	NT	NT	NT NT	NT	NT
Zinc	NA NA	NA NA	50	NT	NT	NT	NT	NT NT	NT
Total Metals				- '''			IVI	181	NT
Antimony	27	8,200	NA NA	NT					
Arsenic	10	10	NA NA		NT	NT	NT	NT	NT
Barium	4,700	140,000	NA NA	NT NT	NT NT	NT	NT	NT	NT
Beryllium	2	2	NA NA	NT	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA NA	NT	NT	NT	NT	NT	NT
Chromium	100*	100*	NA NA	NT	NT	NT NT	NT NT	NT	NT
Copper	2,500	76,000	NA NA	NT	NT	NT	NT	NT NT	NT NT
Lead	500	1,000	NA NA	NT	NT	NT	NT	NT	NT
Mercury	20	610	NA NA	NT	NT	NT	NT	NT	NT NT
Nickel	1,400	7,500	NA NA	NT	NT	NT	NT	NT	NT
Selenium	340	10,000	NA NA	NT	NT	NT	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 23 of 117

Ta OC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven, CT

Analyte			Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial/	· · · · - · · · · · · · · · · · · ·				()				
David Dalama Carlo	Residential	Commercial	GB Area	TB-QQQ	TB-QQQ	TB-QQQ	TB-QQQ	TB-RRR	TB-RRR		
Depth Below Grade (ft.)				(0-0.3)	(0.3-2.3)	(2.3-4.3)	(4.3-5)	(0.0-0.3)	(0.3-0.6)		
Sample Collection Date				4/1/2002	4/1/2002	4/1/2002	4/1/2002	4/2/2002	4/2/2002		
Total Metals (Cont'd)									7722002		
Silver	340	10,000	NA	NT	NT	NT	NIT				
Thallium	5.4	160	NA NA	NT	NT		NT	NT	NT		
Vanadium	470	14,000	NA NA			NT	NT	NT	NT		
Zinc				NT	NT	NT	NT	NT	NT		
	20,000	610,000	NA NA	NT	NT	NT	NT	NT	NT		
Connecticut Extractable Total											
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT ·	NT		

N	~!~~!
ľ	otes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory

minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

= Submitted as a Quality Control (QC) duplicate sample.

Table ADC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, item flaveli	, 61				
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Poliutant Mobility Criteria for Soll (mg/kg)		6.1	1.6			
	- 	Industrial/	Con (mg/kg)		<u> </u>	i Sample Con	centrations (p	pm)	
	Residential		GB Area	TB-RRR	TB-RRR	TB-SSS	TB-SSS	TB-SSS	TB-SSS
Depth Below Grade (ft.)				(0.6-2.6)	(4.6-6.6)	(0.0-0.3)	(0.3-0.6)	(2.6-4.6)	(6.6-8.6)
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	11	NT	NT	NT	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	NT
Chrysene	84	780	1	NT	NT	NT	NT	NT	NT
Dibenz(a,h)anthracene	11	1	1	NT	NT	NT	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile									
Organic Compounds (VOCs)	į								
Ethylbenzene	500	1,000	10.1	ND<0.005	NT	NT	NT	ND<0.005	NT
Isopropylbenzene	500	1,000	132	ND<0.005	NT	NT	NT	ND<0.005	NT
4-Isopropyltoluene	500	1,000	41.8	ND<0.005	NT	NT	NT	ND<0.005	NT
Naphthalene	1,000	2,500	56	ND<0.005	NT	NT	NT	0.019	NT
n-Propylbenzene	500	1,000	14	ND<0.005	NT	NT	NT	ND<0.005	NT
Tetrachloroethene	12	110	1	ND<0.005	NT	NT	NT	ND<0.005	NT
Toluene	500	1,000	67	ND<0.005	NT	NT	NT	ND<0.005	NT
Trichloroethene	56	520	1.0	ND<0.005	NT	NT	NT	ND<0.005	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.005	NT	NT	NT	ND<0.005	NT
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.005	NT	NT	NT	ND<0,005	NT
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.005	NT	NT	NT	ND<0.005	NT
Xylenes (total)	500	1,000	19.5	ND<0.005	NT	NT	NT	ND<0.005	NT

Table HDC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, item itaven	, 01				
Analyte	for	osure Criteria r Soli g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)		e-i				
		ī	Son (ingrkg)		501	I Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-RRR	TB-RRR	TB-SSS	TB-SSS	TB-SSS	TB-SSS
Depth Below Grade (ft.)				(0.6-2.6)	(4.6-6.6)	(0.0-0.3)	(0.3-0.6)	(2.6-4.6)	(6.6-8.6)
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT NT
SPLP Metals									
Antimony	NA	NA NA	0.06	NT	NT	NT	17		
Arsenic	NA NA	NA NA	0.5	NT	NT	NT	NT	NT	NT
Barlum	NA NA	NA NA	10	NT	NT	NT	NT	NT	NT
Copper	NA NA	NA NA	13	NT	NT	NT	NT NT	NT	NT
Lead	NA NA	NA NA	0.15	NT	NT	NT	NT	NT NT	NT NT
Mercury	NA	NA NA	0.02	NT	NT	NT	NT	NT	
Nickel	NA NA	NA NA	1.0	NT	NT	NT	NT	NT	NT NT
Selenium	NA NA	NA NA	0.50	NT	NT	NT	NT	NT	NT NT
Thallium	NA NA	NA NA	0.05	NT	NT	NT	NT	NT	NT NT
Vanadium	NA NA	NA NA	0.50	NT	NT	NT	NT	NT	NT
Zinc	NA	NA NA	50	NT	NT	NT	NT	NT	NT
Total Metals									
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT
Arsenic	10	10	NA	NT	NT ·	NT	NT	NT	NT
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT
Beryllium	2	2	NA	NT	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT
Chromium	100*	100*	NA	NT	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)						
	Pacidonial	Industrial/								
Depth Below Grade (ff.)	Residential	Commercial	GB Area	TB-RRR	TB-RRR	TB-SSS	TB-SSS	TB-SSS	TB-SSS	
	:			(0.6-2.6)	(4.6-6.6)	(0.0-0.3)	(0.3-0.6)	(2.6-4.6)	(6.6-8.6)	
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	
Total Metals (Cont'd)										
Silver	340	10,000	NA	NT	NT	NT	NT	NT	NT	
Thallium	5.4	160	NA	NT	NT	NT	NT			
Vanadium	470	14.000	NA.	NT	NT	NT		NT	NT	
Zinc	20,000	610,000	NA NA				NT	NT	NT	
	20,000	010,000	INA	NT	NT	NT	NT	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	ND<50	620	NT	

	R.

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units

are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.
 (1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected

above the laboratory mimimum detection limit.

 Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory

minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Ta C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)		So	il Sample Cond			
		Industrial/	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u></u>	i Sample Cont	entrations (p	pm) I	
	Residential		GB Area	TB-TTT	тв-ттт	тв-ттт	тв-ттт	TB-UUU	TB-UUU
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-0.6)	(0.6-2.6)	(4.6-6.6)	(0.0-0.3)	(0.3-0.6)
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									1122002
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	NT
Chrysene	84	780	11	NT	NT	NT	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile									
Organic Compounds (VOCs)	-								
Ethylbenzene	500	1,000	10.1	NT	NT	ND<0.005	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	ND<0.005	NT	NT	
4-isopropyltoluene	500	1,000	41.8	NT	NT	ND<0.005	NT		NT
Naphthalene	1,000	2,500	56	NT	NT	ND<0.005	NT	NT NT	NT NT
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.005	NT	NT	NT
Tetrachloroethene	12	110	1	NT	NT	ND<0.005	NT	NT	NT
Toluene	500	1,000	67	NT	NT	ND<0.005	NT	NT	NT
Trichloroethene	56	520	1.0	NT	NT	ND<0.005	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	ND<0.005	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	ND<0.005	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 28 of 117

Table AGC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		٠	English Station	, Item Haven	, 01					
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soll Sample Concentrations (ppm)						
		Industrial/	(l Campia Com	zentrations (p	21117	r	
Donath Datam On to (6)	Residential	Commercial	GB Area	тв-ттт	TB-TTT	TB-TTT	тв-ттт	TB-UUU	TB-UUU	
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-0.6)	(0.6-2.6)	(4.6-6.6)	(0.0-0.3)	(0.3-0.6)	
Sample Collection Date		ļ. ————		4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									- · 	
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
Cyanide (total)	1,400	41,000	NA NA	NT	AIT					
	1,400	41,000	IVA	N1	NT	NT	NT	NT	NT	
SPLP Metals										
Antimony	NA	NA	0.06	NT	NT	NT	NT	NT	NT	
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	NT	
Barium	NA NA	NA	10	NT	NT	NT	NT	NT	NT	
Copper	NA	NA NA	13	NT	NT	NT	NT	NT	NT	
Lead	NA	NA NA	0.15	NT	NT	NT	NT	NT	NT	
Mercury	NA	NA NA	0.02	NT	NT	NT	NT	NT	NT	
Nickel	NA	NA	1.0	NT	NT	NT	NT	NT	NT	
Selenium	NA	NA NA	0,50	NT	NT	NT	NT	NT	NT	
Thallium	NA	NA	0.05	NT	NT	NT	NT	NT	NT	
Vanadium	NA	NA	0.50	NT	NT	NT	NT	NT	NT	
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT	
Total Metals										
Antimony	27	8,200	NA NA	NT	NT	NT	NT	NT	NT	
Arsenic	10	10	NA	NT	NT	NT	NT	NT	NT	
Barlum	4,700	140,000	NA	NT	NT	NT	NT	NT	NT	
Beryllium	2	2	NA	NT	NT	NT	NT	NT	NT	
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT	
Chromium	100*	100*	NA NA	NT_	NT	NT	NT	NT	NT	
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT	
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT	
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT	
Nickel	1,400	7,500	NA NA	NT	NT	NT	NT	NT	NT	
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 29 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soll (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	тв-ттт	тв-ттт	тв-ттт	тв-ттт	TB-UUU	TDIBUL	
Depth Below Grade (ft.)	Tresidential	Commercial	OD Alea_	(0,0-0,3)	(0.3-0.6)	(0.6-2.6)	(4.6-6.6)	(0.0-0.3)	TB-UUU (0.3-0.6)	
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	
Total Metals (Cont'd)										
Silver	340	10,000	NA	NT	NT	NT	NT	NT	NT	
Thallium	5.4	160	NA	NT	NT	NT	NT	NT	NT	
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT	NT	
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT	

		_		
ı	^	٠.		•
ı	u	ıc	ю.	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units

are milligrams per liter (mg/L).

100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected

above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory

minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory

minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table ADC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			Ingusti Station		, 0.						
Analyte	Direct Exposure Criteria for Soll (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)		9 -1	S	A-A!4				
Airdiyte		7	Son (mg/kg)	Soil Sample Concentrations (ppm)							
<u> </u>	Residential	Industrial/ Commercial	GB Area	TB-UUU	TB-UUU	TB-UUU	TB-UUU	TB-UUU	TB-UUU		
Depth Below Grade (ft.)				(0.6-2.6)	(2.6-4.6)	(4.6-6.6)	(10-15)	(15-17)	(20-22)		
Sample Collection Date		<u> </u>		4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002		
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)			·								
Acenaphthene	1,000	2,500	84	ND<0.20	ND<0.20	NT	0.50	0.24	ND<0.20		
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	NT	1.3	1.2	ND<0.20		
Anthracene	1,000	2,500	400	ND<0.20	0.30	NT	1.5	0.99	ND<0.20		
Benzo[a]anthracene	1	7.8	1	ND<0.20	1.2	NT	2.6	3.5	ND<0.20		
_Benzo[a]pyrene	1	1	1	0.27	1.1	NT	3.3	6.3	ND<0.20		
Benzo[b]fluoranthene	1	7.8	1	0.27	1.7	NT	3.6	7.2	ND<0.20		
Benzo[g,h,i]perylene	1,000	2,500	42	0.30	1.3	NT	2.3	2.4	ND<0.20		
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	0.75	NT	1.6	4.0	ND<0.20		
Chrysene	84	780	1	ND<0.20	1.1	NT	2.6	4.1	ND<0.20		
Dibenz[a,h]anthracene	1	1	1	ND<0.20	0.25	NT	0.30	0.66	ND<0.20		
Fluoranthene	1,000	2,500	56 ,	0.24	2.4	NT	5.3	13	ND<0.20		
Fluorene	1,000	2,500	56	ND<0.20	ND<0.20	NT	1.9	0.30	ND<0.20		
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.28	1.3	NT	2.6	2.8	ND<0.20		
Naphthalene	1,000	2,500	56	ND<0.20	ND<0.20	NT	3.8	0.72	ND<0.20		
Phenanthrene	1,000	2,500	40	ND<0.20	1.4	NT	6.2	1.7	ND<0.20		
Pyrene	1,000	2,500	40	0.22	2.0	NT	5.0	14	ND<0.20		
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
Ethylbenzene	500	1,000	40.4								
Isopropylbenzene	500		10.1	NT NT	NT	NT	NT	NT	NT		
4-Isopropyltoluene	500	1,000	132	NT	NT	NT	NT	NT	NT		
Naphthalene	1,000	1,000 2,500	41.8 56	NT	NT	NT	NT	NT	NT		
n-Propylbenzene	500	1,000		NT	NT	NT	NT	NT	NT_		
Tetrachloroethene	12	110	14	NT	NT	NT	NT	NT	NT		
Toluene	500	1,000	67	NT	NT	NT	NT	NT	NT		
Trichloroethene	56	520	1.0	NT NT	NT	NT	NT	NT	NT		
					NT	NT	NT	NT	NT		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT .		
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 31 of 117

Table AOC-12.2 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	sure Criteria Soll a/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soll Sample Concentrations (ppm)						
	- (11)		Son (ing/kg)		301	i Sample Cond	entrations (p)	pm)			
	Residential	Industrial/ Commercial	GB Area	TB-UUU	ТВ-UUU	TB-UUU	TB-UUU	TB-UUU	TB-UUU		
Depth Below Grade (ft.)				(0.6-2.6)	(2.6-4.6)	(4.6-6.6)	(10-15)	(15-17)	(20-22)		
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)							,				
PCB-1242	1	10	NA	NT	NT	ND<0.50	NT	ND<0.50	NT .		
PCB-1248	1	10	NA NA	NT	NT	ND<0.50	NT	ND<0.50	NT		
PCB-1254	1	10	NA	NT	NT	ND<0.50	NT	ND<0.50	NT		
PCB-1260	1	10	NA	NT	NT	ND<0.50	NT	ND<0.50	NT		
Cyanide (total)	1,400	41,000	NA	ND<5.0	ND<5.0	NT	ND<5.0	ND<5.0	ND<5.0		
SPLP Metals							-				
Antimony	NA	NA	0.06	NT	NT	NT	NT	NT	NT		
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	NT		
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT		
Copper	NA_	NA	13	NT	NT	NT	NT	NT	NT		
Lead	NA NA	NA	0.15	NT	NT	NT	NT	NT NT	NT		
Mercury	NA NA	NA	0.02	NT	NT	NT	NT	NT	NT		
Nickel	NA NA	NA	1.0	NT	NT	NT	NT	NT	NT		
Selenium	NA NA	NA	0.50	NT	NT	NT	NT	NT	NT		
Thallium	NA	NA	0.05	NT	NT	NT	NT	NT	NT		
Vanadium	NA NA	NA	0.50	NT	NT	NT	NT	NT	NT		
Zinc	NA NA	NA	50	NT	NT -	NT	NT	NT	NT		
Total Metals											
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT		
Arsenic	10	10	NA	NT	NT	NT	NT	NT	NT		
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT		
Beryllium	2	2	NA	NT	NT	NT	NT	NT	NT		
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT		
Chromium	100*	100*	NA	NT	NT	NT	NT	NT	NT		
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT		
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT		
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT		
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT		
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a

Table AOC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

<u>,</u>				,						
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soli Sample Concentrations (ppm)						
		Industrial/					\(\)			
	Residential	Commercial	GB Area	TB-UUU	TB-UUU	тв-иии	TB-UUU	TB-UUU .	TB-UUU	
Depth Below Grade (ft.)				(0.6-2.6)	(2.6-4.6)	(4.6-6.6)	(10-15)	(15-17)	(20-22)	
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	
Total Metals (Cont'd)		-								
Silver	340	10,000	NA	NT	NT	NT	NT	NT	NT	
Thallium	5.4	160	NA	NT	NT	NT	NT	NT	NT	
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT	NT	
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT	
Connecticut Extractable Total										
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT	

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromlum.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table AOC-12.2 Comparison of Test Boring Soil Sample Analyte Concentrations

to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT

		QE/I	English Station	i, New Haven	ı, CT						
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soll Sample Concentrations (ppm)							
		Industrial/				<u> </u>		,	T		
	Residential	Commercial	GB Area	TB-VVV	TB-VVV	TB-VVV	TB-VVV	TB-VVV	TB-VVV		
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-0.6)	(2-2.6)	(2.6-4.6)	(4.6-6.6)	(15-17)		
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002		
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									WEIZEGE		
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	ND-0.20		
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	ND<0.20 ND<0.20		
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT			
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	ND<0.20		
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT NT	NT	ND<0.20		
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	0.23		
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	0.21 0.22		
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT			
Chrysene	84	780	1	NT	NT	NT	NT	NT	ND<0.20		
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	ND<0.20		
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.20		
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.20		
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	ND<0.20		
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	0.23 ND<0.20		
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT			
Pyrene	1,000	2,500	40	NT	NT	NT	NT.	NT	ND<0.20		
USEPA Method 8260 Volatile							141	141	0.23		
Organic Compounds (VOCs)											
Ethylbenzene	500	1,000	10.1	NT	NT	NT	ND<0.005	NT			
Isopropylbenzene	500	1,000	132	NT	NT	NT	ND<0.005	NT	NT		
4-Isopropyltoluene	500	1,000	41.8	NT	NT NT	NT	ND<0.005	NT NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT	0.34	NT	NT		
n-Propylbenzene	500	1,000	14	NT	NT	NT	ND<0.005	NT	NT		
Tetrachloroethene	12	110	1	NT	NT	NT	ND<0.005	NT	NT		
Toluene	500	1,000	67	NT	NT	NT	ND<0.005	NT NT	NT		
Trichloroethene	56	520	1.0	NT	NT	NT	ND<0.005	NT	NT NT		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	ND<0.005	NT	NT		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	0.013	NT	NT		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	0.0071	NT	NT		
Xylenes (total)	500	1,000	19.5	NT	NT	NT	ND<0.005	NT	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table ACC-12 2 Page 34 of 117

Tabi C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	fo	osure Criteria r Soli eg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)					
		Industrial/					Centrations (b)	pm)	
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-VVV	TB-VVV	TB-VVV	TB-VVV	TB-VVV	TB-VVV
Sample Collection Date				(0.0-0.3)	(0.3-0.6)	(2-2.6)	(2.6-4.6)	(4.6-6.6)	(15-17)
				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1242	1_	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT NT
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT NT
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT NT
Cyanide (total)	1,400	41,000	NA NA	N/T					
	1,400	41,000	NA	NT	NT	NT	NT	NT	NT
SPLP Metals									-
Antimony	NA	NA	0.06	NT	NT	NT	· NT	NT	NT
Arsenic	NA NA	NA	0.5	NT	NT	NT	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT
Copper	NA_	NA	13	NT	NT	NT	NT	NT	NT
_Lead	NA	NA	0.15	NT	NT	NT	NT	NT	NT
Mercury	NA NA	NA	0.02	NT	NT	NT	NT	NT	NT
Nickel	NA NA	NA	1.0	NT	NT	NT	NT	NT	NT
Selenium	NA NA	NA	0.50	NT	NT	NT	NT	NT	NT
Thallium	NA	NA NA	0.05	NT	NT	NT	NT	NT	NT
Vanadium	NA	NA NA	0.50	NT	NT	NT	NT	NT	NT
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT
Total Metals		1							
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT
Arsenic	10	10	NA	NT	NT	NT	NT	NT	NT
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT
Beryllium	_2	2	NA	NT	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT
Chromium	100°	100*	NA	NT	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA NA	NT	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 35 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English	Station, I	New Haven.	CT
------------	------------	------------	----

Analyte	for	sure Criteria Soil g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soi	l Sample Cond	ncentrations (ppm)			
		Industrial/				<u>-</u>	, , , , , , , , , , , , , , , , , , ,			
	Residential	Commercial	GB Area	TB-VVV	_ TB-VVV	TB-VVV	TB-VVV	TB-VVV	TB-VVV	
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-0.6)	(2-2.6)	(2.6-4.6)	(4.6-6,6)	(15-17)	
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	
Total Metals (Cont'd)										
Silver	340	10,000	NA .	NT	NT	NT	NT	NT	NT	
Thallium	5.4	160	NA.	NT	NT	NT	NT	NT		
Vanadium	470	14,000	NA.	NT	NT	NT	NT	NT	NT NT	
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT TN	NT	
Connecticut Extractable Total										
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT	

Notes;

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable,

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

* = 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

 = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit,

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Tab G-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, New Haven	, 61				
Analyte	for	sure Criteria Soil g/kg)	Poliutant Mobility Criteria for Soil (mg/kg)		Sei	il Samnia Con	centrations (p		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Industrial/		 		. Janipie Con	I)	
	Residential	Commercial	GB Area	TB-VVV	TB-WWW	_TB-WWW_	TB-WWW	TB-WWW	TB-WWW
Depth Below Grade (ft.)	_			(25-27)	(0.0-0.3)	(0.3-2)	(2-4)	(4-6)	(20-22)
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	ND<0.20	NT	NT	NT	NT	ND<0.20
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	NT	NT	NT	ND<0.20
Anthracene	1,000	2,500	400	ND<0.20	NT	NT	NT	NT	ND<0.20
Benzo[a]anthracene	1	7.8	1	ND<0.20	NT	NT	NT	NT	ND<0.20
Benzo[a]pyrene	1	_ 1	1	ND<0.20	NT	NT	NT	NT	ND<0.20
Benzo[b]fluoranthene	1	7.8	1	ND<0.20	NT	NT	NT	NT	ND<0.20
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	NT	NT	NT	NT	ND<0.20
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	NT	NT	NT	NT	ND<0.20
Chrysene	84	780	1	ND<0.20	NT	NT	NT	NT	ND<0.20
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	NT	NT	NT	ND<0.20
Fluoranthene	1,000	2,500	56	ND<0.20	NT	NT	NT	NT	ND<0.20
Fluorene	1,000	2,500	56	ND<0.20	NT	NT	NT	NT	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	NT	NT	NT	NT	ND<0.20
Naphthalene	1,000	2,500	56	ND<0.20	NT	NT	NT	NT	ND<0.20
Phenanthrene	1,000	2,500	40	ND<0.20	NT	NT	NT	NT	ND<0.20
Pyrene	1,000	2,500	40	ND<0.20	NT	NT	NT	NT	ND<0.20
USEPA Method 8260 Volatile									
Organic Compounds (VOCs)								ł	
Ethylbenzene	500	1,000	10.1	NT	NT	NT	ND<0.005	NT	ND<0.005
Isopropylbenzene	500	1,000	132	NT	NT	NT	ND<0.005	NT	ND<0.005
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	0.17	NT	0.0076
Naphthalene	1,000	2,500	56	NT	NT	NT	0.05	NT	ND<0.005
n-Propylbenzene	500	1,000	14	NT	NT	NT	ND<0.005	NT	ND<0.005
Tetrachloroethene	12	110	1	NT	NT	NT	ND<0.005	NT	ND<0.005
Toluene	500	1,000	67	NT	NT	NT	ND<0.005	NT	ND<0.005
Trichloroethene	56	520	1.0	NT	NT	NT	ND<0.005	NT	ND<0.005
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	ND<0.005	NT	ND<0.005
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	NT	ND<0.005
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	NT	ND<0.005
Xylenes (total)	500	1,000	19.5	NT	NT	NT	ND<0.005	NT	ND<0.005

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 37 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT

Analyte	for	osure Criteria r Soll g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)					
	- \	Industrial/	con (mg/kg)		30	i Sample Con	centrations (p	pm)	
	Residential		GB Area	TB-VVV	TO MANAGE				
Depth Below Grade (ft.)	Tresiderida	Commercial	GB Area	(25-27)	TB-WWW (0.0-0.3)	TB-WWW	TB-WWW	TB-WWW	TB-WWW
Sample Collection Date				4/2/2002	4/2/2002	(0.3-2) 4/2/2002	(2-4) 4/2/2002	(4-6) 4/2/2002	(20-22)
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)						4/2/2002	4/2/2002	41212002	4/2/2002
PCB-1242	1	10	NA	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND 40 50
PCB-1248	1	10	NA	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50 ND<0.50
PCB-1254	11	10	NA	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT
SPLP Metals									141
Antimony	NA	NA NA	0.06	NT	NT	N/T			
Arsenic	NA NA	NA NA	0.5	NT	NT	NT NT	NT	NT	NT
Barium	NA NA	NA NA	10	NT	NT	NT	NT NT	NT	NT
Copper	NA NA	NA NA	13	NT	NT	NT		NT	NT
Lead	NA	NA NA	0.15	NT	NT	NT	NT NT	NT	NT
Mercury	NA	NA NA	0.02	NT	NT	NT	NT	NT	NT
Nickel	NA	NA	1.0	NT	NT	NT	NT	NT NT	NT
Selenium	NA	NA NA	0.50	NT	NT	NT	NT	NT	NT
Thallium	NA	NA NA	0.05	NT	NT	NT	NT		NT
Vanadium	NA	NA NA	0.50	NT	NT	NT	NT	NT NT	NT
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT NT
Total Metals									
Antimony	27	8,200	NA NA	NT	NT	NT	NT		\ <u></u>
Arsenic	10	10	NA NA	NT	NT	NT	NT	NT	NT
Barium	4,700	140,000	NA NA	NT	NT	NT	NT	NT NT	NT
Beryllium	2	2	NA NA	NT	NT	NT	NT	NT NT	NT
Cadmium	34	1,000	NA NA	NT	NT	NT	NT	NT	NT NT
Chromium	100*	100*	NA	NT	NT	NT	NT	NT	NT NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT
Selenium	340	10,000	NA NA	NT	NT	NT	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12 2 Page 38 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, CT

Analyte	for	sure Criteria Soll g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Sol	il Sample Con	centrations (p		
	Residential	industrial/ Commercial	GB Area	TB-VVV	TB-WWW	TB-WWW	TB-WWW		
Depth Below Grade (ft.)				(25-27)	(0.0-0.3)	(0.3-2)		TB-WWW	TB-WWW
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	(2-4) 4/2/2002	(4-6) 4/2/2002	(20-22)
Total Metals (Cont'd)							#22002	4/2/2002	4/2/2002
Silver	340	10,000	NA	NT	NT	NT			<u> </u>
Thallium	5.4	160	NA	NT	NT		NT	NT	NT
Vanadium	470	14,000	NA NA	NT		NT	NT	NT NT	NT
Zinc	20,000	610,000	NA NA	NT	NT NT	NT NT	NT	NT	NT
				141	1 141	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	ND<50

milligrams per kilogram. mg/kg =

Parts per million (comparable to mg/kg).

Not applicable.

= Not detected above laboratory minimum detection limit. ND

NT

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

= Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

= Sample also tested for hexavalent chromium. None detected above laboratory (3) minimum detection limit.

= Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

-			Linguistr Statuor	T TTEN HAVE	., 01				
Analyte	foi	sure Criteria Soll g/kg)	Pollutant Mobility Criteria for						
	- 101	· · · · · · · · · · · · · · · · · · ·	Soll (mg/kg)	 		il Sample Con	centrations (p	pm)	
	Basidastist	Industrial/		TB-XXX/	TB-XXX/	TB-XXX/	TB-XXX/	TB-XXX/	TB-XXX/
Depth Below Grade (ft.)	Residential	Commercial	GB Area	MW-L	MW-L	MW-L	MW-L	MW-L	MW-L
Sample Collection Date				(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	(4.3-6.3)	(10-12)	(15-16)
				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	ND<0.20	ND<0,20	ND<0.20	NE	<u> </u>	
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	ND<0.20	NT	NT	NT
Anthracene	1,000	2,500	400	0.25	ND<0.20	0.49	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	1.6	0.47		NT	NT	NT
Benzo[a]pyrene	1	1		1.7	0.47	4.8	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	2.9	0.80		NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	0.82	0.80	5.6	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	0.97	0.20	1.4	NT	NT	NT
Chrysene	84	780		1.6	0.29	2.3	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	0.26	ND<0.20	4.0	NT	NT	NT
Fluoranthene	1,000	2,500	56	3,3	0.80	0.46	NT	NT NT	NT
Fluorene	1,000	2,500	56	ND<0.20		8.7	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.95	ND<0.20 0.26	ND<0.20	NT	NT	NT
Naphthalene	1,000	2,500	56	0.33	ND<0.20	1.8	NT	NT	NT
Phenanthrene	1,000	2,500	40	2.3	0.68	ND<0.20	NT	NT	NT
Pyrene	1,000	2,500	40	2.5		4.3	NT	NT	NT
USEPA Method 8260 Volatile		2,000		2.5	0.61	6.7	NT	NT	NT
Organic Compounds (VOCs)									
Ethylbenzene	500	1,000	10.1	ND<0.25	ND<0,005	110 -0.05			
Isopropylbenzene	500	1,000	132	ND<0.25		ND<0.25	NT	NT	NT
4-Isopropyltoluene	500	1,000	41.8	ND<0.25	ND<0.005	ND<0.25	NT .	NT	NT
Naphthalene	1,000	2,500	56		ND<0.005	ND<0.25	NT NT	NT	NT
n-Propylbenzene	500	1,000	14	ND<0.25 ND<0.25	ND<0.005	ND<0.25	NT	NT	NT
Tetrachloroethene	12	110	1	ND<0.25	ND<0.005	ND<0.25	NT NT	NT	NT
Toluene	500	1,000	67	ND<0.25	ND<0.005	ND<0.25	NT	NT	NT
Trichloroethene	56	520	1.0		ND<0.005	ND<0.25	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.25 ND<0.25	0.013 ND<0.005	ND<0.25 0.34	NT	NT	NT
1,2,4-Trimethylbenzene	500						NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.25	ND<0.005	ND<0.25	NT	NT	NT
Xylenes (total)	500	1,000	70	ND<0.25	ND<0.005	ND<0.25	NT	NT	NT
Ayiones (total)	500	1,000	19.5	ND<0.25	0.011	ND<0.25	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a

Table AOC.12.2 Dans 40 of 447

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	_	osure Criteria	Pollutant Mobility		., • .				
Analyte		r Soil	Criteria for						
Analyte	<u>(m</u>	g/kg)	Soli (mg/kg)			I Sample Con	centrations (p	pm)	
		Industrial/		TB-XXX/	TB-XXX/	TB-XXX/	TB-XXX/	TB-XXX/	TB-XXX/
Depth Below Grade (ft.)	Residential	Commercial	GB Area	MW-L	MW-L	MW-L	MW-L	MW-L	MW-L
Sample Collection Date	 		·	(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	(4.3-6.3)	(10-12)	(15-16)
				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002
USEPA Method 8082 Polychlorinated Biphenyis (PCBs)									
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	1,5 ⁽¹⁾	1.2 ⁽¹⁾	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	ND<5.0
SPLP Metals									
Antimony	NA	NA	0.06	NT	ND<0.006	ND<0.006	NT	AUT	1/2 -2 222
Arsenic	NA	NA	0.5	NT	ND<0.005	ND<0.005	NT	NT	ND<0.006
Barium	NA	NA NA	10	NT	0.38	0.34	NT	NT NT	ND<0.05
Copper	NA	NA	13	NT	ND<0.04	ND<0.04	NT	NT	0.22 ND<0.04
Lead	NA	NA NA	0.15	NT	ND<0.013	ND<0.013	NT	NT	ND<0.04
Mercury	NA	NA NA	0.02	NT	ND<0.002	ND<0.002	NT	NT	ND<0.013
Nickel	NA	NA	1.0	NT	ND<0.05	ND<0.05	NT	NT	ND<0.002
Selenium	NA	NA NA	0.50	NT	ND<0.01	ND<0.01	NT	NT	ND<0.03
Thallium	NA	NA	0.05	NT	ND<0.005	ND<0.005	NT	NT	ND<0.01
Vanadium	NA	NA	0.50	NT	ND<0.05	ND<0.05	NT	NT	ND<0.005
Zinc	NA	NA	50	NT	0.48	0.14	NT	NT	2.3
Total Metals									
Antimony	27	8,200	NA	NT	ND<2.0	2.1	NT	NT	5.1
Arsenic	10	10	NA	97	140	280	71	89	
Barium	4,700	140,000	NA	NT	67	36	NT	NT	12. 15 ⁽⁴⁾
Beryllium	2	2	NA	NT .	ND<1.0	ND<1.0	NT	NT	ND<1.0
Cadmium	34	1,000	NA	NT	3.5	5.5	NT	NT NT	13
Chromium	100*	100*	NA	NT	13	7.6	NT	NT	6.3
Copper	2,500	76,000	NA	NT	110	38	NT	NT	1,600
Lead	500	1,000	NA	NT	81	100	NT	NT	510
Mercury	20	610	NA	NT	0.31	0.74	NT	NT	ND<0.20
Nickel	1,400	7,500	NA	NT	68	6.8	NT	NT	21
Selenium	340	10,000	NA	NT	5.6	4.1	NT	NT	ND<1.0

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 41 of 117

Tall JOC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	sure Criteria Soil	Pollutant Mobility Criteria for						
Attalyte	(mg	g/kg)	Soll (mg/kg)		Soi	I Sample Cond	entrations (pr	m)	
pth Below Grade (ft.)	Residential	Industrial/ Commercial	GB Area	TB-XXX/ MW-L	TB-XXX/ MW-L	TB-XXX/ MW-L	TB-XXX/ MW-L	TB-XXX/ MW-L	TB-XXX/ MW-L
				(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	(4.3-6.3)	(10-12)	(15-16)
Sample Collection Date				4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002
Total Metals (Cont'd)									
Silver	340	10,000	NA	NT	ND<2.0	ND<2.0	NT	NT	ND<2.0
Thallium	5.4	160	NA	NT	20	29	NT	NT	24
Vanadium	470	14,000	NA	NT	630	31	NT	NT	7.6
Zinc	20,000	610,000	NA	NT	340	19	NT	NT	1,900
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	79	ND<50	ND<50	NT	NT	NT

N	~1	_	••

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Ta | HOC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	,						
Analyte	for	sure Criteria Soli 1/kg)	Pollutant Mobility Criteria for		0	Soll Sample Concentrations (ppm)				
Allatyte			Soli (mg/kg)		501	I Sample Cond	entrations (p	pm)		
		Industrial/		TB-XXX/				1		
Don'th Bolom Contaction	Residential	Commercial	GB Area	MW-L	TB-YYY	TB-YYY	TB-YYY	TB-YYY	TB-YYY	
Depth Below Grade (ft.) Sample Collection Date		_		(16-17)	(0.0-0.3)	(0.3-1.3)	(2.3-3.3)	(3.3-4.3)	(5.3-6.3)	
				4/2/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									-	
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	NT	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	NT	
Anthracene	1,000	2,500	400	NT	NT	NT	NT	ND<0.20	NT	
Benzo[a]anthracene	11	7.8	1_	NT	NT	NT	NT	0.32	NT	
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	0.39	NT	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	0.42	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	0.33	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	ND<0.20	NT	
Chrysene	84	780	1	NT	NT	NT	NT	0.24	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	ND<0.20	NT	
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	0.37	NT	
Fluorene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	0.40	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	NT	
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	ND<0.20	NT	
Pyrene	1,000	2,500	40	NT	NT	NT	NT	0.38	NT	
USEPA Method 8260 Volatile										
Organic Compounds (VOCs)										
Ethylbenzene	500	1,000	10.1	NT	NT	ND<0.25	NT	ND<0.005	NT	
Isopropylbenzene	500	1,000	132	NT	NT	ND<0.25	NT	ND<0.005	NT	
4-isopropyitoluene	500	1,000	41.8	NT	NT	ND<0.25	NT	ND<0.005	NT	
Naphthalene	1,000	2,500	56	NT	NT	ND<0.25	NT	ND<0.005	NT NT	
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.25	NT	ND<0.005	NT	
Tetrachloroethene	12	110	1	NT	NT	ND<0.25	NT	ND<0.005	NT	
Toluene	500	1,000	67	NT	NT	ND<0.25	NT	ND<0.005	NT	
Trichloroethene	56	520	1.0	NT	NT	ND<0.25	NT	ND<0.005	NT	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	ND<0.25	TM	ND<0.005	NT	
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.25	NT	ND<0.005	NT	
1,3,5-Trimethylbenzene	500	1,000	70	NT NT	NT	ND<0.25	NT	ND<0.005	NT	
Xylenes (total)	500	1,000	19.5	NT	NT	ND<0.25	NT	ND<0.005	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 43 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	- 1		English Cation				 		
	for	osure Criteria · Soli	Pollutant Mobility Criteria for		•				
Analyte	(m	g/kg)	Soil (mg/kg)		So	l Sample Con	entrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-XXX/ MW-L	TB-YYY	TB-YYY	TB-YYY	TB-YYY	TD 2007
Depth Below Grade (ft.)	1133133111		05.404	(16-17)	(0.0-0.3)	(0.3-1.3)	(2.3-3.3)	(3.3-4.3)	TB-YYY
Sample Collection Date				4/2/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	(5.3-6.3) 4/3/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	9,4(1)	3,1 ⁽²⁾	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT
SPLP Metals									
Antimony	NA NA	NA	0.06	NT	NT	ND<0.006	NT	ND<0.006	NT
Arsenic	NA NA	NA	0.5	NT	NT	ND<0.05	NT	0.12	NT
Barium	NA	NA NA	10	NT	NT	1.3	NT	0.12	NT
Copper	NA	NA NA	13	NT	NT	ND<0.04	NT	ND<0.04	NT
Lead	NA	NA NA	0.15	NT	NT	ND<0.013	NT	0.021	NT
Mercury	NA	NA	0,02	NT	NT	ND<0.002	NT	ND<0.002	NT
Nickel	NA	NA NA	1.0	NT	NT	ND<0.05	NT	ND<0.05	NT
Selenium	NA	NA	0.50	NT	NT	ND<0.01	NT	ND<0.01	NT
Thallium	NA	NA	0.05	NT	NT	ND<0.005	NT	0.010	NT
Vanadium	NA	NA	0.50	NT	NT	2.3	NT	8.7	NT
Zinc	NA	NA	50	NT	NT	1,1	NT	0.37	NT
Total Metals		 		<u>. </u>					
Antimony	27	8,200	NA	NT	NT	ND<2.0	NT	3.9	NT
Arsenic	10	10	NA	NT	NT	46	NT	130	NT
Barlum	4,700	140,000	NA	NT	NT	73	NT	39	NT
Beryllium	2	2	NA	NT	NT	1.0	NT	1.2	NT
Cadmium	34	1,000	NA	NT	NT	1.9	NT	3.8	NT
Chromium	100*	100°	NA	NT	NT	21	NT	10	NT
Copper	2,500	76,000	NA	NT	NT	130	NT	39	NT
Lead	500	1,000	NA	NT	NT	210	NT	340	NT
Mercury	20	610	NA	NT	NT	ND<0.20	NT	ND<0.20	NT
Nickel	1,400	7,500	NA	NT	NT	550	NT	4.9	NT
Selenium	340	10,000	NA	NT	NT	ND<1.0	NT	ND<1.0	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 44 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	osure Criteria Soil g/kg)	Pollutant Mobility Criteria for Soli (mg/kg)		Sol	l Sample Cond	entrations (pp	om)	
		Industrial/		TB-XXX/					
	Residential	Commercial	GB Area	MW-L	TB-YYY	TB-YYY	TB-YYY	TB-YYY	TB-YYY
Depth Below Grade (ft.)				(16-17)	(0.0-0.3)	(0.3-1.3)	(2.3-3.3)	(3.3-4.3)	(5.3-6.3)
Sample Collection Date				4/2/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002
Total Metals (Cont'd)									
Silver	340	10,000	NA	NT	NT	ND<2.0	NT	2.7	NT
Thallium	5.4	160	NA	NT	NT	14	NT	30	NT
Vanadium	470	14,000	NA	NT	NT	1,400	NT	2,300	NT
Zinc	20,000	610,000	NA	ИТ	NT	120	NT	24	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	ND<50	NT	ND<50	ND<50

- 4	٠.	
	re	₹.

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromlum.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)							
	<u></u>	Industrial/	Con (mg/kg)		301	ii Sampie Con	centrations (p	pm)			
	Residential	Commercial	GB Area	TB-YYY	TB-YYY	TB-ZZZ	TB-ZZZ	TB-ZZZ	TB-ZZZ		
Depth Below Grade (ft.)				(11-12)	(15-17)	(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	(4.3-6.3)		
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002		
USEPA Method 8270 Polynuclear											
Aromatic Hydrocarbons (PAHs)											
Acenaphthene	1,000	2,500	84	NT	NT	NT	ND<0.20	NT	107		
Acenaphthylene	1,000	2,500	84	NT	NT	NT	ND<0.20	NT NT	NT		
Anthracene	1,000	2,500	400	NT	NT	NT	ND<0.20	NT	NT		
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	ND<0.20		NT		
Benzo[a]pyrene	1	1	1	NT	NT	NT	0.20	NT NT	NT		
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	0.20		NT		
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	ND<0.20	NT NT	NT		
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	ND<0.20	NT	NT		
Chrysene	84	780	<u> </u>	NT	NT	NT		NT	NT		
Dibenz[a,h]anthracene	1	1	- i	NT	NT	NT	ND<0.20	NT	NT		
Fluoranthene	1,000	2,500	56	NT	NT	NT NT	ND<0.20	NT	NT		
Fluorene	1,000	2,500	56	NT	NT	NT	0.50 ND<0.20	NT	NT		
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT		NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	NT		
Phenanthrene	1,000	2,500	40	NT	NT	NT	ND<0.20	NT	NT		
Pyrene	1,000	2,500	40	NT	NT	NT	0.49 0.37	NT NT	NT NT		
USEPA Method 8260 Volatile							0.57		141		
Organic Compounds (VOCs)											
Ethylbenzene	500	1,000	10.1	NT	NT	NT					
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT		
4-isopropyltoluene	500	1,000	41.8	NT	NT		NT	NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT NT	NT	NT	NT		
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT NT	NT	NT		
Tetrachloroethene	12	110	1	NT	NT		NT	NT	NT		
Toluene	500	1,000	67	NT	NT	NT	NT	NT	NT		
Trichloroethene	56	520	1.0	NT	NT	NT	NT	NT	NT NT		
1,1,1-Trichloroethane	500	1,000	40	NT		NT	NT	NT	NT		
1,2,4-Trimethylbenzene					NT	NT	NT	NT	NT		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT		
	500	1,000	70	NT	NT	NT	NT	NT	NT		
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 46 of 117

Tall OC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	 	G(E)	English Station	i, New Haven	<u>, G1</u>				
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for		_		centrations (p		
		,	Soll (mg/kg)	-	Soi				
	Residential	Industrial/ Commercial	GB Area	TB-YYY	TB-YYY	TB-ZZZ	TB-ZZZ	TB-ZZZ	TB-ZZZ
Depth Below Grade (ft.)				(11-12)	(15-17)	(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	(4.3-6.3)
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)							1101202	4/0/2002	4/3/2002
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA ·	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0,50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NIA					140-0.50	
	1,400	41,000	NA	NT	NT	NT	NT	NT	NT
SPLP Metals									
Antimony	NA	NA	0.06	NT	NT	NT	ND<0.006	ND<0.006	NT
Arsenic	NA NA	NA NA	0.5	NT	NT	NT	ND<0.05	ND<0.05	NT
Barium	NA	NA	10	NT	NT	NT	0.20	0.21	NT
Copper	NA	NA	13	NT	NT	NT	ND<0.04	ND<0.04	NT
Lead	NA	NA	0.15	NT	NT	NT	ND<0.013	ND<0.013	NT
Mercury	NA	NA	0.02	NT	NT	NT	ND<0.002	ND<0.002	NT
Nickel	NA	NA	1.0	NT	NT	NT	ND<0.05	ND<0.05	NT
Selenium	NA	NA NA	0.50	NT	NT	NT	ND<0.01	0.01	NT
Thallium	NA	NA	0.05	NT	NT	NT	ND<0.005	ND<0.005	NT
Vanadium	NA	NA NA	0.50	NT	NT	NT	0.21	ND<0.05	NT
Zinc	NA	NA	50	NT	NT	NT	0.20	0,18	NT
Total Metals								0,10	101
Antimony	27	8,200	NA NA	NT	NT	NT	ND<2.0	3.1	AFF
Arsenic	10	10	NA	NT	NT	NT	8.3	180	NT
Barium	4,700	140,000	NA	NT	NT	NT	25	62	NT
Beryllium	2	2	NA	NT	NT	NT	ND<1.0	ND<1.0	NT NT
Cadmium	34	1,000	NA NA	NT	NT	NT	0.76		NT
Chromium	100*	100*	NA	NT	NT	NT	9.3	4.3 5.0	NT NT
Copper	2,500	76,000	NA NA	NT	NT	NT	15	22	NT
Lead	500	1,000	NA	NT	NT	NT	13	140	NT NT
Mercury	20	610	NA	NT	NT	NT	ND<0.20	0.64	NT
Nickel	1,400	7,500	NA NA	NT	NT	NT	12	2.5	NT
Selenium	340	10,000	NA	NT	NT	NT	ND<1.0	4.0	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 47 of 117

Tall HOC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soll Sample Concentrations (ppm)							
		Industrial/			- -						
	Residential	Commercial	GB Area	TB-YYY	TB-YYY	TB-ZZZ	TB-ZZZ	TB-ZZZ	TB-ZZZ		
Depth Below Grade (ft.)				(11-12)	(15-17)	(0.0-0,3)	(0.3-1.3)	(2.3-4.3)	(4.3-6.3)		
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002		
Total Metals (Cont'd)											
Silver	340	10,000	NA	NT	NT	NT	ND<2.0	ND<2.0	NT		
Thallium	5.4	160	NA	NT	NT	NT	5.8	27	NT		
Vanadium	470	14,000	NA	NT	NT	NT	60	15	NT		
Zinc	20,000	610,000	NA NA	NT	NT	NT	33	8.7	NT		
Connecticut Extractable Total											
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	ND<50	NT	NT	NT	NT		

NO	ITPS.

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

4) = Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	osure Criteria Soil	Pollutant Mobility Criteria for		·		<u> </u>				
Analyte	(m	g/kg)	Soil (mg/kg)		Soil Sample Concentrations (ppm)						
	Residential	Industriat/ Commercial	GB Area	TB-ZZZ	TB-ZZZ	ТВ-АААА	ТВ-АААА	TB-AAAA	ТВ-АААА		
Depth Below Grade (ft.)				(10-12)	(15-16)	(0.0-0.3)	(0.3-1.3)	(2.5-3)	(4-6)		
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002		
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)			,						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	NT	ND<0.20	NT		
Acenaphthylene	1,000	2,500	84	NT	NT	0.93	NT	ND<0.20	NT		
Anthracene	1,000	2,500	400	NT	NT	0.46	NT	ND<0.20	NT		
Benzo[a]anthracene	1	7.8	1	NT	NT	3.6	NT	ND<0.20	NT		
Benzo[a]pyrene	1	11	1	NT	NT	4.6	NT	ND<0.20	NT		
Benzo[b]fluoranthene	1	7.8	1	NT	NT	4.9	NT	ND<0.20	NT		
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	3.7	NT	ND<0.20	NT		
Benzo[k]fluoranthene	8.4	78	1	NT	NT	1.9	NT	ND<0.20	NT		
Chrysene	84	780	11	NT	NT	3.5	NT	ND<0.20	NT		
Dibenz[a,h]anthracene	1	1	1	NT	NT	0.83	NT	ND<0.20	NT		
Fluoranthene	1,000	2,500	56	NT	NT	6.5	NT	ND<0.20	NT		
Fluorene	1,000	2,500	56	NT	NT	ND<0.20	NT	ND<0.20	NT		
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	3.5	NT	ND<0.20	NT		
Naphthalene	1,000	2,500	56	NT	NT	ND<0.20	NT	ND<0.20	NT		
Phenanthrene	1,000	2,500	40	NT	NT	3.4	NT	ND<0.20	NT		
Pyrene	1,000	2,500	40	NT	NT	7.3	NT	ND<0.20	NT		
USEPA Method 8260 Volatile											
Organic Compounds (VOCs)					•						
Ethylbenzene	500	1,000	10.1	NT	NT	0.49	ND<0.25	NT	ND<0,25		
Isopropylbenzene	500	1,000	132	NT	NT	0.0078	ND<0.25	NT	ND<0.25		
4-Isopropyltoluene	500	1,000	41.8	NT	NT	ND<0.005	ND<0.25	NT	ND<0.25		
Naphthalene	1,000	2,500	56	NT	NT	ND<0.005	ND<0.25	NT	ND<0.25		
n-Propylbenzene	500	1,000	14	NT	NT	0.0068	ND<0.25	NT	ND<0.25		
Tetrachloroethene	12	110	1	NT	NT	ND<0.005	ND<0.25	NT	ND<0.25		
Toluene	500	1,000	67	NT	NT	0.58	ND<0.25	NT	ND<0.25		
Trichloroethene	56	520	1.0	NT	NT	ND<0.005	ND<0.25	NT	ND<0.25		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	ND<0.005	ND<0,25	NT	ND<0.25		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	0.016	ND<0.25	NT	ND<0.25		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	0.034	ND<0.25	NT	ND<0.25		
Xylenes (total)	500	1,000	19.5	NT	NT	2,8	ND<0.25	NT	ND<0.25		

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 49 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	-,					
Analyte	fo	Direct Exposure Criteria for Soil (mg/kg)			So	il Sampl e Con	centrations (n	pm)	
	i	Industrial/	Soll (mg/kg)			1	I p		
	Residential	1 1	GB Area	TD 777					
Depth Below Grade (ft.)	Residential	Commercial	GD AIBB	TB-ZZZ	TB-ZZZ	TB-AAAA	TB-AAAA	TB-AAAA	TB-AAAA
Sample Collection Date	 	 		(10-12) 4/3/2002	(15-16)	(0.0-0.3)	(0.3-1.3)	(2.5-3)	(4-6)
				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1242	11	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NIA						
	1,400	41,000	NA	NT	NT	NT	NT	NT	NT
SPLP Metals									
Antimony	NA	NA	0.06	NT	NT	ND<0.006	NT	ND<0.006	NT
Arsenic	NA	NA NA	0.5	NT	NT	ND<0.05	NT	ND<0.05	NT
Barlum	NA	NA	10	NT	NT	0.29	NT	0.30	NT
Copper	NA	NA	13	NT	NT	ND<0.04	NT	ND<0.04	NT
Lead	NA NA	NA	0.15	NT	NT	0.036	NT	ND<0.013	NT
Mercury	NA NA	NA NA	0.02	NT	NT	ND<0.002	NT	ND<0.002	NT
Nickel	NA	NA	1.0	NT	NT	ND<0.05	NT	ND<0.05	NT
Selenium	NA NA	NA	0.50	NT	NT	ND<0.01	NT	ND<0.01	NT
Thallium	NA	NA	0.05	NT	NT	ND<0.005	NT	ND<0.005	NT
Vanadium	NA	NA	0.50	NT	NT	ND<0.05	NT	ND<0.05	NT
Zinc	NA	NA	50	NT	NT	0.23	NT	0.19	NT
Total Metals								0.15	
Antimony	27	8,200	NA	NT	NT	ND<2.0	NT	ND<2.0	NT
Arsenic	10	10	NA	NT	NT	17	NT	6.2	NT
Barium	4,700	140,000	NA	NT	NT	85	NT	58	NT
Beryllium	2	2	NA	NT	NT	ND<1.0	NT	ND<1.0	NT
Cadmium	34	1,000	NA	NT	NT	1.5	NT	ND<0.50	NT
Chromium	100*	100*	NA	NT	NT	7.7	NT	ND<2.0	NT
Copper	2,500	76,000	NA	NT	NT	140	NT	5.0	NT
Lead	500	1,000	NA	NT	NT	170	NT	8.8	NT
Mercury	20	610	NA	NT	NT	0.73	NT	ND<0.20	NT
Nickel	1,400	7,500	NA	NT	NT	11	NT	ND<2.0	NT
Selenium	340	10,000	NA	NT	NT	ND<1.0	NT	ND<1.0	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 50 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)							
		Industrial/									
	Residential	Commercial	GB Area	TB-ZZZ	TB-ZZZ	TB-AAAA	TB-AAAA	TB-AAAA	TB-AAAA		
Depth Below Grade (ft.)				(10-12)	(15-16)	(0.0-0.3)	(0.3-1.3)	(2.5-3)	(4-6)		
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002		
Total Metals (Cont'd)											
Silver	340	10,000	NA	NT	NT	ND<2.0	NT	ND<2.0	NT		
Thallium	5.4	160	NA	NT	NT	8.0	NT	ND<2.0	NT NT		
Vanadium	470	14,000	NA	NT	NT	41	NT	13	NT		
Zinc	20,000	610,000	NA	NT	NT	75	NT	2.1	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	ND<50	140	ND<50	NT	ND<50		

	r		

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (rng/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory milmimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table HDC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

									
A	for	osure Criteria r Soil	Pollutant Mobility Criteria for						
Analyte	(m	g/kg)	Soil (mg/kg)		So	il Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-AAAA	TB-BBBB	TB-BBBB	TB-BBBB	TB-BBBB	TB-BBBB
Depth Below Grade (ft.)				(15-17)	(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	(4.3-6.3)	(10-12)
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	ND<0.20	NT	ND<0.20	NT	NT	NT
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	ND<0.20	NT	NT	NT
Anthracene	1,000	2,500	400	0.32	NT	0.41	NT	NT	NT
Benzo[a]anthracene	1	7.8	. 1	0.61	NT	4.8	NT	NT	NT
Benzo[a]pyrene	11	1	1	0.70	NT	6.7	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	0.85	NT	7.9	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	0.30	NT	3.7	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	0.37	NT	2.7	NT	NT	NT
Chrysene	84	780	1	0.50	NT	4.7	NT	NT	NT
Dibenz[a,h]anthracene	1	111	1	ND<0.20	NT	0.79	NT	NT	NT
Fluoranthene	1,000	2,500	56	1.6	NT	9.8	NT .	NT	NT
Fluorene	1,000	2,500	56	ND<0.20	NT	ND<0.20	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.33	NT	4.1	NT	NT	NT
Naphthalene	1,000	2,500	56	ND<0.20	NT	0.24	NT	NT	NT
Phenanthrene	1,000	2,500	40	1.3	NT	0.74	NT	NT	NT
Pyrene	1,000	2,500	40	1.4	NT	11	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Ethylbenzene	500	1,000	10.1	NT	NT	ND<0.25	ND<0.25	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	ND<0.25	ND<0.25	NT	NT TN
4-Isopropyltoluene	500	1,000	41.8	NT	NT	ND<0.25	ND<0.25	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	ND<0.25	ND<0.25	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.25	ND<0.25	NT	NT
Tetrachloroethene	12	110	1	NT	NT	ND<0.25	ND<0.25	NT	NT
Toluene	500	1,000	67	NT	NT	ND<0.25	ND<0.25	NT	NT
Trichloroethene	56	520	1.0	NT	NT	ND<0.25	ND<0.25	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	ND<0.25	- ND<0.25	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.25	ND<0.25	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.25	ND<0.25	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	ND<0.25	ND<0.25	NT	NT

Tat###DC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			-ngiisii otatioti	1						
	fo	osure Criteria r Soil	Pollutant Mobility Criteria for							
Analyte	(m	g/kg)	Soil (mg/kg)		So	il Sample Con	centrations (p	pm)		
	Residential	Industrial/ Commercial	GB Area	ТВ-АААА	TB-BBBB	TB-BBBB	TB-BBBB	TB-BBBB	TB-8888	
Depth Below Grade (ft.)				(15-17)	(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	(4.3-6.3)	(10-12)	
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)										
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1254	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1260	11	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT	
SPLP Metals										
Antimony	NA	NA NA	0.06	NT	NT	ND<0.006	ND<0.006	NT	NT	
Arsenic	NA NA	NA	0.5	NT	NT	ND<0.05	ND<0.05	NT	NT	
Barium	NA	NA	10	NT	NT	0.19	0.53	NT	NT	
Copper	NA	NA NA	13	NT	NT	ND<0.04	ND<0.04	NT	NT	
Lead	NA NA	NA NA	0.15	NT	NT	ND<0.013	ND<0.013	NT	NT	
Mercury	NA	NA NA	0.02	NT	NT	ND<0.002	ND<0.002	NT	NT	
Nickel	NA	NA	1.0	NT	NT	ND<0.05	ND<0.05	NT	NT	
Selenium	NA	NA NA	0.50	NT	NT	ND<0.01	ND<0.01	NT	NT	
Thallium	NA	NA	0.05	NT	NT	ND<0.005	ND<0.005	NT	NT	
Vanadium	NA NA	NA	0.50	NT	NT	ND<0.05	ND<0.05	NT	NT	
Zinc	NA NA	NA NA	50	NT	NT	0.11	0.34	NT	NT	
Total Metals										
Antimony	27	8,200	NA	NT	NT	ND<2.0	ND<2.0	NT	NT	
Arsenic	10	10	NA	NT	NT	27	18	NT	NT	
Barium	4,700	140,000	NA	NT	NT	51	53	NT	NT	
Beryllium	2	2	NA	NT	NT	ND<1.0	ND<1.0	NT	NT	
Cadmium	34	1,000	NA_	NT	NT	2.2	1.7	NT	NT	
Chromium	100*	100*	NA	NT	NT	10	8,6	NT	NT	
Copper	2,500	76,000	NA	NT	NT	67	39	NT	NT	
Lead	500	1,000	NA	NT	NT	64	56	NT	NT	
Mercury	20	610	NA	NT	NT	0.29	ND<0.20	NT	NT	
Nicket	1,400	7,500	NA	NT	NT	16	7.6	NT	NT	
Selenium	340	10,000	NA	NT	NT	ND<1.0	1.2	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 53 of 117

Ta C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	ТВ-АААА	тв-вввв	тв-вввв	тв-вввв	TB-BBBB	TB-BBBB		
Depth Below Grade (ft.)				(15-17)	(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	(4.3-6.3)	(10-12)		
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002		
Total Metals (Cont'd)											
Silver	340	10,000	NA	NT	NT	ND<2.0	ND<2.0	NT	NT		
Thallium	5.4	160	NA	NT	NT	11	10	NT	NT		
Vanadium	470	14,000	NA	NT	NT	40	18	NT	NT		
Zinc	20,000	610,000	NA _	NT	NT	95	25	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	100	140	140	93		

IV	OLES:	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Tall HbC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		1	English Station	I I I I I I I I I I I I I I I I I I I	1, 01				
Analyte	fo	osure Criteria r Soil	Pollutant Mobility Criteria for						
Atlalyte	<u> (m</u>	g/kg)	Soil (mg/kg)	<u> </u>	So	I Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-BBBB	тв-сссс	TB-CCCC	TB-CCCC	TB-CCCC	TB-CCCC
Depth Below Grade (ft.)				(15-17)	(0.0-0.3)	(2.5-2.8)	(2.8-3.8)	(4.5-6)	(6-6.5)
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									110/2002
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	NT
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	ND<0.20	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	0.22	NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	ND<0.20	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	0.50	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	ND<0.20	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	ND<0.20	NT
Chrysene	84	780	1	NT	NT	NT	NT	0.91	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	ND<0.20	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	0.30	NT
Fluorene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	ND<0.20	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	1.0	NT
Pyrene	1,000	2,500	40	NT	NT	NT	NT	0.38	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Ethylbenzene									
Isopropylbenzene	500	1,000	10.1	NT	0.039	NT	ND<0.25	NT	NT
4-Isopropyltoluene	500	1,000	132	NT	ND<0.005	NT	ND<0.25	NT	NT
Naphthalene	500	1,000	41.8	NT	ND<0.005	NT	ND<0.25	NT	NT
n-Propylbenzene	1,000	2,500	56	NT	ND<0.005	NT	ND<0.25	NT	NT
Tetrachloroethene	500	1,000	14	NT	ND<0.005	NT	ND<0.25	NT	NT
Toluene	12 500	110	1	NT	ND<0.005	NT	ND<0.25	NT	NT
Trichloroethene		1,000	67	NT	0.15	NT	ND<0.25	NT	NT
	56	520	1.0	NT	ND<0.005	NT	ND<0.25	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.005	NT	ND<0.25	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.005	NT	ND<0.25	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.005	NT	ND<0.25	NT	NT
Xylenes (total)	500	1,000	19.5	NT	0.18	NT	ND<0.25	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 55 of 117

Table # OC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	fo	Direct Exposure Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-BBBB	тв-ссс					
Depth Below Grade (ft.)			OBACQ	(15-17)	(0.0-0.3)	TB-CCCC	TB-CCCC	TB-CCCC	TB-CCCC	
Sample Collection Date				4/3/2002	4/3/2002	(2.5-2.8) 4/3/2002	(2.8-3.8)	(4.5-6)	(6-6.5)	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)				1107202	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	
PCB-1248	111	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	
PCB-1260		10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT		
SPLP Metals						- '''	INI	NI	NT	
Antimony	NA	NA NA	0.06	NT	107					
Arsenic	NA NA	NA NA	0.5	NT	NT NT	NT	ND<0.006	NT	ND<0.006	
Barium	NA	NA NA	10	NT	NT	NT	ND<0.05	NT	ND<0.05	
Copper	NA	NA NA	13	NT	NT	NT	0.32	NT	0.50	
Lead	NA NA	NA NA	0.15	NT	NT	NT	ND<0.04	NT	ND<0.04	
Mercury	NA	NA	0.02	NT	NT	NT NT	ND<0.013	NT	ND<0.013	
Nickel	NA	NA	1.0	NT	NT	NT	ND<0.002	NT	ND<0.002	
Selenium	NA	NA NA	0.50	NT	NT	NT	ND<0.05	NT	ND<0.05	
Thallium	NA	NA	0.05	NT	NT		ND<0.01	NT	ND<0.01	
Vanadium	NA	NA NA	0.50	NT	NT	NT NT	ND<0.005	NT	ND<0.005	
Zinc	NA	NA NA	50	NT	NT	NT NT	ND<0.05 0.32	NT NT	ND<0.05	
Total Metals						141	0.32	NI	0.24	
Antimony	27	8,200	NA NA	ACT						
Arsenic	10	10	NA NA	NT	NT	NT	ND<2.0	NT	2.7	
Barium	4,700	140,000	NA NA	NT	NT	NT	7.4	NT	160	
Beryllium	2	2	NA NA	NT NT	NT	NT	58	NT	22	
Cadmium	34	1,000	NA NA	NT	NT	NT	ND<1.0	NT	ND<1.0	
Chromium	100*	100*	NA NA	NT NT	NT	NT	ND<0.50	NT	6.7	
Copper	2,500	76,000	NA NA	NT	NT	NT	ND<2.0	NT	5.3	
Lead	500	1,000	NA NA	NT	NT	NT NT	6.5	NT	38	
Mercury	20	610			NT	NT	5,4	NT	190	
Nickel	1,400	7,500	NA NA	NT	NT	NT	ND<0.20	NT	0,51	
Selenium	340	10,000	NA NA	NT	NT	NT	ND<2.0	NT	2.2	
	340	10,000	NANA	NT	NT	NT	2.2	NT	ND<1.0	

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Direct Exposure Criteria for Soli (mg/kg)		Soli Sample Concentrations (ppm)							
		Industrial/									
	Residential	Commercial	GB Area	TB-BBBB	TB-CCCC	TB-CCCC	TB-CCCC	TB-CCCC	TB-CCCC		
Depth Below Grade (ft.)				(15-17)	(0.0-0.3)	(2.5-2.8)	(2.8-3.8)	(4.5-6)	(6-6.5)		
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002		
Total Metals (Cont'd)											
Silver	340	10,000	NA	NT	NT	NT	ND<2.0	NT	ND<2.0		
Thallium	5.4	160	NA	NT	NT	NT	ND<2.0	NT	43		
Vanadium	470	14,000	NA	NT	NT	NT	3.8	NT	15		
Zinc	20,000	610,000	NA	NT	NT	NT	4.3	NT	ND<2.0		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	670	NT	ND<50	ND<50	110	77		

Na	
NO	tes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria OE/English Station New Haven CT

		QE/E	nglish Station	, New Haven	<u>, CT</u>						
Analyte	for	osure Criteria Soil g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial/				1		l	<u> </u>		
	Residential	Commercial	GB Area	TB-CCCC	тв-сссс	TB-DDDD	TB-DDDD	TB-DDDD	TB-DDDD		
Depth Below Grade (ft.)				(10-12)	(15-17)	(0.0-0.3)	(1.3-1.6)	(1.6-2.6)	(3.3-4.3)		
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002		
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)											
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	NT		
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT		
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT		
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT		
Benzo[a]pyrene	11	1	1	NT	NT	NT	NT	NT	NT		
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT		
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT		
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	NT		
Chrysene	84	780	1	NT	NT	NT	NT	NT	NT		
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	NT		
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
Indeno[1,2,3-cd]pyrene	11	7.8	1	NT	NT	NT	NT	NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT		
_Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT		
USEPA Method 8260 Volatile											
Organic Compounds (VOCs)											
Ethylbenzene	500	1,000	10.1	NT	NT	NT ·	NT	NT	NT		
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT		
4-isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT		
Tetrachloroethene	12	110	11	NT	NT	NT	NT	NT	NT		
Toluene	500	1,000	67	NT	NT	NT	NT	NT	NT		
Trichloroethene	56	520	1.0	. NT	NT	NT	NT	NT	NT		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT		
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 58 of 117

Comparison of Test Boring Soll Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, item ilaveli	, 01						
	Direct Exposure Criteria for Soil		Pollutant Mobility Criteria for	•							
Analyte	(m	g/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-CCCC	TB-CCCC	TB-DDDD	TB-DDDD	TB-DDDD	TB-DDDD		
Depth Below Grade (ft.)				(10-12)	(15-17)	(0.0-0.3)	(1.3-1.6)	(1.6-2.6)	(3.3-4.3)		
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)			 					-			
PCB-1242	1	10	NA	ND<0.50	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1248	1	10	NA	ND<0.50	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1254	11	10	NA	ND<0.50	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1260	11	10	NA	ND<0.50	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT		
SPLP Metals											
Antimony	NA	NA	0.06	NT	NT	NT	NT	NT	NT		
Arsenic	NA NA	NA	0.5	NT	NT	NT	NT	NT	NT		
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT		
Copper	NA	NA	13	NT	NT	NT	NT	NT	NT		
Lead	NA	NA NA	0.15	NT	NT	NT	NT	NT	NT		
Mercury	NA NA	NA	0.02	NT	NT	NT	NT	NT	NT		
Nickel	NA NA	NA	1.0	NT	NT	NT	NT	NT	NT		
Selenium	NA	NA NA	0.50	NT	NT	NT	NT	NT	NT		
Thallium	NA NA	NA NA	0.05	NT	NT	NT	NT	NT	NT		
Vanadium	NA	NA NA	0.50	NT	NT	NT	NT	NT	NT		
Zinc	NA NA	NA	50	NT	NT	NT	NT	NT	NT		
Total Metals											
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT		
Arsenic	10	10	NA	NT	NT	NT	NT	NT	NT		
Barlum	4,700	140,000	NA	NT	NT	NT	NT	NT	NT		
Beryllium	2	2	NA	NT	NT	NT	NT	NT	NT		
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT		
Chromium	100*	100*	NA	NT	NT	NT	NT	NT	NT		
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT		
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT		
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT		
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT		
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT		

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soli (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial/					(1)				
	Residential	Commercial	GB Area	TB-CCCC	TB-CCCC	TB-DDDD	TB-DDDD	TB-DDDD	TB-DDDD		
Depth Below Grade (ft.)				(10-12)	(15-17)	(0.0-0.3)	(1.3-1.6)	(1.6-2.6)	(3.3-4.3)		
Sample Collection Date				4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002		
Total Metals (Cont'd)											
Silver	340	10,000	NA	NT	NT	NT	NT	NT	NT		
Thallium	5.4	160	NA NA	NT	NT	NT	NT	NT	NT		
Vanadium	470	14,000	NA NA	NT	NT	NT	NT	NT	NT		
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	ND<50	NT	NT	NT	NT		

AI	-	٠.	_	
14	U	Œ	3	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table AOC-12.2 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		- Cation	, Hen Haven	i, C i				
Direct Exposure Criteria for Soil		Pollutant Mobility Criteria for Soil (mg/kg)		0-1	il Cample Cam			
		oon (mg/kg)	 	30	i Sampie Con	centrations (p	pm)	
Residential	Commercial	GB Area	TB-DDDD	TB-EEEE	TB-EEFF	TR-FFFF	TR-FFFF	TB-EEEE
								(10-12)
			4/3/2002					4/4/2002
				<u> </u>			11172302	4/4/2002
1,000	2,500	84	NT	NT	NT	NT	NT	NT
1,000	2,500	84	NT	NT		 		NT
1,000	2,500	400						NT
1	7.8	1	NT					NT
1	1	1						NT
1	7.8	1						NT
1,000	2,500	42	NT					NT
8.4	78	1	NT					NT
84	780	1	NT					NT
1	1	1	NT					NT
1,000	2,500	56	NT	NT				NT
1,000	2,500	56						NT
1	7.8	1	NT					NT
1,000	2,500	56	NT					NT
1,000	2,500	40	NT					NT
1,000	2,500	40	NT					NT
-								
500	1,000	10.1	NT	ND<0.005	NT	NIT	- AIT	ND<0.25
500								ND<0.25
500								
1,000								ND<0.25 ND<0.25
500								ND<0.25 ND<0.25
12	110	1						ND<0.25
500								ND<0.25
56	520							ND<0.25
500	1,000	40						ND<0.25
500								ND<0.25
								ND<0.25 ND<0.25
	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 500 500 500 1,000 500 1,000 500 500 500 500 500 500 500 500 500	Direct Exposure Criteria for Soil (mg/kg) Industrial/ Commercial	Direct Exposure Criteria for Soil (mg/kg)	Direct Exposure Criteria for Soil (mg/kg) Criteria for Soil (mg/kg) Criteria for Soil (mg/kg) Commercial GB Area TB-DDDD (15-17) 4/3/2002	Direct Exposure Criteria for Soil (mg/kg) Soil	Direct Exposure Criteria for Soil (mg/kg) Criteria for Soil (mg/kg) Criteria for Soil (mg/kg) Soil Sample Con	Direct Exposure Criteria For Soil Griteria for Soil Grite	Direct Exposure Criteria for Soil (mg/kg)

таіЩ Нос-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			english Station	, New Haven	, С1				
Analyte	fo	osure Criteria r Soil g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		c_1	I Sample Co-	centrations (p	1	
		Industrial/	Jon (mg/kg)		301	i Sampie Con	reurranous (b	pm)	
	Residential		GB Area	TB-DDDD	TB-EEEE	TB-EEEE	TB-EEEE	TB-EEEE	TB-EEEE
Depth Below Grade (ft.)		<u> </u>		(15-17)	(0.0-0.3)	(1.5-1.8)	(1.8-2.8)	(3.8-5.8)	(10-12)
Sample Collection Date				4/3/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002
USEPA Method 8082 Polychlorinated Biphenyis (PCBs)			 						
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	NT	NT	ATT			
	1,400	41,000	NA	INI	INI	NT	NT	NT	NT
SPLP Metals		Ļļ.							
Antimony	NA NA	NA	0.06	NT	NT	NT	ND<0.006	ND<0.006	NT
Arsenic	NA NA	NA NA	0.5	NT	NT	NT	_ND<0.05	ND<0.05	NT
Barium	NA	NA NA	10	NT	NT	NT	0.38	0.17	NT
Copper	NA NA	NA NA	13	NT	NT	NT	ND<0.04	ND<0.04	NT
Lead	NA NA	NA	0.15	NT	NT	NT	ND<0.013	ND<0.013	NT
Mercury	NA	NA	0.02	NT	NT	NT	ND<0.002	ND<0.002	NT
Nickel	NA NA	NA NA	1.0	NT	NT	NT	ND<0.05	ND<0.05	NT
Selenium	NA NA	NA NA	0.50	NT	NT	NT	ND<0.01	ND<0.01	NT
Thallium	NA NA	NA	0.05	NT	NT	NT	ND<0.005	ND<0.005	NT
Vanadium	NA	NA	0.50	NT	NT	NT	2.2	ND<0.05	NT
Zinc	NA NA	NA NA	50	NT	NT	NT	0.13	0.21	NT
Total Metals		 							
Antimony	27	8,200	NA	NT	NT	NT	ND<2.0	ND<2.0	NT NT
Arsenic	10	10	NA	NT	NT	NT	6.7	1.9	NT
Barium	4,700	140,000	NA	NT	NT	NT	90	28	NT
Beryllium	2	2	NA	NT	NT	NT	ND<1.0	ND<1.0	NT
Cadmium	34	1,000	NA	NT	NT	NT	ND<0.50	2.4	NT
Chromium	100*	100*	NA	NT	NT	NT	ND<2.0	11	NT
Copper	2,500	76,000	NA	NT	NT	NT	8.2	84	NT
Lead	500	1,000	NA	NT	NT	NT	8,4	59	NT
Mercury	20	610	NA	NT	NT	NT	ND<0.20	0.45	NT
Nickel	1,400	7,500	NA	NT	NT	NT	6.2	19	NT
Selenium	340	10,000	NA	NT	NT	NT	2.1	ND<1.0	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 62 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-DDDD	TB-EEEE	TB-EEEE	TB-EEEE	TB-EEEE	TB-EEEE	
Depth Below Grade (ft.)				(15-17)	(0.0-0.3)	(1.5-1.8)	(1.8-2.8)	(3,8-5,8)	(10-12)	
Sample Collection Date				4/3/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	
Total Metals (Cont'd)										
Silver	340	10,000	NA	NT	NT	NT	ND<2.0	ND<2.0	NT	
Thallium	5.4	160	NA NA	NT	NT	NT	ND<2.0	11	NT	
Vanadium	470	14,000	NA	NT	NT	NT	240	25	NT	
Zinc	20,000	610,000	NA	NT	NT	NT	2.6	230	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	ND<50	ND<50	NT	

	_	٠.		
N	О	æ	5:	

mg/kg = milligrams per kilogram.

Parts per million (comparable to mg/kg).

Not applicable.

= Not detected above laboratory minimum detection limit. ND

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

= Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

= Sample also tested for leachable (SPLP) PCBs. None detected above laboratory (2) minimum detection fimit.

= Sample also tested for hexavalent chromium. None detected above laboratory (3) minimum detection limit,

= Submitted as a Quality Control (QC) duplicate sample.

Table 70 C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, itew Haven	, 61					
Anabita	for	Direct Exposure Criteria for Soil								
Analyte	(mg	g/kg)	Soil (mg/kg)		Sol	I Sample Con	centrations (p	pm)		
	Residential	Industrial/ Commercial	GB Area	TB-EEEE	TB-FFFF	TB-FFFF	TB-FFFF	TB-FFFF	TB-GGGG	
Depth Below Grade (ft.)				(20-22)	(0.0-0.3)	(0.5-0.8)	(2.5-3.5)	(3.5-4.5)	(0.0-0.3)	
Sample Collection Date				4/2/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT	
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT	
Anthracene	1,000	2,500	400	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT	
Benzo[a]anthracene	1	7.8	1	ND<0.20	NT	NT	ND<0.20	0.34	NT	
Benzo[a]pyrene	11	1	1	ND<0.20	NT	NT	ND<0.20	0.39	NT	
Benzo[b]fluoranthene	1	7.8	1	ND<0.20	NT	NT	ND<0.20	0.62	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT	
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	NT	NT	ND<0.20	0.27	NT	
Chrysene	84	780	1	ND<0.20	NT	NT	ND<0.20	0.38	NT	
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT	
Fluoranthene	1,000	2,500	56	ND<0.20	NT	NT	ND<0.20	0.45	NT	
Fluorene	1,000	2,500	56	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	NT	NT	ND<0.20	0.20	NT	
Naphthalene	1,000	2,500	56	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT	
Phenanthrene	1,000	2,500	40	ND<0.20	NT	NT	ND<0.20	ND<0.20	NT	
Pyrene	1,000	2,500	40	ND<0.20	NT	NT	ND<0.20	0.47	NT	
USEPA Method 8260 Volatile										
Organic Compounds (VOCs)										
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	ND<0.005	NT	
Isopropyibenzene	500	1,000	132	NT	NT	NT	NT	ND<0.005	NT	
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	ND<0.005	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.005	NT	
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	ND<0.005	NT	
Tetrachloroethene	12	110	1	NT	NT	NT	NT	ND<0.005	NT	
Toluene	500	1,000	67	NT	NT	NT	NT	ND<0.005	NT	
Trichloroethene	56	520	1.0	NT	NT	NT	NT	ND<0.005	NT	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	ND<0.005	NT	
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	ND<0.005	NT	
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	ND<0.005	NT	
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	ND<0.005	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 64 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven. CT

			English Station	, item maven	, 61						
Analyte	fo	Direct Exposure Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)							
Analyte	- <u>(m</u>		Soil (mg/kg)		- Sol	il Sample Con	centrations (p	pm)			
	Residential	Industrial/ Commercial	GB Area	TB-EEEE	LEEEE TB-FFFF TB-FFFF TB-FFFF TB						
Depth Below Grade (ft.)				(20-22)	(0.0-0.3)	(0.5-0.8)	(2.5-3.5)	(3.5-4.5)	(0.0-0.3)		
Sample Collection Date				4/2/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1242	1	10	NA NA	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1248	1	10	NA NA	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1254	1	10	NA NA	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1260	1	10	NA NA	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Cyanide (total)	1,400	41,000	- NA								
	1,400	41,000	NA NA	NT	NT	NT	NT_	NT	NT		
SPLP Metals						· · · · · · · · · · · · · · · · · · ·					
Antimony	NA	NA	0,06	NT	NT	NT	ND<0.006	ND<0.006	NT		
Arsenic	NA NA	NA	0.5	NT	NT	NT	ND<0.05	ND<0.05	NT		
Barium	NA NA	NA	10	NT	NT	NT	0.15	0.16	NT		
Copper	NA	NA	13	NT	NT	NT	ND<0.04	ND<0.04	NT		
Lead	NA	NA	0.15	NT	NT	NT	ND<0.013	ND<0.013	NT		
Mercury	_NA	NA	0.02	NT	NT	NT	ND<0.002	ND<0.002	NT		
Nickel	NA	NA	1.0	NT	NT	NT	ND<0.05	ND<0.05	NT		
Selenium	NA	NA	0.50	NT	NT	NT	ND<0.01	ND<0.01	NT		
Thallium	NA	NA	0.05	NT	NT	NT	ND<0.005	ND<0.005	NT		
Vanadium	NA NA	NA	0.50	NT	NT	NT	ND<0.05	ND<0.05	NT		
Zinc	NA	NA	50	NT	NT	NT	0.13	0.14	NT		
Total Metals		l									
Antimony	27	8,200	NA	NT	NT	NT	ND<2.0	2.8	NT		
Arsenic	10	10	NA	NT	NT	NT	6.2	7.9	NT		
Barium	4,700	140,000	NA	NT	NT	NT	51	89	NT		
Beryllium	2	2	NA	NT	NT	NT	ND<1.0	ND<1.0	NT		
Cadmium	34	1,000	NA	NT	NT	NT	2.0	1.6	NT		
Chromium	100*	100*	NA	NT	NT	NT	7.5	9.3	NT		
Copper	2,500	76,000	NA	NT	NT	NT	53	210	NT		
Lead	500	1,000	NA	NT	NT	NT	56	590	NT		
Mercury	20	610	NA	NT	NT	NT	0.42	1.1	NT		
Nickel	1,400	7,500	NA	NT	NT	NT	13	8.5	NT		
Selenium	340	10,000	NA	NT	NT	NT	1,1	ND<1.0	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 65 of 117

Tabil. 44C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)						
		Industrial/				T	1	,, <u> </u>	1	
	Residential	Commercial	GB Area	TB-EEEE	TB-FFFF	TB-FFFF	TB-FFFF	TB-FFFF	TB-GGGG	
Depth Below Grade (ft.)				(20-22)	(0.0-0.3)	(0.5-0.8)	(2.5-3,5)	(3.5-4,5)	(0.0-0.3)	
Sample Collection Date				4/2/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	
Total Metals (Cont'd)		-								
Silver	340	10,000	NA	NT	NT	NT	ND<2.0	ND<2.0	NT	
Thallium	5.4	160	NA	NT	NT	NT	11	8.3	NT	
Vanadium	470	14,000	NA	NT	NT	NT	17	26	NT	
Zinc	20,000	610,000	NA	NT	NT	NT	39	130	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	680	ND<50	NT	

		۰

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above taboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	esure Criteria Soil g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-GGGG	TR CCCC	TO 121111	70 (200)	75		
Depth Below Grade (ft.)	Nesidetiliai	Commercial	GB Alea	(1-2)	TB-GGGG (2.3-4.3)	TB-HHHH (0.0-0.3)	TB-HHHH (1.3-2.3)	TB-HHHH (2.3-4.3)	TB-HHHH (5-6)	
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	NT	NT	NT	ND<0.20	NT	NT	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	ND<0.20	NT	NT	
Anthracene	1,000	2,500	400	NT	NT	NT	ND<0.20	NT	NT	
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	0.92	NT	NT	
Benzo[a]pyrene	1	1	1	NT	NT	NT	1.3	NT	NT	
Benzo[b]fluoranthene	11	7.8	1	NT	NT	NT	1.9	NT	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	0.82	NT	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	0.73	NT	NT	
Chrysene	84	780	1	NT	NT	NT	1.1	NT	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	ND<0.20	NT	NT	
Fluoranthene	1,000	2,500	56	NT	NT	NT	1.6	NT	NT	
Fluorene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	0.76	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	NT	
Phenanthrene	1,000	2,500	40	NT	NT	NT	0.90	NT	NT	
Pyrene	1,000	2,500	40	NT	NT	NT	1.4	NT	NT	
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
Ethylbenzene	500	1,000	10.1	NT	NT	NT	ND<0.25	ND<0.25	NT	
Isopropylbenzene	500	1,000	132	NT	NT	NT	ND<0.25	ND<0.25	NT	
4-isopropyltoluene	500	1,000	41.8	NT	NT	NT	ND<0.25	ND<0.25	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.25	ND<0.25	NT	
n-Propylbenzene	500	1,000	14	NT	NT	NT	ND<0.25	ND<0.25	NT	
Tetrachloroethene	12	110	1	NT	NT	NT	ND<0.25	ND<0.25	NT	
Toluene	500	1,000	67	NT	NT	NT	ND<0.25	ND<0.25	NT	
Trichloroethene	56	520	1.0	NT	NT	NT	ND<0.25	ND<0.25	NT	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	ND<0.25	ND<0.25	NT	
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.25	ND<0.25	NT	
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.25	ND<0.25	NT	
Xylenes (total)	500	1,000	19.5	NT	NT	NT	ND<0.25	ND<0.25	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 67 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			english Station	i, ivew ilaveli	, 01					
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
	 	Industrial/			301	Contribie Contr	Territ ations (b)	pin)		
	Residential	Commercial	GB Area	TB-GGGG	TB-GGGG	ТВ-НННН	ТВ-НННН	ТВ-НННН	ТВ-НННН	
Depth Below Grade (ft.)				(1-2)	(2.3-4.3)	(0.0-0.3)	(1.3-2.3)	(2.3-4.3)	(5-6)	
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)										
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
Cyanide (total)	1,400	41,000	NA NA	NT	NT	NT	NT			
		71,555			141	ivi	14.1	NT	NT	
SPLP Metals										
Antimony	NA NA	NA NA	0.06	NT	NT	NT	ND<0.006	NT	NT	
Arsenic	NA NA	NA NA	0.5	NT	NT	NT	ND<0.05	NT	NT	
Barium	NA	NA	10	NT	NT	NT	0.23	NT	NT	
Copper	NA	NA	13	NT	NT	NT	ND<0.04	NT	NT	
Lead	NA	NA	0.15	NT	NT NT	NT	ND<0.013	NT	NT	
Mercury	NA	NA	0.02	NT	NT	NT	ND<0.002	NT	NT	
Nickel	NA	NA NA	1.0	NT	NT	NT	ND<0.05	NT	NT	
Selenium	NA NA	NA	0.50	NT	NT	NT	0.014	NT	NT	
Thallium	NA	NA_	0.05	NT	NT	NT	ND<0.005	NT	NT	
Vanadium	NA	NA	0.50	NT	NT	NT	ND<0.05	NT	NT	
Zinc	NA	NA NA	50	NT	NT ·	NT	0.25	NT	NT	
Total Metals										
Antimony	27	8,200	NA	NT	NT	NT	2.3	NT	NT	
Arsenic	10	10	NA	NT	NT	NT	140	NT	NT	
Barium	4,700	140,000	NA	NT	NT	NT	51	NT	NT	
Beryllium	2	2	NA	NT	NT	NT	ND<1.0	NT	NT	
Cadmium	34	1,000	NA	NT	NT	NT	4.7	NT	NT	
Chromium	100*	100*	NA	NT	NT	NT	9.0	NT	NT	
Copper	2,500	76,000	NA	NT	NT	NT	54	NT	NT	
Lead	500	1,000	NA	NT	NT	NT	160	NT	NT	
Mercury	20	610	NA	NT	NT	NT	1.1	NT	NT	
Nickel	1,400	7,500	NA	NT	NT	NT	6.7	NT	NT	
Selenium	340	10,000	NA NA	NT	NT	NT	6.4	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 68 of 117

Table 40 C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	Direct Exposure Criteria for Soil		Pollutant Mobility Criteria for			-			
Analyte	(m	g/kg)	Soll (mg/kg) GB Area		Sol	I Sample Cond	entrations (p	pm)	
	Residential	Industrial/ Commercial		TB-GGGG	TB-GGGG	тв-нннн	ТВ-НННН	тв-нннн	Тв-нннн
Depth Below Grade (ft.)				(1-2)	(2.3-4.3)	(0.0-0.3)	(1.3-2.3)	(2.3-4.3)	(5-6)
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002
Total Metals (Cont'd)									
Silver	340	10,000	NA	NT	NT	NT	ND<2.0	NT	NT
Thallium	5.4	160	NA	NT	NT	NT	24	NT	, NT
Vanadium	470	14,000	NA	NT	NT	NT	34	NT	NT
Zinc	20,000	610,000	NA NA	NT	NT	NT	32	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	ND<50	NT	NT

. 1	_	٠.	_	
N	o	-	œ	۰

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit,

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Tah | LC-12 2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			engusu Station	1	., 					
Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soil Commis Commission (Commission						
74741345			Soll (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-IIII	TB-IIII	TB-IIII	TB-JJJJ	TB-JJJJ	TB-JJJJ	
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-1.3)	(4.3-6.3)	(0.0-0.3)	(1.5-1.8)	(1.8-2.8)	
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)		_								
Acenaphthene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<0.20	
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<0.20	
Anthracene	1,000	2,500	400	NT	ND<0.20	NT	NT	NT	ND<0.20	
Benzo[a]anthracene	1	7.8	1	NT	1.0	NT	NT	NT	0.24	
Benzo[a]pyrene	1	1	1	NT	1.3	NT	NT	NT	0.43	
Benzo[b]fluoranthene	1	7.8	1	NT	2.0	NT	NT	NT	0.43	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	0.64	NT	NT	NT	ND<0.20	
Benzo[k]fluoranthene	8.4	78	1	NT	0.80	NT	NT	NT	ND<0.20	
Chrysene	84	780	1	NT	1.2	NT	NT	NT	0.81	
Dibenz[a,h]anthracene	1	1	1	NT	ND<0.20	NT	NT	NT	ND<0.20	
Fluoranthene	1,000	2,500	56	NT	1.6	NT	NT	NT	0.20	
Fluorene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<0.20	
Indeno[1,2,3-cd]pyrene	11	7.8	1	NT	0.64	NT	NT	NT	ND<0.20	
Naphthalene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<0.20	
Phenanthrene	1,000	2,500	40	N	0.73	NT	NT	NT	0.98	
Pyrene	1,000	2,500	40	NT	1.5	NT	NT	NT	0.29	
USEPA Method 8260 Volatile										
Organic Compounds (VOCs)										
Ethylbenzene	500	1,000	10.1	NT	ND<0.25	NT	NT	NT	ND<0.25	
Isopropylbenzene	500	1,000	132	NT	ND<0.25	NT	NT	NTNT	ND<0.25	
4-Isopropyltoluene Naphthalene	500	1,000	41.8	NT	ND<0.25	NT	NT	NT	ND<0.25	
	1,000	2,500	56	NT	ND<0.25	NT	NT	NT	ND<0.25	
n-Propylbenzene Tetrachloroethene	500	1,000	14	NT	ND<0.25	NT	NT	NT	ND<0.25	
Toluene	12	110	1	NT	0.60	NT	NT	NT	ND<0.25	
Trichloroethene	500	1,000	67		ND<0.25	NT	NT	NT	ND<0.25	
	56	520	1.0	NT	ND<0.25	NT	NT	NT	ND<0.25	
1,1,1-Trichloroethane	500	1,000	40	NT	0.63	NT	NT	NT	ND<0.25	
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.25	NT	NT	NT	ND<0.25	
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.25	NT	NT	NT	ND<0.25	
Xylenes (total)	500	1,000	19.5	NT	ND<0.25	NT	NT	NT	ND<0.25	

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 70 of 117

Tab | | C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		QE/	English Station	, New Haver	ı, CT						
Analyte	Direct Exposure Criteria for Soli (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial/			1		1	1	T -		
	Residential	Commercial	GB Area	TB-IIII	TB-IIII	TB-IIII	TB-JJJJ	TB-JJJJ	TB-JJJJ		
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-1.3)	(4.3-6.3)	(0.0-0.3)	(1.5-1.8)	(1.8-2.8)		
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1242	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1260	1	10	NA NA	ND<0.50	1.9(2)	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT		
SPLP Metals	 i										
Antimony	NA NA	NA NA	0.06	NT	ND<0.006	NT	NT	NT	ND co coc		
Arsenic	NA NA	NA	0.5	NT	ND<0.05	NT	NT	NT	ND<0.006 ND<0.05		
Barium	NA NA	NA	10	NT	0.36	NT	NT	NT	0.37		
Copper	NA	NA	13	NT	ND<0.04	NT	NT NT	NT	ND<0.04		
Lead	NA	NA	0.15	NT	0.037	NT	NT	NT	ND<0.04		
Mercury	NA	NA	0.02	NT	ND<0.002	NT	NT	NT	ND<0.002		
Nickel	NA	NA	1.0	NT	0.052	NT	NT	NT	ND<0.05		
Selenium	NA NA	NA	0.50	NT	ND<0.01	NT	NT	NT	ND<0.01		
Thallium	NA	NA	0.05	NT	ND<0.005	NT	NT	NT	ND<0.005		
Vanadium	NA NA	NA	0.50	NT	0.77	NT	NT	NT	ND<0.05		
Zinc	NA NA	NA	50	NT	0.30	NT	NT	NT	0.25		
Total Metals											
Antimony	27	8,200	NA	NT	ND<2.0	NT	NT	NT	ND<2.0		
Arsenic	10	10	NA	NT	43	NT	NT	NT	6.3		
Barium	4,700	140,000	NA	NT	58	NT	NT	NT	59		
Beryllium	2	2	NA	NT	ND<1.0	NT	NT	NT	ND<1.0		
Cadmium	34	1,000	NA	NT	1.7	NT	NT	NT	ND<0.50		
Chromium	100*	100*	NA	NT	9.6	NT	NT	NT	ND<2.0		
Copper	2,500	76,000	NA	NT	71	NT	NT	NT	5.1		
Lead	500	1,000	NA	NT	110	NT	NT	NT	7.7		
Mercury	20	610	NA	NT	0.39	NT	NT	NT	ND<0.20		
Nickel	1,400	7,500	NA	NT	98	NT	NT	NT	ND<2.0		
Selenium	340	10,000	NA	NT	ND<1.0	NT	NT	NT	2.3		

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 71 of 117

Table ADC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial/					1				
	Residential	Commercial	GB Area	TB-IIII	TB-IIII	TB-IIII	TB-JJJJ	TB-JJJJ	TB-JJJJ		
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-1.3)	(4.3-6.3)	(0.0-0.3)	(1.5-1.8)	(1.8-2.8)		
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002		
Total Metals (Cont'd)											
Silver	340	10,000	NA	NT	ND<2.0	NT	NT	NT	ND<2.0		
Thallium	5.4	160	NA	NT	8.9	NT	NT	NT	ND<2.0		
Vanadium	470	14,000	NA	NT	520	NT	NT	NT	13		
Zinc	20,000	610,000	NA NA	NT	59	NT	NT	NT	ND<2.0		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	ND<50	ND<50	NT	NT	ND<50		

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, itew naveli	, 01				
Analyte	fo	osure Criteria r Soll g/kg)	Pollutant Mobility Criteria for						
Altayto		1	Soll (mg/kg)		So	Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-JJJJ	TB-JJJJ	ТВ-КККК	ТВ-КККК	ТВ-КККК	TB-KKKK(4)
Depth Below Grade (ft.)				(3.5-5)	(5-5.5)	(0.0-0.3)	(1-1.3)	(1.3-2.3)	(5-6)
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	NT
Chrysene	84	780	1	NT	NT	NT	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	· NT	NT	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile									
Organic Compounds (VOCs)		ļ							
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT
Tetrachloroethene	12	110	1	NT	NT	NT	NT	NT	NT
Toluene	500	1,000	67	NT	NT	NT	NT	NT	NT
Trichloroethene	56	520	1.0	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 73 of 117

Tab C-12 2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	-,	40	English Station	, New naver	1, 01				•	
Analyte	Direct Exposure Criteria for Soli (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soli Sample Concentrations (ppm)						
		Industrial/			T - 30	ii Sampie Con	centrations (p	pm)	·	
	Residential	Commercial	GB Area	TB-JJJJ	TB-JJJJ	TB-KKKK	ТВ-КККК	TB-KKKK	TB-KKKK ⁽⁴)	
Depth Below Grade (ft.)		1		(3.5-5)	(5-5.5)	(0.0-0.3)	(1-1.3)	(1.3-2.3)	(5-6)	
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									17 112-02	
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND -0 50	
PCB-1248	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
PCB-1254 .	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
PCB-1260	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50 ND<0.50	ND<0.50	
Cyanide (total)	1 400							140<0.50	ND<0.50	
	1,400	41,000	NA NA	NT	NT	NT	NT	NT	NT	
SPLP Metals										
Antimony	NA	NA	0.06	NT	NT	NT	NT	NT	NT	
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	NT	
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT	
Copper	NA ·	NA	13	NT	NT	NT	NT	NT	NT	
Lead	NA	NA	0.15	NT	NT	NT	NT	NT NT	NT	
Mercury	NA NA	NA	0.02	NT	NT	NT	NT	NT	NT	
Nickel	NA NA	NA	1.0	NT	NT	NT	NT	NT	NT	
Selenium	NA NA	NA	0.50	NT	NT	NT	NT	NT	NT	
Thallium	NA	NA NA	0.05	NT	NT	NT	NT	NT	NT	
Vanadium	NA NA	NA	0.50	NT	NT	NT	NT	NT	NT	
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT	
Total Metals										
Antimony	27	8,200	NA	NT	3.7	NT	NT	NT	NT	
Arsenic	10	10	NA	NT	300	NT	NT	NT	NT	
Barium	4,700	140,000	NA	NT	37	NT	NT	NT	NT	
Beryllium	2	2	NA	NT	ND<1.0	NT	NT	NT	NT	
Cadmium	34	1,000	NA	NT	8.5	NT	NT	NT	NT	
Chromium	100*	100*	NA	NT	6.5	NT	NT	NT	NT	
Copper	2,500	76,000	NA	NT	67	NT	NT	NT	NT	
Lead	500	1,000	NA	77	420	NT	NT	NT	NT	
Mercury	20	610	NA	NT	ND<0.20	NT	NT	NT	NT	
Nickel	1,400	7,500	NA	NT	2.5	NT	NT	NT	NT	
Selenium	340	10,000	NA	NT	15	NT	NT	NT	NT	

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)						
		Industrial/					(,,			
D-4h D-1 O 1 W)	Residential	Commercial	GB Area	TB-JJJJ	TB-JJJJ	TB-KKKK	TB-KKKK	TB-KKKK	TB-KKKKK(4)	
Depth Below Grade (ft.)				(3.5-5)	(5-5.5)	(0.0-0.3)	(1-1.3)	(1.3-2.3)	(5-6)	
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	
Total Metals (Cont'd)										
Silver	340	10,000	NA	NT	ND<2.0	NT	NT	NT	NT	
Thallium	5.4	160	NA	NT-	38	NT	NT	NT		
Vanadium	470	14,000	NA	NT	12	NT	NT	NT	NT	
Zinc	20,000	610,000	NA	NT	11	NT	NT	NT	NT NT	
Connecticut Extractable Total									ļ	
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT	

N۸		
MO	tes:	

(2)

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

 Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			inglish Station	, item liavell	, 01				
Analyte	fo	osure Criteria r Soil g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)		9 -1	W. Carrada - Oan			
74141310	(11)		Son (mg/kg)		<u> </u>	i Sample Con	centrations (p	pm)	r·
	Residential	Industrial/ Commercial	GB Area	ТВ-КККК	TB-LLLL	TB-LLLL	TB-LLLL	TB-LLLL	TB-LLLL
Depth Below Grade (ft.)				(5-6)	(0.0-0.3)	(0.3-0.6)	(0.6-1.6)	(3.3-4.3)	(4.3-6.3)
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)					- 				
Acenaphthene	1,000	2,500	84	NT	NT	NT	ND<0.20	0.50	0.44
Acenaphthylene	1,000	2,500	84	NT	NT	NT	ND<0.20	0.39	0.26
Anthracene	1,000	2,500	400	NT	NT	NT	ND<0.20	0.91	0.70
Benzo[a]anthracene	1	7,8	1	NT	NT	NT	0.30	1.7	1.3
Benzo[a]pyrene	1	11	1	NT	NT	NT	0.24	2.4	1.8
Benzo[b]fluoranthene	11	7.8	1	NT	NT	NT	0.37	2.8	2.5
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	0.35	1.0	0.88
Benzo(k)fluoranthene	8.4	78	1	NT	NT	NT	ND<0,20	1.2	1.1
Chrysene	84	780	1	NT	NT	NT	0.48	1.9	1.6
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	ND<0.20	0.26	0.22
Fluoranthene	1,000	2,500	56	NT	NT	NT	0.27	4.0	3.2
Fluorene	1,000	2,500	56	NT	NT	NT	ND<0.20	0.61	0.51
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	0.28	1.1	1.0
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.20	1,6	1.8
Phenanthrene	1,000	2,500	40	NT	NT	NT	0.71	3.5	2.6
Pyrene	1,000	2,500	40	NT	NT	NT	0.28	4.0	3.0
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Ethylbenzene	500	4.000	40.4	\					
Isopropylbenzene	500	1,000	10.1	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005
4-Isopropyltoluene	500	1,000	132	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005
Naphthalene	1,000	1,000 2,500	41.8 56	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005
n-Propylbenzene	500			NT	NT	NT	ND<0.25	0.13	0.04
Tetrachloroethene	12	1,000 110	14	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005
Toluene	500	1,000	67	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005
Trichloroethene	56	520		NT	NT	NT NT	ND<0.25	ND<0.005	ND<0.005
			1.0	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005
Xylenes (total)	500	1,000	19,5	NT	NT	NT	ND<0.25	ND<0.005	ND<0.005

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 76 of 117

Table AUC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	osure Criteria r Soli g/kg)	Pollutant Mobility Criteria for Soli (mg/kg)	:								
7 dialyto			Son (mg/kg)	Soil Sample Concentrations (ppm)								
	D1411-1	Industrial/						ļ]			
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-KKKK	TB-LLLL	TB-LLLL	TB-LLLL	TB-LLLL	TB-LLLL			
Sample Collection Date			-	(5-6)	(0.0-0.3)	(0.3-0.6)	(0.6-1.6)	(3.3-4.3)	(4.3-6.3)			
				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002			
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)												
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
PCB-1260	111	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT			
SPLP Metals								181	1/1			
Antimony	NA	NA	0.06	NT	NT	NT	ND -0 000					
Arsenic	NA NA	NA NA	0.5	NT	NT	NT	ND<0.006	0.024	NT NT			
Barlum	NA NA	NA NA	10	NT	NT	NT NT	ND<0.05	ND<0.05	NT_			
Copper	NA NA	NA NA	13	NT	NT	NT	0.37	0.29	NT			
Lead	NA NA	NA NA	0.15	NT	NT	NT	ND<0.04 0.018	ND<0.04	NT			
Mercury	NA NA	NA NA	0.02	NT	NT	NT	ND<0.002	ND<0.013 ND<0.002	NT			
Nickel	NA	NA	1.0	NT	NT	NT	ND<0.002	ND<0.002	NT NT			
Selenium	NA	NA NA	0.50	NT	NT	NT	ND<0.03	ND<0.03	NT			
Thallium	NA NA	NA NA	0.05	NT	NT	NT	ND<0.005	ND<0.005	NT NT			
Vanadium	NA NA	NA NA	0.50	NT	NT	NT	0.22	ND<0.005	NT			
Zinc	NA	NA	50	NT	NT -	NT	0.35	0.64	NT			
Total Metals												
Antimony	27	8,200	NA	NT	NT	NT	ND<2.0	26				
Arsenic	10	10	NA	NT	NT	NT	19	2.6 9.3	NT			
Barium	4,700	140,000	NA NA	NT	NT	NT	53	78	NT			
Beryllium	2	2	NA NA	NT	NT	NT	ND<1.0	ND<1.0	NT NT			
Cadmium	34	1,000	NA	NT	NT	NT	1.4	3.0	NT			
Chromium	100°	100°	NA	NT	NT	NT	5.7	62	NT NT			
Copper	2,500	76,000	NA	NT	NT	NT	130	550	NT NT			
Lead	500	1,000	NA	NT	NT	NT	120	250	NT			
Mercury	20	610	NA	NT	NT	NT	0.29	4.4	NT			
Nickel	1,400	7,500	NA NA	NT	NT	NT	35	49	NT			
Selenium	340	10,000	NA	NT	NT	NT	1.4	ND<1.0	NT			

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 77 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Direct Exposure Criteria for Soli (mg/kg)		Soll Sample Concentrations (ppm)							
		Industrial/	-				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	Residential	Commercial	GB Area	TB-KKKK	TB-LLLL	TB-LLLL	TB-LLLL	TB-LLLL	TB-LLLL		
Depth Below Grade (ft.)				(5-6)	(0.0-0.3)	(0.3-0.6)	(0.6-1.6)	(3.3-4.3)	(4.3-6.3)		
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002		
Total Metals (Cont'd)	- 										
Silver	340	10,000	NA NA	NT	NT	NT	ND<2.0	2.7	NT		
Thallium	5.4	160	NA NA	NT	NT	NT	7.2	6.0	NT		
Vanadium	470	14,000	NA NA	NT	NT	NT	310	20	NT		
Zinc	20,000	610,000	NA	NT	NT	NT	59	330	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	ND<50	520	280		

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection fimit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table ADC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	······································	QE/I	English Station	, New Haven	, CT						
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial/					()	, , , , , , , , , , , , , , , , , , ,	F		
	Residential	Commercial	GB Area	ТВ-ММММ	ТВ-ММММ	TB-MMMM	TB-MMMM	TB-NNNN	TB-NNNN		
Depth Below Grade (ft.)				(0.0-0.3)	(0.5-0.8)	(0.8-1.8)	(4.5-6.5)	(0.0-0.3)	(1-3)		
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002		
USEPA Method 8270 Polynuclear											
Aromatic Hydrocarbons (PAHs)							•]		
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	NT		
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT NT		
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT		
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT		
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	NT	NT		
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT		
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT		
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	NT		
Chrysene	84	780	1	NT	NT	NT	NT	NT	NT		
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	NT		
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT		
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT		
USEPA Method 8260 Volatile											
Organic Compounds (VOCs)		l						'			
Ethylbenzene	500	1.000	10.1	NT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
Isopropylbenzene	500	1,000	132	NT	NT NT	NT	NT	NT	NT		
4-isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT .	NT	NT	NT NT		
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT_	NT	NT		
Tetrachlorgethene	12	110	1	NT	NT	NT	NT	NT	NT		
Toluene	500	1,000	67	NT	NT NT	NT NT	NT	NT	NT		
Trichloroethene	56	520	1.0	NT	NT	NT	NT	NT	NT		
1,1,1-Trichloroethane	500	1,000	40	NT	NT		NT	NT	NT		
						NT	NT	NT	NT		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT		
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 79 of 117

Table 40C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	i, itew naveli	, 61				
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)		e_i	I Samula Can	-4-41		
		Industrial/	24. (mgrng)	 	301	i Sample Cond	centrations (p	om)	
	Residential		GB Area	TB-MMMM	ТВ-ММММ	ТВ-ММММ	ТВ-ММММ	TB-NNNN	TB-NNNN
Depth Below Grade (ft.)		<u> </u>		(0.0-0.3)	(0.5-0.8)	(0.8-1.8)	(4.5-6.5)	(0.0-0.3)	(1-3)
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									11-11-25-02
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	1.77	1.5				
	1,400	41,000	IVA	NT	NT	NT	NT	NT	NT
SPLP Metals									
Antimony	NA	NA	0.06	NT	NT	NT	NT	NT	NT
Arsenic	NA	NA NA	0.5	NT	NT	NT	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT
Copper	NA	NA NA	13	NT	NT	NT	NT	NT	NT NT
Lead	NA	NA	0.15	NT	NT	NT	NT	NT	NT
Mercury	NA	NA	0.02	NT	NT	NT	NT	NT	NT
Nickel	NA	NA	1.0	NT	NT	NT	NT	NT	NT NT
Selenium	NA	NA	0.50	NT	NT	NT	NT	NT	NT
Thallium	NA	NA	0.05	NT	NT	NT	NT	NT	NT
Vanadium	NA	NA	0.50	NT	NT	NT	NT	NT	NT
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT NT
Total Metals									
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	A PP
Arsenic	10	10	NA	NT	NT	NT	NT NT		NT
Barium	4,700	140,000	NA NA	NT	NT NT	NT	NT NT	NT NT	NT
Beryllium	2	2	NA .	NT	NT	NT	NT		NT
Cadmium	34	1,000	NA NA	NT	NT	NT	NT NT	NT	NT
Chromium	100*	100*	NA	NT	NT	NT	NT NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT NT	NT NT	NT
Lead	500	1,000	NA NA	NT	NT	NT	NT	NT	NT NT
Mercury	20	610	NA NA	NT	NT	NT	NT		
Nickel	1,400	7,500	NA NA	NT	NT			NT NT	NT
Selenium	340	10,000	NA NA	NT	NT	NT	NT NT	NT	NT
	370	10,000	IVA	NI	NI I	NT	NT NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 80 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven, CT

				,	,					
Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soli Sample Concentrations (ppm)						
		Industrial/								
<u> </u>	Residential	Commercial	GB Area	TB-MMMM	TB-MMMM	ТВ-ММММ	ТВ-ММММ	TB-NNNN	TB-NNNN	
Depth Below Grade (ft.)				(0.0-0.3)	(0.5-0.8)	(0.8-1.8)	(4,5-6.5)	(0.0-0.3)	(1-3)	
Sample Collection Date				4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	4/4/2002	
Total Metals (Cont'd)										
Silver	340	10,000	NA	NT	NT	NT	NT	NT	NT	
Thallium	5.4	160	NA	NT	NT	NT	NT	NT	NT	
Vanadium	470	14,000	NA NA	NT	NT	NT	NT	NT	NT	
Zinc	20,000	610,000	NA .	NT	NT	NT	NT	NT	NT	
Connecticut Extractable Total										
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT	

4	-	٠.	
N			

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table AUC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

QE/English Station, New Haven, CT										
Analyte	foi	Direct Exposure Criteria for Soli (mg/kg)			_					
Allalyte			Soll (mg/kg)		Sol	i Sample Con	centrations (p	pm)		
	Residential	Industrial/ Commercial	GB Area	TB-NNNN	TB-NNNN	TB-0000	TB-0000	TB-0000	TB-PPPP	
Depth Below Grade (ft.)				(1.3-2.3)	(4-5)	(0.0-0.3)	(2.0-2.3)	(4-5)	(0.0-0.3)	
Sample Collection Date				4/4/2002	4/4/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	NT	NT	NT	ND<0.20	ND<0.20	NT	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	ND<0.20	ND<0.20	NT	
Anthracene	1,000	2,500	400	NT	NT	NT	ND<0.20	ND<0.20	NT	
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	0.58	ND<0.20	NT	
Benzo[a]pyrene	11	1	. 1	NT	NT	NT	0.66	ND<0.20	NT	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	0.97	ND<0.20	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	0.40	ND<0.20	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	0.64	ND<0.20	NT	
Chrysene	84	780	1	NT	NT	NT	0.96	ND<0.20	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	ND<0.20	ND<0.20	NT	
Fluoranthene	1,000	2,500	56	NT	NT	NT	0.97	ND<0.20	NT	
Fluorene	1,000	2,500	56	NT	NT	NT	ND<0.20	ND<0.20	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	0.37	ND<0.20	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	0.23	ND<0.20	NT	
Phenanthrene	1,000	2,500	40	NT	NT	NT	1,0	ND<0.20	NT	
Pyrene	1,000	2,500	40	NT	NT	NT ·	0.92	ND<0.20	NT	
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
Ethylbenzene	500	4.000			<u> </u>					
Isopropylbenzene		1,000	10.1	NT	NT	NT	ND<0.005	ND<0.005	NT	
4-Isopropyltoluene	500	1,000	132	NT NT	NT	NT	ND<0.005	ND<0.005	NT	
Naphthalene	500	1,000	41.8	NT	NT	NT	ND<0.005	ND<0.005	NT	
n-Propylbenzene	1,000 500	2,500	56	NT	NT	NT	ND<0.005	ND<0.005	NT	
Tetrachloroethene	12	1,000	14	NT	NT	NT	ND<0.005	ND<0.005	NT	
Toluene	500	110	1	NT	NT	NT	ND<0.005	ND<0.005	NT	
Trichloroethene	56	1,000	67	NT	NT	NT	0.006	ND<0.005	NT	
		520	1.0	NT	NT	NT	ND<0.005	ND<0.005	NT	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	ND<0.005	ND<0.005	NT	
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	ND<0.005	NT	
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	ND<0.005	NT	
Xylenes (total)	500	1,000	19.5	NT	NT	NT	ND<0.005	ND<0.005	NT	

Table A0C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		QD	English Station	, new Haven	1, 61						
Analyte	Direct Exposure Criteria for Soli (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial/			1	 	l	 			
	Residential	Commercial	GB Area	TB-NNNN	TB-NNNN	TB-0000	TB-0000	TB-0000	TB-PPPP		
Depth Below Grade (ft.)				(1.3-2.3)	(4-5)	(0.0-0.3)	(2.0-2.3)	(4-5)	(0.0-0.3)		
Sample Collection Date				4/4/2002	4/4/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Cyanide (total)	1,400	41,000	NA NA	NT	NT						
	1,100	41,000	11/2	141	INI	NT	NT	NT	NT		
SPLP Metals											
Antimony	NA NA	NA	0.06	NT_	NT	NT	ND<0.006	ND<0.006	NT		
Arsenic Barium	NA NA	NA	0.5	NT	NT	NT	ND<0.05	ND<0.05	NT		
} 	NA NA	NA NA	10	NT	NT	NT	0.26	0.22	NT		
Copper Lead	NA NA	NA NA	13	NT	NT	NT	ND<0.04	ND<0.04	NT		
Mercury	NA NA	NA NA	0.15	NT	NT	NT	ND<0.013	ND<0.013	NT		
Nickel	NA NA	NA NA	0.02	NT	NT	NT	ND<0.002	ND<0.002	NT		
Selenium	NA NA	NA NA	1.0	NT	NT	NT	ND<0.05	ND<0.05	NT		
Thallium	NA NA	NA NA	0.50	NT	NT	NT	ND<0.01	ND<0.01	NT		
Vanadium	NA NA	NA NA	0.05	NT_	NT	NT	ND<0.005	ND<0.005	NT		
Zinc	NA NA	NA NA	0.50	NT NT	NT	NT	ND<0.05	ND<0.05	NT		
	IVA	N/A	50	NT_	NT	NT NT	0.15	0.20	NT		
Total Metals									•		
Antimony	27	8,200	NA	NT	NT	NT	ND<2.0	ND<2.0	NT		
Arsenic	10	10	NA	NT	NT	NT	15	75	NT		
Barlum	4,700	140,000	NA	NT	NT	NT	63	71	NT		
Beryllium	2	2	NA	NT	NT	NT	ND<1.0	ND<1.0	NT		
Cadmium	34	1,000	NA	NT	NT	NT	1.2	13	NT		
Chromium	100*	100*	NA	NT	NT	NT	5.5	5.9	NT		
Copper	2,500	76,000	NA NA	NT	NT	NT	80	19	NT		
Lead	500	1,000	NA	NT	NT	NT	73	200	NT		
Mercury	20	610	NA	NT	NT	NT	2.6	0.43	NT		
Nicke!	1,400	7,500	NA	NT	NT	NT	6.2	2.3	NT		
Selenium	340	10,000	NA	NT	NT	NT	ND<1.0	8.6	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 83 of 117

Tab C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte Depth Below Grade (ft.)	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-NNNN	TB-NNNN	TB-0000	TB-0000	TB-0000	TB-PPP	
				(1.3-2.3)	(4-5)	(0.0-0.3)	(2.0-2.3)	(4-5)	(0.0-0,3)	
Sample Collection Date				4/4/2002	4/4/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	
Total Metals (Cont'd)									17072002	
Silver	340	10,000	NA	NT	NT	NT	ND<2.0	ND-62.0		
Thallium	5,4	160	NA.	NT	NT	NT	5.8	ND<2.0	NT	
Vanadium	470	14,000	NA.	NT	NT	NT	38	24	NT	
Zinc	20,000	610,000	NA NA	NT_	NT	NT	47	10 ND<2.0	NT NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	ND<50	ND<50	NT	

M	-		_	
Ν	О	Ю	5	•

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milliorams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

- (1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.
- (2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.
- (3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.
- (4) = Submitted as a Quality Control (QC) duplicate sample.
- = Concentration exceeds associated criterion

Table -- 12.2 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven, CT

			english Station	, item naven	1, 01				
Analyte	for	Direct Exposure Criteria for Soil (mg/kg)				10			
			Soil (mg/kg)		Sol	i Sample Con	centrations (p	pm)	
	Residential	industrial/ Commercial	GB Area	TB-PPPP	TB-PPPP	TB-PPPP	TB-QQQQ	TB-QQQQ	TB-QQQQ
Depth Below Grade (ft.)				(0.3-0.6)	(0.9-1)	(2.3-4.3)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)								TIGIZUGE	7/3/2002
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	ND<0.20
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	ND<0.20
Anthracene	1,000	2,500	400	NT	NT	NT	NT	0.30	
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	1.8	0.31 1.6
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	2.2	2.2
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	3.6	3.1
Benzo[g,h,l]perylene	1,000	2,500	42	NT	NT	NT	NT	0.97	0.71
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	1.6	
Chrysene	84	780	1	NT	NT	NT	NT	2.0	1.3 1.7
Dibenz[a,h]anthracene	1	1	1 .	NT	NT	NT	NT	0.29	
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	3.4	ND<0.20 3.8
Fluorene	1,000	2,500	56	NT	NT	NT	NT	3.4 ND<0.20	3.8 ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	1.1	0.90 0.90
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	0.23	0.90 ND<0.20
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	1.5	2,0
Pyrene	1,000	2,500	40	NT	NT	NT	NT	2.9	3.6
USEPA Method 8260 Volatile							141	2.3	3.0
Organic Compounds (VOCs)		İ	Ì	,	1		' I		_
Ethylbenzene	500	1,000	10,1	NT	NT	AIT		ND 5.5	
Isopropylbenzene	500	1,000	132	NT	NT	NT NT	NT	ND<0.25	ND<0.25
4-Isopropyltoluene	500	1,000	41.8	NT	NT		NT	ND<0.25	ND<0.25
Naphthalene	1,000	2,500	56	NT	NT NT	NT NT	NT	ND<0.25	ND<0.25
n-Propylbenzene	500	1,000	14	NT NT	NT	NT NT	NT	ND<0.25	ND<0.25
Tetrachloroethene	12	110	1	NT NT	NT	NT NT	NT	ND<0.25	ND<0.25
Toluene	500	1,000	67	NT	NT	NT NT	NT	ND<0.25	ND<0.25
Trichloroethene	56	520	1.0	NT	NT	NT NT	NT	ND<0.25	ND<0.25
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT NT	ND<0.25 ND<0.25	ND<0.25
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT			ND<0.25
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT		NT	ND<0.25	ND<0.25
Xylenes (total)	500	1,000	19.5			NT	NT	ND<0.25	ND<0.25
rijionios (total)	1 300	1,000	19.5	NT	NT	NT	NT	ND<0.25	ND<0.25

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 85 of 117

Table AUC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Pollutant											
Analyte	fo	Direct Exposure Criteria for Soll (mg/kg)			0.0	II Samala C					
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	industrial/	Soil (mg/kg)	 	<u>56</u>	u sample Con	centrations (p	pm)			
	Residential		00.4				1	ĺ			
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-PPPP	TB-PPPP	TB-PPPP	TB-QQQQ	TB-QQQQ	TB-QQQQ		
Sample Collection Date		 		(0.3-0.6)	(0.9-1)	(2.3-4.3)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)		
				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND co so	115.5.5		
PCB-1248	11	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1260	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Cyanide (total)	4.400					1412<0.30	מטייטיטיט	ND<0.50	ND<0.50		
	1,400	41,000	NA	NT	NT NT	NT	NT	NT	NT		
SPLP Metals											
Antimony	NA	NA	0.06	NT	NT	NT	NT	ND -0 000	110 0 000		
Arsenic	NA	NA	0.5	NT	NT	NT		ND<0.006	ND<0.006		
Barium	NA	NA	10	NT	NT	NT	NT NT	ND<0.05	ND<0.05		
Copper	NA NA	NA	13	NT	NT	NT		0.30	0.33		
Lead	NA	NA	0.15	NT	NT	NT	NT NT	ND<0.04	0.052		
Mercury	NA NA	NA NA	0.02	NT	NT	NT		ND<0.013	ND<0.013		
Nickel	NA	NA	1.0	NT	NT	NT	NT	ND<0.002	ND<0.002		
Selenium	NA	NA	0.50	NT NT	NT	NT	NT	ND<0.05	ND<0.05		
Thallium	NA	NA	0.05	NT	NT		NT	ND<0.01	ND<0.01		
Vanadium	NA	NA	0.50	NT	NT	NT	NT	ND<0.005	ND<0.005		
Zinc	NA	NA	50	NT	NT	NT	NT	ND<0.05	ND<0.05		
Total Metals				171	INT	NT	NT	0.26	0.21		
	<u> </u>										
Antimony	27	8,200	NA NA	NT	NT	NT .	NT	2.2	ND<2.0		
Arsenic	10	10	NA NA	NT	NT	NT	NT	26	13		
Barium	4,700	140,000	NA	NT	NT	NT	NT	99	51		
Beryllium	2	2	NA	NT	NT	NT	NT	ND<1.0	ND<1.0		
Cadmium	34	1,000	NA NA	NT	NT	NT	NT	15	1.9		
Chromium	100*	100*	NA	NT	NT	NT	NT	21	11		
Copper	2,500	76,000	NA	NT	NT	NT	NT	170	150		
Lead .	500	1,000	NA	NT	NT	NT	NT	170	88		
Mercury	20	610	NA	NT	NT	NT	NT	0.48	0.38		
Nickel	1,400	7,500	NA	NT	NT	NT	NT	8.8	11		
Selenium	340	10,000	NA	NT	NT	NT	NT	1.4	ND<1.0		

Table AUC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soll Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-PPPP	TB-PPPP	TB-PPPP	TB-QQQQ	TB-QQQQ	TD 0000		
Depth Below Grade (ft.)				(0.3-0.6)	(0.9-1)	(2.3-4.3)	(0.0-0.3)	(0.3-2.3)	TB-QQQQ		
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	(2.3-4.3) 4/5/2002		
Total Metals (Cont'd)								4/3/2002	4/3/2002		
Silver	340	10,000	NA NA	NT	NT	NT	NT	ND co o			
Thallium	5,4	160	NA	NT	NT	NT		ND<2.0	ND<2.0		
Vanadium	470	14,000	NA NA	NT	NT		NT	14	6.5		
Zinc	20,000	610,000	NA NA	NT	NT	NT NT	NT	25	22		
Connecticut Extractable Total					141	141	NT	290	76		
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	ND<50	100		

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table AOC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	Pollutant Pollutant										
	foi	Direct Exposure Criteria for Soli									
Analyte	(m	g/kg)	Soll (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-RRRR	TB-RRRR	TB-RRRR	TB-RRRR		77 0000		
Depth Below Grade (ft.)				(0.0-0.3)	(1-1.3)	(3.3-3.9)	(3.9-4)	TB-SSSS (0.0-0.3)	TB-SSSS		
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	(2.2-2.5) 4/5/2002		
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)								4,0/2002	4/3/2002		
Acenaphthene	4.000	0.500		<u> </u>							
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT		
Anthracene	1,000	2,500	84	NT	NT	NT	NT	NT	NT		
Benzo[a]anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT		
Benzo[a]pyrene	1 1	7,8	1	NT	NT	NT	NT	NT	NT		
Benzo[b]fluoranthene		1	1	NT	NT	NT	NT	NT	NT		
Benzo[g,h,i]perylene	1 1 222	7.8	1	NT	NT	NT	NT	NT	NT		
	1,000	2,500	42	NT	NT	NT	NT	NT	NT		
Benzo[k]fluoranthene Chrysene	8.4	78	1	NT	NT	NT	NT	NT	NT		
	84	780	1	NT	NT	NT	NT	NT	NT		
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	NT		
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT NT	NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT		
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT		
USEPA Method 8260 Volatile					F						
Organic Compounds (VOCs)											
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT		
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT		
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT		
Tetrachloroethene	12	110	1	NT	NT	NT	NT	NT	NT		
Toluene	500	1,000	67	NT	NT	NT	NT	NT	NT		
Trichloroethene	56	520	1.0	NT	NT	NT	NT	NT	NT		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT		
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	NT		

Tal∰∰C:12 2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, INCW HAVE	<u> </u>				
Analyte	for	osure Criteria r Soil	Pollutant Mobility Criteria for						
Allalyte	<u>(m</u>	g/kg)	Soil (mg/kg)		Sol	i Sample Con	centrations (p	pm)	
	Residential	industrial/ Commercial	GB Area	TB-RRRR	TB-RRRR	TB-RRRR	TB-RRRR	TB-SSSS	TB-SSSS
Depth Below Grade (ft.)				(0.0-0.3)	(1-1.3)	(3.3-3.9)	(3.9-4)	(0.0-0.3)	(2.2-2.5)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
USEPA Method 8082 Polychlorinated Biphenyis (PCBs)									WG/2002
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	NT	NT				
	1,100	41,000		141	141	NT	NT	NT	NT_
SPLP Metals Antimony		ļļ.							
Arsenic	NA NA	NA	0.06	NT	NT	NT	NT	NT	NT
Barium	NA	NA	0.5	NT	NT	NT	NT	NT NT	NT
	NA NA	NA	10	NT	NT	NT	NT	NT	NT
Copper Lead	NA NA	NA NA	13	NT	NT	NT	NT	NT	NT
·	NA NA	NA	0.15	NT	NT	NT	NT	NT	NT
Mercury Nickel	NA NA	NA	0.02	NT	NT	NT	NT	NT	NT
Selenium	NA NA	NA	1.0	NT	NT	NT	NT	N	NT
Thallium	NA NA	NA	0.50	NT	NT	NT	NT	NT	NT
Vanadium	NA NA	NA NA	0.05	NT	NT	NT	NT	אַ	NT
Zinc	NA NA	NA	0.50	NT	NT	NT	NT	NT	NT
	NA	NA NA	50	NT	NT	NT	NT	NT	NT
Total Metals									
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT
Arsenic	10	10	NA NA	NT	NT	NT	NT	NT	NT
Barium	4,700	140,000	NA NA	NT	NT	NT	NT	NT	NT
Beryllium	2	2	NA	NT	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA	NT	NT	NT	NT	NT	NT
Chromium	100*	100*	NA	NT	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT
Lead	500	1,000	NA NA	NT	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT

Table 40C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	CD Asses	TD DDDD							
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-RRRR	TB-RRRR	TB-RRRR	TB-RRRR	TB-SSSS	TB-SSSS		
				(0.0-0.3)	(1-1.3)	(3.3-3.9)	(3.9-4)	(0.0-0.3)	(2.2-2.5)		
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002		
Total Metals (Cont'd)											
Silver	340	10,000	NA	NT	NT	NT	NT	NT	NT		
Thallium	5.4	160	NA	NT	NT	NT	NT NT	NT	NT		
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT	NT		
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT		

N	otec:	
43	ひにころ.	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units

are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table ADC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		-iigiisii Statioii	, New naven	,				
Direct Exposure Criteria for Soil		Pollutant Mobility Criteria for Soil (mg/kg)		nm)				
		(mg/ng/		1	I Sample Con	Centrations (p	pm)	
Residential	Commercial	GB Area	TB-SSSS	TR-TTTT	TR-TTTT	TRATTE	TRADILI	TB-UUUU
								(1.2-1.5)
			4/5/2002	4/5/2002				4/5/2002
								75,2502
1,000	2,500	84	ND<0.20	NT	NT	ND<0.20	NT	ND<0.20
1,000	2,500	84						0.32
1,000	2,500	400						0.52
1	7.8	1						2.3
1	1	1						2.4
1	7.8	1						3.9
1,000	2,500	42						0.71
8.4	78	1						1.6
_ 84	780	1						2.5
1	1	1						0.27
1,000	2,500	56		NT				4.2
1,000	2,500	56	ND<0.20	NT				ND<0.20
1	7.8	1	ND<0.20					0.99
1,000	2,500	56	0.24	NT				ND<0.20
1,000	2,500	40	0.77	NT				2.2
1,000	2,500	40	ND<0.20	NT	NT			3.9
500	1 000	10.1	NDc0 25	NIT	ACT	ND 40 OF	<u> </u>	110 000
								ND<0.25
								ND<0.25
								ND<0.25
								ND<0.25
								ND<0.25
								ND<0.25
56								ND<0.25 ND<0.25
								ND<0.25
								ND<0.25 ND<0.25
								ND<0.25
	1,000 1,000	Direct Exposure Criteria for Soil (mg/kg)	Direct Exposure Criteria for Soil (mg/kg)	Direct Exposure Criteria for Soil (mg/kg)	Direct Exposure Criteria for Soil (mg/kg)	Direct Exposure Criteria for Soil (mg/kg) Criteria for Soil (mg/kg) Criteria for Soil (mg/kg) Criteria for Soil (mg/kg) Soil Sample Con	Direct Exposure Criteria for Soil Soil Sample Concentrations (p (mg/kg) Soil (mg/kg)	Direct Exposure Criteria Foliutant Mobility Criteria for Soil (mg/kg) Soil Sample Concentrations (ppm)

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			Linguisti Stationi	1	,			 			
Analyte	·for	osure Criteria Soil g/kg)	Pollutant Mobility Criteria for		5						
	- (m)		Soll (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-SSSS	тв-тттт	тв-тттт	тв-ттт	TB-UUUU	TB-UUUU		
Depth Below Grade (ft.)	<u> </u>			(2.5-4.5)	(0.0-0.3)	(1-1.3)	(2.3-4.3)	(0.0-0.3)	(1.2-1.5)		
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0,50		
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1260	1	_10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT		
SPLP Metals			-· . <u></u>			· · · · · · · · · · · · · · · · · · ·					
Antimony	NA	NA	0.06	ND<0.006	NT	NT	0.012	NT	0.009		
Arsenic	NA	NA	0.5	ND<0.05	NT	NT	ND<0.05	NT	ND<0.05		
Barium	NA	NA	10	0.21	NT	NT	0.27	NT	0.30		
Copper	NA	NA	13	ND<0.04	NT	NT	ND<0.04	NT	ND≪0.04		
Lead	NA	NA	0.15	ND<0.013	NT	NT	ND<0.013	NT	0.05		
Mercury	NA	NA.	0.02	ND<0.002	NT	NT	ND<0.002	NT	ND<0.002		
Nickel	NA	NA	1.0	ND<0.05	NT	NT	ND<0.05	NT	ND<0.05		
Selenium	NA	NA	0.50	ND<0.01	NT	NT	ND<0.01	NT	ND<0.01		
Thallium	NA NA	NA NA	0.05	ND<0.005	NT	NT	ND<0.005	NT	ND<0.005		
Vanadium	NA	NA	0.50	ND<0.05	NT	NT	ND<0.05	NT	ND<0.05		
Zinc	NA NA	NA	50	0.15	NT	NT	0.28	NT	0.22		
Total Metals											
Antimony	27	8,200	NA	3.6	NT	NT	2.2	NT	ND<2.0		
Arsenic	10	10	NA	110	NT	NT	11	NT	25		
Barium	4,700	140,000	NA	52	NT	NT	45	NT	110		
Beryllium	2	2	NA	ND<1.0	NT	NT	ND<1.0	NT	ND<1,0		
Cadmium	34	1,000	NA	7.3	NT	NT	2.7	NT	2.4		
Chromium	100°	100*	NA	7.9	NT	NT	16	NT	9.0		
Copper	2,500	76,000	NA	64	NT	NT	290	NT	140		
Lead	500	1,000	NA	220	NT	NT	180	NT	270		
Mercury	20	610	NA	0.44	NT	NT	1.1	NT	0.34		
Nickel	1,400	7,500	NA	2.4	NT	NT	19	NT	15		
Selenium	340	10,000	NA	7.5	NT	NT	ND<1.0	NT	ND<1.0		

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 92 of 117

Table DC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial/		_			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>			
	Residential	Commercial	GB Area	_TB-SSSS	ТВ-ТТТТ	ТВ-ТТТТ	тв-тттт	TB-UUUU	тв-ииии		
Depth Below Grade (ft.)				(2.5-4.5)	(0.0-0.3)	(1-1.3)	(2.3-4.3)	(0.0-0.3)	(1.2-1.5)		
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002		
Total Metals (Cont'd)											
Silver	340	10,000	NA NA	ND<2.0	NT	NT	ND<2.0	NT	ND<2.0		
Thallium	5.4	160	NA	27	NT	NT	8.5	NT	7.7		
Vanadium	470	14,000	NA	59	NT	NT	43	NT	39		
Zinc	20,000	610,000	NA	11	NT	NT	270	NT	220		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	NT	NT	ND<50	NT	ND<50		

ь,	_	٠.	
N	•		₹.

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit,

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units

are milligrams per liter (mg/L).

* = 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			ingusii station	, itcir ilaveli					
Analyte	· fo	Direct Exposure Criteria for Soil (mg/kg)			So	il Sample Con	centrations (s	nm)	
		Industrial/	Soll (mg/kg)			i dampie com	Contrations (p	pm)	
	Residential		GB Area	ТВ-ИИИИ	TD 1000/	77.10.00			}
Depth Below Grade (ft.)	1.130.001.00	Commissional	ObAlea	(5-7)	TB-VVVV (0.0-0.3)	TB-VVVV	TB-VVVV	TB-WWWW	TB-WWWW
Sample Collection Date				4/5/2002	4/5/2002	(0.5-2.5) 4/5/2002	(2.5-4.5) 4/5/2002	(0.0-0.3)	(2.2-2.5)
USEPA Method 8270 Polynuclear						4/3/2002	4/3/2002	4/5/2002	4/5/2002
Aromatic Hydrocarbons (PAHs)		1					Ì		
Acenaphthene	1,000	2,500	84	NT					
Acenaphthylene	1,000	2,500	84	NT	NT	0.22	NT	NT	NT_
Anthracene	1,000	2,500	400	NT	NT	ND<0.20	NT	NT NT	NTNT
Benzo[a]anthracene	1	7.8	1	NT	NT	0.67	NT_	NT	NT
Benzo[a]pyrene	1	1		NT	NT	1.5	NT	NT	NT
Benzo[b]fluoranthene .	- - - - - - - - - - 	7.8	1		NT NT	1.6	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	2.5	NT	NT	NT
Benzo[k]fluoranthene	8.4	78		NT	NT	0.57	NT	NT NT	NT
Chrysene	84		1	NT	NT	1.0	NT	NT	NT
Dibenz[a,h]anthracene	1	780	1	NT	NT	1.6	NT	NT	NT
Fluoranthene		1	1	NT	NT	ND<0.20	NT	NT	NT
Fluorene	1,000	2,500	56	NT	NT	3.2	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT
Naphthalene	1 1 222	7.8	1	NT	NT	0.57	NT	NT	NT
Phenanthrene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT
	1,000	2,500	40	NT	NT	2.9	NT	NT	NT
Pyrene	1,000	2,500	40	NT	NT	2.7	NT	NT	NT
USEPA Method 8260 Volatile									
Organic Compounds (VOCs)					••				
Ethylbenzene	500	1,000	10,1	ND<0.25	NT	ND<0.25	ALT		
Isopropylbenzene	500	1,000	132	ND<0.25	NT	ND<0.25	NT	NT	NT
4-Isopropyltoluene	500	1,000	41.8	ND<0.25	NT		NT	NT	NT
Naphthalene	1,000	2,500	56	ND<0.25	NT	ND<0.25	NT	NT	<u>NT</u>
n-Propylbenzene	500	1,000	14	ND<0.25 ND<0.25	NT	ND<0.25	NT	NT	NT
Tetrachloroethene	12	110	1	ND<0.25 ND<0.25	NT	ND<0.25	NT	NT	NT
Toluene	500	1,000	67	ND<0.25	NT	ND<0.25	NT	NT	NT
Trichloroethene	56	520	1.0	ND<0.25 ND<0.25	NT	ND<0.25	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.25		ND<0.25	NT	NT	NT
1,2,4-Trimethylbenzene	500				NT	ND<0.25	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.25	NT	ND<0.25	NT	NT	NT
Xylenes (total)		1,000	70	ND<0.25	NT NT	ND<0.25	NT	NT	NT
Ayrenes (total)	500	1,000	19.5	ND<0.25	NT	ND<0.25	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 94 of 117

Tab C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			Pollutant	, new have								
A	fo	osure Criteria r Soil	Mobility Criteria for									
Analyte	(m	g/kg)	Soll (mg/kg)	Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	TB-UUUU	TB-VVVV	TB-VVVV	TB-VVVV	TB-WWWW	TB-WWWW			
Depth Below Grade (ft.)				(5-7)	(0.0-0.3)	(0.5-2.5)	(2.5-4.5)	(0.0-0.3)	(2.2-2.5)			
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002			
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									1,672332			
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
Cyanide (total)	1,400	41,000	NA	NT								
	1,700	41,000	INA	NI	NT	NT	NT	NT	NT			
SPLP Metals												
Antimony	NA	NA NA	0.06	NT	NT	ND<0.006	NT	NT	NT			
Arsenic	NA	NA	0.5	NT	NT	ND<0.05	NT	NT	NT			
Barium	NA	NA	10	NT	NT	0.19	NT	NT	NT			
Copper	NA NA	NA	13	NT	NT	ND<0.04	NT	NT	NT			
Lead	NA NA	NA	0.15	NT	NT	ND<0.013	NT	NT	NT			
Mercury	NA NA	NA	0.02	NT	NT	ND<0.002	NT	NT	NT			
Nickel	NA	NA	1.0	NT	NT	ND<0.05	NT	NT	NT			
Setenium	NA NA	NA	0.50	NT	NT	ND<0.01	NT	NT	NT			
Thallium	NA NA	NA NA	0.05	NT	NT	ND<0.005	NT	NT	NT			
Vanadium	NA	NA	0.50	NT	NT	ND<0.05	NT	NT	NT			
Zinc	NA NA	NA	50	NT	NT	0.21	NT	NT	NT			
Total Metals	1											
Antimony	27	8,200	NA	NT	NT	ND<2.0	NT	AUT				
Arsenic	10	10	NA	NT	NT	18	NT	NT NT	NT			
Barium	4,700	140,000	NA	NT	NT	59	NT	NT NT	NT			
Beryllium	2	2	NA	NT	NT	ND<1.0	NT	NT	NT			
Cadmium	34	1,000	NA NA	NT	NT	1.9	NT NT	NT NT	NT			
Chromium	100°	100*	NA	NT	NT	5.7	NT	NT	NT			
Copper	2,500	76,000	NA NA	\ NT	NT	180	NT	NT NT	NT NT			
Lead	500	1,000	NA	NT	NT	190	NT	NT	NT			
Mercury	20	610	NA NA	NT	NT	0.74	NT					
Nickel	1,400	7,500	NA NA	NT	NT	7.2	NT	NT	NT			
Selenium	340	10,000	NA NA	NT	NT			NT	NT			
	1 540	10,000	11/2	141	IVI	ND<1.0	NT	NT	NT			

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 95 of 117

Tabi 44 -12 2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soli Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-UUUU	TB-VVVV						
Depth Below Grade (ft.)	1.135.135.132.1	- Commonda	OD Alea	(5-7)	(0.0-0.3)	TB-VVVV	TB-VVVV	TB-WWWW	TB-WWWW		
Sample Collection Date				4/5/2002	4/5/2002	(0.5-2.5) 4/5/2002	(2.5-4.5) 4/5/2002	(0.0-0.3) 4/5/2002	(2.2-2.5) 4/5/2002		
Total Metals (Cont'd)			·								
Silver	340	10,000	NA	NT	NT	ND<2.0	NT	NT	NT		
Thallium	5.4	160	NA	NT	NT	7.1	NT	NT	NT		
Vanadium	470	14,000	NA	NT	NT	22	NT	NT	NT		
Zinc	20,000	610,000	NA	NT	NT	210	NT	NT	NT		
Connecticut Extractable Total											
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	1,400	NT	ND<50	NT	NT	NT		

A P	_		
14	u	ı	ъ.

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

 Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table AQC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		QE/I	English Station	i, New Haven	, C1					
Analyte	foi	osure Criteria r Soil g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
		Industrial/	(33)		301	1 Saulbia Cou	centrations (b)	pm)	,	
D. A. D. L. C. L.	Residential		GB Area	TB-WWWW	TB-XXXX	TB-XXXX	TB-XXXX	TB-YYYY	TB-YYYY	
Depth Below Grade (ft.)				(2.5-4.5)	(0.0-0.3)	(2.3-4.3)	(4.3-6.3)	(0.0-0.3)	(2-2.3)	
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	\	- 	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT NT	NT	
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT NT	NT	
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT	
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT		NT	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	- NT	NT	NT NT	NT	
Chrysene	84	780	1	NT	NT	NT	NT NT	NT	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT NT	NT NT	
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	NT	
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT		
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT NT	NT NT	
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT NT	
USEPA Method 8260 Volatile								141	N1	
Organic Compounds (VOCs)							ĺ			
Ethylbenzene	500	1,000	10,1	NT						
Isopropylbenzene	500	1,000	132	NT NT	NT NT	NT	ND<0.005	NT	NT	
4-Isopropyltoluene	500	1,000	41.8	NT NT		NT	ND<0.005	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT NT	NT NT	ND<0.005	NT	NT	
n-Propylbenzene	500	1,000	14	NT NT	NT NT	NT	ND<0.005	NT	NT	
Tetrachloroethene	12	110	1	NT NT	NT NT	NT	ND<0.005	NT	NT	
Toluene	500	1,000	67	NT	NT NT	NT	ND<0.005	NT	NT	
Trichloroethene	56	520	1.0	NT	NT NT	NT_	ND<0.005	NT	NT	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT NT	ND<0.005	NT	NT	
1,2,4-Trimethylbenzene	500	1,000	70	NT			ND<0.005	NT	NT	
1,3,5-Trimethylbenzene	500	1,000	70		NT NT	NT NT	ND<0.005	NT	NT	
Xylenes (total)	500	1,000	19.5	NT NT	NT	NT	ND<0.005	NT	NT NT	
- 7, ones (total)	1 300	1,000	19.5	NI	NT	NT	ND<0.005	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 97 of 117

Tall-100-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	4 HEW HAVEH	, 01				
Analyte	fo	osure Criteria r Soll g/kg)	Poliutant Mobility Criteria for		_				
Allayto			Soil (mg/kg)		Sol	I Sample Con	centrations (p	pm)	
	Residential	industrial/ Commercial	GB Area	TB-WWWW	TB-XXXX	TB-XXXX	TB-XXXX	TB-YYYY	TB-YYYY
Depth Below Grade (ft.)				(2.5-4.5)	(0.0-0.3)	(2.3-4.3)	(4.3-6.3)	(0.0-0.3)	(2-2.3)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								41012002	4/3/2002
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA	· NT	NT	NT	NT	NT	NT
SPLP Metals									
Antimony	NA NA	NA	0.06	NT	NT	NT	NE		
Arsenic	NA.	NA NA	0.5	NT	NT	NT	NT	NT	NT
Barlum	NA	NA NA	10	NT	NT	NT	NT NT	NT	NT
Copper	NA	NA	13	NT	NT	NT	NT	NT	NT_
Lead	NA.	NA NA	0.15	NT	NT	NT NT	NT	NT	NT
Mercury	NA.	NA NA	0.02	NT	NT	NT	NT	NT	NT
Nickel	NA NA	NA	1.0	NT	NT	NT	NT	NT NT	NT
Selenium	NA NA	NA	0.50	NT	NT	NT	NT		NT
Thallium	NA	NA NA	0.05	NT	NT	NT	NT	NT	NT
Vanadium	NA	NA	0.50	NT	NT	NT	NT I	NT	NT
Zinc	NA	NA	50	NT	NT	NT	NT	NT NT	NT NT
Total Metals								1/41	141
Antimony	27	8,200	NA	NT	NT	NT	NT		
Arsenic	10	10	NA NA	NT	NT NT	NT	NT NT	NT	NT NT
Barium	4,700	140,000	NA	NT	NT	NT NT	NT	NT	NT
Beryllium	2	2	NA	NT	NT NT	NT		NT	NT
Cadmium	34	1,000	NA NA	NT	NT	NT	NT	NT	NT
Chromium	100*	100*	NA NA	NT	NT	NT	NT NT	NT	NT
Copper	2,500	76,000	NA NA	NT	NT NT	NT	NT NT	NT	NT
Lead	500	1,000	NA NA	NT	NT	NT	NT	NT NT	NT NT
Mercury	20	610	NA	NT	NT	NT	NT		
Nickel	1,400	7,500	NA NA	NT	NT	NT	NT	NT	NT NT
Selenium	340	10,000	NA NA	NT	NT	NT	NT	NT NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 98 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Pollutant sure Criteria Mobility Soll Criteria for (/kg) Soll (mg/kg) Soll Sample Concentra				centrations (pr	rations (npm)		
	Residential	Industrial/ Commercial	GB Area	TB-WWWW	TB-XXXX	TB-XXXX	TB-XXXX	TB-YYYY	TB-YYYY
Depth Below Grade (ft.)				(2.5-4.5)	(0.0-0.3)	(2.3-4.3)	(4.3-6.3)	(0.0-0.3)	(2-2.3)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
Total Metals (Cont'd)									
Silver	340	10,000	NA	NT	NT	NT	NT	NT	ACT.
Thallium	5.4	160	NA	NT	NT	NT	NT	NT	NT
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT	NT TN
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above faboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory

minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory

minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		<u> </u>	English Station	, New naven	<u>, G i</u>				
Analyte	for	osure Criteria r Soil	Pollutant Mobility Criteria for						
Allalyte	<u>(m</u>	g/kg)	Soll (mg/kg)		Soi	l Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-YYYY	ТВ-ҮҮҮҮ	TB-YYYY	TB-ZZZZ	TB-ZZZZ	TD 7777
Depth Below Grade (ft.)				(2.5-3)	(3-5)	(5-7)	(0.0-0.3)	(0.3-2.3)	TB-ZZZZ
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	(2.3-4.3) 4/5/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)							1,0/2002	4/3/2002	4/3/2002
Acenaphthene	1,000	2,500	84	NT	NT	NT	NE	\	
Acenaphthylene	1,000	2,500	84	NT	NT	NT NT	NT	ND<0.20	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	ND<0.20	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	ND<0.20	NT
Benzo[a]pyrene	1	1	1	NT	NT	NT NT	NT	ND<0.20	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT		NT	ND<0.20	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT NT	ND<0.20	<u>NT</u>
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	ND<0.20	NT
Chrysene	84	780	1	NT	NT	NT	NT	ND<0.20	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	ND<0.20	<u>NT</u>
Fluoranthene	1,000	2,500	56	NT	NT	NT NT	NT	ND<0.20	NT
Fluorene	1,000	2,500	56	NT	NT		NT NT	ND<0.20	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT NT	ND<0.20	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	ND<0.20	NT
Pyrene	1,000	2,500	40	NT	NT	NT NT	NT	ND<0.20	NT
USEPA Method 8260 Volatile						NI_	NT	ND<0.20	NT
Organic Compounds (VOCs)									
Ethylbenzene	500	1,000	10.1	NT.				<u> </u>	
Ísopropylbenzene	500	1,000	132	NT	NT	NT	NT	ND<0.005	NT
4-isopropyltoluene	500	1,000	41.8	NT	NT	NT NT	NT	ND<0.005	NT
Naphthalene	1,000	2,500	56	NT	NT NT	NT	NT	ND<0.005	NT
n-Propylbenzene	500	1,000	14	NT NT	NT	NT	NT	ND<0.005	NT
Tetrachloroethene	12	110	 4 1	NT	NT	NT	NT	ND<0.005	NT
Toluene	500	1,000	67	NT	NT NT	NT	NT	ND<0.005	NT
Trichloroethene	56	520	1.0	NT	NT NT	NT	NT	ND<0.005	NT
1,1,1-Trichloroethane	500	1,000	40	NT NT	NT	NT	NT	ND<0.005	NT
				NT	NT	NT	NT	ND<0.005	NT
1.2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	ND<0.005	NT
1,3,5-Trimethylbenzene Xylenes (total)	500	1,000	70	NT NT	NT	NT	NT	ND<0.005	NT
Aylenes (total)	500	1,000	19.5	NT NT	NT	NT	NT	ND<0.005	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 100 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		رين ا	English Station	i, New naven	i, G i				
Analyte	fo	osure Criteria or Soil ng/kg)	Pollutant Mobility Criteria for						
- utary to		7	Soil (mg/kg)	 	Sol	i Sample Con	centrations (p	pm)	
	Residentia	Industrial/ Commercial	GB Area	TB-YYYY	TB-YYYY	TB-YYYY	TB-ZZZZ	TB-ZZZZ	TB-ZZZZ
Depth Below Grade (ft.)				(2.5-3)	(3-5)	(5-7)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								wo.2002	4/3/2002
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND -0.50	
PCB-1248	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50 ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50 ND<0.50	ND<0.50
Cyanide (total)	1.400	44.000						ND-0.50	ND<0.50
	1,400	41,000	NA NA	NT	NT	NT	NT	NT	NT
SPLP Metals									
Antimony	NA	NA	0.06	NT	NT	NT	NT	ND<0.006	NT
Arsenic	NA	NA NA	0.5	NT	NT	NT	NT	ND<0.05	NT
Barium	NA	NA	10	NT	NT	NT	NT	0.16	NT
Copper	NA	NA NA	13	NT	NT	NT	NT	ND<0.04	NT
Lead	NA	NA	0.15	NT	NT	NT	NT	ND<0.013	NT
Mercury	NA	NA	0.02	NT	NT	NT	NT	ND<0.002	NT
Nickel	NA	NA	1.0	NT	NT	NT	NT	ND<0.05	NT
Selenium	NA	NA	0.50	NT	NT	NT	NT	ND<0.01	NT
Thallium	NA	NA	0.05	NT	NT	NT	NT	ND<0.005	NT
Vanadium	NA	NA	0.50	NT	NT	NT	NT	ND<0.05	NT
Zinc	NA	NA	50	NT	NT	NT	NT	0.12	NT
Total Metals									
Antimony	27	8,200	NA	NT	NT	NT	NT	ND<2.0	NT
Arsenic	10	10	NA	NT	NT	NT	NT	4.4	NT
Barium	4,700	140,000	NA	NT	NT	NT	NT	17	NT
Beryllium	2	2	NA	NT ,	NT	NT	NT	ND<1.0	NT
Cadmium	34	1,000	NA	NT	NT	NT	NT ,	0.58	NT
Chromium	100*	100*	NA	NT	NT	NT	NT	4.1	NT NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	8.8	NT
Lead	500	1,000	NA	NT	NT	NT	NT	8.7	NT NT
Mercury	20	610	NA	NT	NT	NT	NT	ND<0.20	NT
Nickel	1,400	7,500	NA	NT	NT	NT	NT	5.1	NT
Selenium	340	10,000	NA	NT	NT	NT	NT	ND<1.0	NT

Table ADC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)						
	Basidastial	Industrial/							T	
	Residential	Commercial	GB Area	TB-YYYY	TB-YYYY	TB-YYYY	TB-ZZZZ	TB-ZZZZ	TB-ZZZZ	
Depth Below Grade (ft.)				(2.5-3)	(3-5)	(5-7)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	
Total Metals (Cont'd)										
Silver	340	10,000	- NA	NT	NT	NT	NT	ND<2.0	NT.	
Thallium	5.4	160	NA NA	NT	NT	NT	NT		NT	
Vanadium	470	14.000	NA NA	NT	NT	NT		3.2	NT	
Zinc	20,000	610,000	NA NA	NT			NT	19	NT	
	20,000	010,000	IVA	141	NT	NT	NT	8.8	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	ND<50	NT	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table ADC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Anziyte	fo	Direct Exposure Criteria for Soil (mg/kg)		Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TRAAAA	70 4444					
Depth Below Grade (ft.)	Tredidental	Continuercial	GBAlea	TB-AAAAA (0.0-0,3)	TB-AAAAA	TB-BBBBB	TB-BBBBB	TB-BBBBB	TB-BBBBB	
Sample Collection Date				4/5/2002	(0.5-2.5) 4/5/2002	(0.0-0,3) 4/5/2002	(0.5-2.5) 4/5/2002	(2.5-4.5) 4/5/2002	(4.5-5.5)	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)					######################################	47372002	4/3/2002	4/3/2002	4/5/2002	
Acenaphthene	1,000	2,500	84	NT	NT	NT	ND<0.20	NT		
Acenaphthylene	1,000	2,500	84	NT	NT	NI	ND<0.20	NT NT	NT	
Anthracene	1,000	2,500	400	NT	NT	NT	ND<0.20	NT	NT	
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	ND<0.20	NT	NT	
Benzo[a]pyrene	1	1	1	NT	NT	NT	ND<0.20	NT	NT	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	ND<0.20		NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	ND<0.20	NT NT	NT NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	ND<0.20	NT		
Chrysene	84	780	1	NT	NT	NT	ND<0.20	NT	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	ND<0.20	NT	NT	
Fluoranthene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	NT NT	
Fluorene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	NT NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	ND<0.20	NT NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT		
Phenanthrene	1,000	2,500	40	NT	NT	NT	ND<0.20	NT NT	NT	
Pyrene	1,000	2,500	40	NT	NT	NT	ND<0.20	NT	NT NT	
USEPA Method 8260 Volatile										
Organic Compounds (VOCs)		i		1						
Ethylbenzene	500	1,000	10.1	NT	NT	NT	110 -0 05			
Isopropylbenzene	500	1,000	132	NT	NT NT	NT NT	ND<0.25	ND<0.005	NT_	
4-Isopropyitoluene	500	1,000	41.8	NT	NT	NT	ND<0.25	ND<0.005	NT	
Naphthalene	1,000	2,500	56	NT	NT NT	NT NT	ND<0.25	ND<0.005	NT	
n-Propylbenzene	500	1,000	14	NT	NT	NT NT	ND<0.25	ND<0.005	NT	
Tetrachloroethene	12	110	1	NT	NT	NT NT	ND<0.25	ND<0.005	NT	
Toluene	500	1,000	67	NT	NT NT	NT NT	ND<0.25	ND<0.005	NT	
Trichloroethene	56	520	1.0	NT	NT	NT	ND<0.25 ND<0.25	ND<0.005 ND<0.005	NT NT	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	ND<0.25	ND<0.005	NT	
1,2,4-Trimethy/benzene	500	1,000	70	NT	NT	NT	ND<0.25			
1,3,5-Trimethylbenzene	500	1,000	70	NT NT	NT	NT NT	ND<0.25	ND<0.005 ND<0.005	NT NT	
Xylenes (total)	500	1,000	19.5	NT	NT	NT	ND<0.25	ND<0.005	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 103 of 117

Tal ### C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		1	Linglish Station	,					
Analyte	fo	osure Criteria r Soli	Pollutant Mobility Criteria for		, , , , , , , , , , , , , , , , , , ,				
Attalyte	(m	g/kg)	Soil (mg/kg)		Soi	l Sample Con	centrations (p	pm)	
	Residential	industriai/ Commercial	GB Area	ТВ-ААААА	ТВ-ААААА	TB-BBBBB	тв-ввевв	TB-BBBBB	TB-88888
Depth Below Grade (ft.)				(0.0-0.3)	(0.5-2.5)	(0.0-0.3)	(0.5-2.5)	(2.5-4.5)	(4.5-5.5)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1.400	44.000							
	1,400	41,000	NA	NT	NT	NT	NT	NT	NT
SPLP Metals									
Antimony	NA	NA	0.06	NT	NT	NT	ND<0.006	NT	NT
Arsenic	NA	NA	0.5	NT	NT	NT	ND<0.05	NT	NT
Barium	NA	NA	10	NT	NT	NT	0.16	NT	NT
Copper	NA	NA NA	13	NT	NT	NT	ND<0.04	NT	NT
Lead	NA	NA NA	0.15	NT	NT	NT	ND<0.013	NT	NT
Mercury	NA	NA	0.02	NT	NT	NT	ND<0.002	NT	NT
Nickel	NA NA	NA	1.0	NT	NT	NT	ND<0.05	NT	NT
Selenium	NA	NA	0.50	NT	NT	NT	ND<0.01	NT	NT
Thallium	NA NA	NA NA	0.05	NT	NT	NT	ND<0.005	NT	NT
Vanadium	NA	NA NA	0.50	NT	NT	NT	ND<0.05	NT	NT
Zinc	NA NA	NA NA	50	NT	NT ·	NT	0.13	NT	NT
Total Metals									
Antimony	27	8,200	NA	NT	NT	NT	· ND<2.0	NT	NT
Arsenic	10	10	NA	NT	NT	. NT	1.9	NT	NT
Barlum	4,700	140,000	NA	NT	NT	NT	35	NT	NT
Beryllium	2	2	NA	NT	NT	NT	ND<1.0	NT	NT
Cadmium	34	1,000	NA	NT	NT	NT	0.76	NT	NT
Chromium	100*	100°	NA	NT	NT	NT	5.0	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	16	NT	NT
Lead	500	1,000	NA	NT	NT	NT	14	NT	NT
Mercury	20	610	NA	NT	NT	NT	ND<0.20	NT	NT
Nickel	1,400	7,500	NA	NT	NT	NT	4.4	NT	NT
Selenium	340	10,000	NA	NT	NT	NT	ND<1.0	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 104 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station. New Haven. CT

Analyte	for	Direct Exposure Criteria for Soil (mg/kg)		Soll Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	ТВ-ААААА	ТВ-ААААА	TB-BBBBB	тв-ввввв	тв-ввввв	тв-ввввв	
Depth Below Grade (ft.)				(0.0-0.3)	(0.5-2.5)	(0.0-0.3)	(0.5-2,5)	(2.5-4.5)	(4.5-5.5)	
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	
Total Metals (Cont'd)										
Silver	340	10,000	NA	NT	NT	NT	ND<2.0	NT	NT	
Thallium	5.4	160	NA	NT	NT	NT	5.2	NT	NT	
Vanadium	470	14,000	NA	NT	NT	NT	19	NT	NT	
Zinc	20,000	610,000	NA	NT	NT	NT	11	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	ND<50	NT	NT	

n		

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units

are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.
 (1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected

above the laboratory mimimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory

minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory

minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table ADC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			engusa Station	, Men Havell	, 01				
Anatori	for	osure Criteria r Soil	Pollutant Mobility Criteria for						
Analyte	<u>(m</u>	g/kg)	Soll (mg/kg)		Sol	Sample Con	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-CCCCC	тв-сссс	TB-CCCCC	TB-DDDDD	TB-DDDDD	TB-EEEEE
Depth Below Grade (ft.)				(0.0-0.3)	(2-4)	(4-5)	(0.0-0.3)	(0.5-0.8)	(0.0-0.3)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	NT
Anthracene	1,000	2,500	400	NT	NT	NT	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	NT
Вепхо[а]ругепе	1	1	1	NT	NT	NT	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	NT
Chrysene	84	780	1	NT	NT	NT	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	NT
Fluoranthene	1,000	2,500	56	NT	NT NT	NT	NT	NT	NT
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	NT
_Pyrene .	1,000	2,500	40	NT	NT	NT	NT	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)	<u>.</u>							-	
Ethylbenzene	500	1,000	10.1	NT	ND<0.25	NT	\		
Isopropylbenzene	500	1,000	132	NT	ND<0.25	NT	NT	NT	NT
4-Isopropyltoluene	500	1,000	41.8	NT	ND<0.25	NT	NT	NT NT	NT
Naphthalene	1,000	2,500	56	NT	ND<0.25	NT	NT NT	NT NT	NT NT
n-Propylbenzene	500	1,000	14	NT	ND<0.25	NT	NT	NT NT	NT NT
Tetrachloroethene	12	110	1	NT	ND<0.25	NT	NT	NT	NT
Toluene	500	1,000	67	NT	ND<0.25	NT	NT	NT	NT NT
Trichloroethene	56	520	1.0	NT	ND<0.25	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.25	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.25	NT	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.25	NT	NT	NT	NT
Xylenes (total)	500	1.000	19.5	NT	ND<0.25	NT	NT	NT	NT

Tab C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	, new naven	, 61						
A	for	osure Criteria r Soil	Pollutant Mobility Criteria for Soli (mg/kg)								
Analyte	(m	(mg/kg)		Soil Sample Concentrations (ppm)							
	Residential								TB-EEEEE		
Depth Below Grade (ft.)				(0.0-0.3)	(2-4)	(4-5)	(0.0-0.3)	(0.5-0.8)	(0.0-0.3)		
Sample Collection Date	 			4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1254	11	10	NA	ND<0.50	ND<0.50	ND≪0.50	ND<0.50	ND<0.50	ND<0.50		
PCB-1260	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT		
SPLP Metals		 									
Antimony	NA	NA NA	0.06	NT	NT	NT	NT	NIT	AIT		
Arsenic	NA NA	NA	0.5	NT	NT	NT	NT	NT NT	NT		
Barium	NA	NA NA	10	NT	NT	NT	NT	NT	NT NT		
Copper	NA	NA	• 13	NT	NT	NT	NT	NT	NT		
Lead	NA -	NA	0.15	NT	NT	NT	NT	NT	NT NT		
Mercury	NA	NA	0.02	NT	NT	NT	NT	NT	NT		
Nickel	NA	NA NA	1.0	NT	NT	NT	NT	NT	NT		
Selenium	NA	NA	0.50	NT	NT	NT	NT	NT	NT		
Thallium	NA NA	NA	0.05	NT	NT	NT	NT	NT	NT		
Vanadium	NA NA	NA NA	0.50	NT	NT	NT	NT	NT	NT		
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT		
Total Metals											
Antimony	27_	8,200	NA	NT	NT	NT	NT	NT	NT		
Arsenic	10	10	NA	NT	NT	NT	NT	NT	NT		
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT		
Beryllium	2	2	NA	NT	NT	NT	NT	NT	NT		
Cadmium	34	1,000	NA	NT	. NT	NT	NT	NT	NT		
Chromium	100°	100*	NA	NT	NT	NT	NT	NT	NT		
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT		
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT		
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT		
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT		
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 107 of 117

Tall Hoc-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	osure Criteria Soli g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Sol	il Sample Con	centrations (p	om)	
	Residential	Industrial/ Commercial	GB Area	TB-CCCC	TB-CCCC	TB-CCCCC	TB-DDDDD	TB-DDDDD	TB-EEEE
Depth Below Grade (ft.)				(0.0-0.3)	(2-4)	(4-5)	(0.0-0,3)	(0.5-0.8)	(0.0-0.3)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
Total Metals (Cont'd)		-							
Silver	340	10,000	NA	NT	NT	NT	NT	NT	NT
Thallium	5.4	160	NA	NT	NT	NT	NT	NT	
Vanadium	470	14,000	NA.	NT	NT NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT NT	NT NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT

	_
Ala:	
110	LE 5.

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above faboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units

are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		<u> </u>	English Station	i, New Haven	<u>, C1</u>						
Analyte	for	sure Criteria Soli g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)								
7.11.17.10			Son (mg/kg)		Sol	il Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-EEEEE	TB-EEEEE	TB-FFFFF	TB-FFFFF	TB-GGGG	TB-GGGGG		
Depth Below Grade (ft.)				(0.3-2.3)	(2.3-4.3)	(0.0-0.3)	(0.5-0.8)	(0.0-0.3)	(0.5-1.2)		
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002		
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	47072002		
Acenaphthene	1,000	2,500	84	0.50	NT	NT	NT	NT	NT		
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	NT	NT	NT	NT NT		
Anthracene	1,000	2.500	400	0.88	NT	NT	NT	NT	NT		
Benzo[a]anthracene	1	7.8	1	1.7	NT	NT NT	NT	NT	NT		
Benzo[a]pyrene	1	1	1	2.0	NT	NT	NT	NT	NT		
Benzo[b]fluoranthene	1	7.8	1	3.1	NT	NT	NT	NT	NT		
Benzo[g,h,i]perylene	1,000	2,500	42	0.87	NT	NT	NT	NT	NT		
Benzo[k]fluoranthene	8.4	78	1	1.4	NT	NT	NT	NT			
Chrysene	84	780	1	1.7	NT	NT	NT	NT	NT NT		
Dibenz[a,h]anthracene	1	1	1	0.23	NT	NT	NT	NT	NT NT		
Fluoranthene	1,000	2,500	56	4.6	NT	NT	NT	NT			
Fluorene	1,000	2,500	56	0.59	NT	NT	NT	NT	NT NT		
Indeno[1,2,3-cd]pyrene	1	7.8	1	1.0	NT	NT	NT	NT	NT		
Naphthalene	1,000	2,500	56	0.65	NT	NT	NT	NT			
Phenanthrene	1,000	2,500	40	4.8	NT	NT	NT	NT	NT		
Pyrene	1,000	2,500	40	3.6	NT	NT	NT	NT	NT NT		
USEPA Method 8260 Volatile						141		INI	NI		
Organic Compounds (VOCs)	- 1										
Ethylbenzene	500	1,000	10.1	ND<0.25	NT	NT	NT	NT	MT		
Isopropylbenzene	500	1,000	132	ND<0.25	NT	NT	NT	NT	NT		
4-Isopropylloluene	500	1,000	41.8	ND<0.25	NT	NT	NT		NT		
Naphthalene	1,000	2,500	56	ND<0.25	NT	NT	NT NT	NT NT	NT		
n-Propylbenzene	500	1,000	14	ND<0.25	NT	NT	NT NT	NT	NT NT		
Tetrachloroethene	12	110	1	ND<0.25	NT	NT	NT	NT NT			
Toluene	500	1,000	67	ND<0.25	NT	NT	NT NT	NT NT	NT		
Trichloroethene	56	520	1.0	ND<0.25	NT	NT	NT	NT	NT		
1,1,1-Trichloroethane	500	1,000	40	ND<0.25	NT NT	NT	NT	NT	NT TN		
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.25	NT	NT NT	NT	NT	NT		
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.25	NT	NT	NT	NT NT	NT		
Xylenes (total)	500	1,000	19,5	ND<0.25	NT	NT	NT	NT	NT		

Tab|| C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		QEI	English Station	ı, New Haven	<u>, C1</u>				
Analyte	fo	osure Criteria r Soil eg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Sol	I Sample Con	centrations (n	nm)	
		Industrial/			l .		<u> </u>	[
	Residential	Commercial	GB Area	TB-EEEEE	TB-EEEEE	TB-FFFF	TB-FFFFF	TB-GGGGG	TB-GGGGG
Depth Below Grade (ft.)				(0.3-2.3)	(2.3-4.3)	(0.0-0.3)	(0.5-0.8)	(0.0-0.3)	(0.5-1.2)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1242	1	10	NA	ND<0.50	ND<0,50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1254	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Cyanide (total)	1,400	41,000	NA NA	NT	NT	NT			
	1,	11,000		141	141	NI	NT	NT	NT
SPLP Metals									
Antimony	NA NA	NA NA	0.06 .	ND<0.006	NT	NT	NT	NT	NT
Arsenic Barium	NA NA	NA	0.5	ND<0.05	NT	NT	NT	NT	NT
	NA	NA NA	10	0.36	NT_	NT	NT	NT	NT
Copper Lead	NA NA	NA	13	ND<0.04	NT	NT	NT	NT	NT
Mercury	NA NA	NA	0.15	ND<0.013	NT	NT	NT	NT	NT
Nickel	NA NA	NA	0.02	ND<0.002	NT	NT	NT	NT	NT
Selenium	NA NA	NA	1.0	ND<0.05	NT	NT	NT	NT	NT
Thallium	NA NA	NA NA	0.50	ND<0.01	NT	NT	NT	NT	NT
Vanadium	NA NA	NA NA	0.05	ND<0.005	NT	NT	NT	NT	NT
Zinc	NA NA	NA NA	0.50	ND<0.05	NT	NT	NT	NT	NT
	IVA	NA NA	50	0,23	NT ·	NT	NT	NT	NT
Total Metals								-	
Antimony	27	8,200	NA	ND<2.0	NT	NT	NT	NT	NT
Arsenic	10	10	NA	2.7	NT	NT	NT	NT	NT
Barlum	4,700	140,000	NA NA	26	NT	NT	NT	NT	NT
Beryllium	2	2	NA NA	ND<1.0	NT	NT	NT	NT	NT
Cadmium	34	1,000	NA	1.0	NT	NT	NT	NT	NT
Chromium	100°	100*	NA	6.7	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA NA	42	NT	NT	NT	NT	NT
Lead	500	1,000	NA NA	21	NT	NT	NT	NT	NT
Mercury	20	610	NA	ND<0.20	NT	NT	NT	NT	NT
Nickel	1,400	7,500	NA	9.2	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	ND<1.0	NT	NT	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 110 of 117

Table AGC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	osure Criteria · Soil g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)		Soi	l Sample Cond	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-EEEEE	TB-EEEE	TB-FFFFF	TB-FFFFF	TB-GGGG	TB-GGGGG
Depth Below Grade (ft.)				(0.3-2.3)	(2.3-4.3)	(0.0-0.3)	(0.5-0.8)	(0.0-0.3)	(0.5-1.2)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
Total Metals (Cont'd)									
Silver	340	10,000	NA	ND<2.0	NT	NT	NT	NT	NT
Thallium	5.4	160	NA	6.1	NT	NT	NT	NT	NT
Vanadium	470	14,000	NA .	42	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	33_	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	NT	NT	NT	NT	NT

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure, Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory milmimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table HbC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			engusa Station	i, itew maven	, 01							
Amelyde	for	osure Criteria r Soil	Pollutant Mobility Criteria for									
Analyte	<u>(m</u>	g/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	ТВ-ННННН	ТВ-ННННН	ТВ-ННННН	TB-IIIII	TB-JJJJJ	TB-JJJJJ			
Depth Below Grade (ft.)				(0.0-0.3)	(0.5-2.5)	(2.5-4.5)	(0.0-0.3)	(0.0-0.3)	(0.3-2.3)			
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002			
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)												
Acenaphthene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<0.20			
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<0.20			
Anthracene	1,000	2,500	400	NT	0.28	NT	NT	NT	ND<0.20			
Benzo[a]anthracene	1	7.8	1	NT	1.2	NT	NT	NT	0.37			
Benzo[a]pyrene	1	1	1	NT	1.3	NT	NT	NT	0.59			
Benzo[b]fluoranthene	1	7.8	1	NT	2.1	NT	NT	NT	0.73			
Benzo[g,h,i]perylene	1,000	2,500	42	NT	0.53	NT	NT	NT	0.73			
Benzo[k]fluoranthene	8.4	78	1	NT	0.84	NT	NT	NT	0.58			
Chrysene	84	780	1	NT	1.3	NT	NT	NT	0.37			
Dibenz[a,h]anthracene	1	1	1	NT	ND<0.20	NT	NT	NT	ND<0.20			
Fluoranthene	1,000	2,500	56	NT	2.3	NT	NT	NT	0.57			
Fluorene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<0.20			
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	0.62	NT	NT	NT	0.36			
Naphthalene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<0.20			
Phenanthrene	1,000	2,500	40	NT	1.6	NT	NT	NT	ND<0.20			
Pyrene	1,000	2,500	40	NT	2.1	NT	NT	NT	0.64			
USEPA Method 8260 Volatile												
Organic Compounds (VOCs)									,			
Ethylbenzene	500	1,000	10.1	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
Isopropylbenzene	500	1,000	132	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
4-Isopropyltoluene	500	1,000	41.8	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
Naphthalene	1,000	2,500	56	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
n-Propylbenzene	500	1,000	14	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
Tetrachloroethene	12	110	1	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
Toluene	500	1,000	67	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
Trichloroethene	56	520	1.0	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			
Xylenes (total)	500	1,000	19.5	NT	ND<0.25	ND<0.25	ND<0.005	NT	ND<0.005			

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 112 of 117

Table DC-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			English Station	i, item Haven	, 61							
Analyte	for	osure Criteria r Soil g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		9-1							
7,0,0,0			Son (mg/kg)	Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	тв-нннн	Тв-ннннн	ТВ-ННННН	TB-IIIII	TB-JJJJJ	TB-JJJJJ			
Depth Below Grade (ft.)				(0.0-0.3)	(0.5-2.5)	(2.5-4.5)	(0.0-0.3)	(0.0-0.3)	(0.3-2.3)			
Sample Collection Date	_!			4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002			
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)												
PCB-1242	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND CO EO			
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50 ND<0.50			
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT			
SPLP Metals	- 											
Antimony	NA	NA NA	0,06	NT	ND<0.006	NT	NT	NT.	1/2 2 222			
Arsenic	NA	NA NA	0.5	NT	ND<0.005	NT	NT	NT	ND<0.006			
Barlum	NA NA	NA NA	10	NT	0.41	NT	NT	NT NT	ND<0.05			
Copper	NA NA	NA	13	NT	ND<0.04	NT	NT	NT	0.34			
Lead	NA	NA	0.15	NT	0.015	NT	NT NT	NT	ND<0.04 ND<0.013			
Mercury	NA	NA	0.02	NT	ND<0.002	NT	NT NT	NT	ND<0.013			
Nickel	NA	NA	1.0	NT	ND<0.05	NT	NT	NT	ND<0.002			
Selenium	NA NA	NA	0.50	NT	ND<0.01	NT	NT NT	NT				
Thallium	NA NA	NA	0.05	NT	ND<0.005	NT	NT NT	NT	ND<0.01			
Vanadium	NA .	NA	0.50	NT	ND<0.05	NT	NT	NT	ND<0.005 ND<0.05			
Zinc	NA NA	NA	50	NT	0.28	NT	NT	NT	0.34			
Total Metals									0.04			
Antimony	27	8,200	NA	NT	2.2	NT	NT	NT	ND<2.0			
Arsenic	10	10	NA	NT	120	NT	NT	NT	ND<2.0			
Barium	4,700	140,000	NA	NT	67	NT	NT	NT	37			
Beryllium	2	2	NA	NT	ND<1.0	NT	NT	NT	ND<1.0			
Cadmium	34	1,000	NA	NT	8.1	NT	NT	NT	0.74			
Chromium	100*	100*	NA	NT	8.1	NT	NT	NT	7.1			
Copper	2,500	76,000	NA	NT	75	NT	NT	NT	10			
Lead	500	1,000	NA	NT	86	NT	NT	NT	13			
Mercury	20	610	NA	NT	0.34	NT	NT	NT	ND<0.20			
Nickel	1,400	7,500	NA	NT	4.6	NT	NT	NT	4.1			
Selenium	340	10,000	NA	NT	1.5	NT	NT	NT	ND<1.0			

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 113 of 117

Tab C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	esure Criteria Soli g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soi	l Sample Cond	entrations (p	pm)	
		industrial/	· ·						
	Residential	Commercial	GB Area	ТВ-ННННН	ТВ-ННННН	ТВ-ННННН	TB-IIII	TB-JJJJJ	TB-JJJJJ
Depth Below Grade (ft.)				(0.0-0.3)	(0.5-2.5)	(2.5-4.5)	(0.0-0.3)	(0.0-0.3)	(0.3-2.3)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002
Total Metals (Cont'd)		7							
Silver	340	10,000	NA	NT	ND<2.0	NT	NT	NT ·	ND<2.0
Thallium	5.4	160	NA	NT	42	NT	NT	NT	4.8
Vanadium	470	14,000	NA	NT	44	NT	NT	NT	18
Zinc	20,000	610,000	NA	NT	14	NT	NT	NT	14
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	ND<50	NT	NT	NT	ND<50

٠.		
N	otes:	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table 40 C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	QLI	English Stati	on, New Haven				
An≅lyte	for	esure Criteria · Soll g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)	So	il Sample Con	centrations (p	pm)
		Industrial/	·- ·- ·- ·- ·		l i	1	
	Residential	Commercial	GB Area	TB-JJJJJ	тв-ккккк	TB-KKKKK	ТВ-ККККК
Depth Below Grade (ft.)				(2.3-4.3)	(0.0-0.3)	(1-2)	(4-5)
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002
USEPA Method 8270 Polynuclear							
Aromatic Hydrocarbons (PAHs)							
Acenaphthene	1,000	2,500	84	ND<0.20	NT	NT	NT
Acenaphthylene	1,000	2,500	84	0.50	NT	NT	NT
Anthracene	1,000	2,500	400	0.22	NT	NT	NT
Benzo[a]anthracene	1	7.8	1	1.1	NT	NT	NT
Benzo[a]pyrene	1	1	1	1.9	NT	NT	NT
Benzo[b]fluoranthene	1	7.8	1	2.6	NT	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	0.96	NT	NT	NT
Benzo[k]fluoranthene	8.4	78	1	1,2	NT	NT	NT
Chrysene	84	780	1	1.3	NT	NT	NT
Dibenz[a,h]anthracene	1	1	1	0.22	NT	NT	NT
Fluoranthene	1,000	2,500	56	1.8	NT	NT	NT
Fluorene	1,000	2,500	56	ND<0.20	NT	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	1.0	NT	NT	NT
Naphthalene	1,000	2,500	56	ND<0.20	NT	NT	NT
Phenanthrene	1,000	2,500	40	0.72	NT	NT	NT
Pyrene	1,000	2,500	40	2.0	NT	NT	NT
USEPA Method 8260 Volatile							
Organic Compounds (VOCs)							
Ethylbenzene	500	1,000	10.1	ND<0.25	NT	NT	NT
Isopropylbenzene	500	1,000	132	ND<0.25	NT	NT	NT
4-Isopropyltoluene	500	1,000	41.8	ND<0.25	NT	NT	NT
Naphthalene	1,000	2,500	56	ND<0.25	NT	NT	NT
n-Propylbenzene	500	1,000	14	ND<0.25	NT	NT	NT
Tetrachloroethene	12	110	1	ND<0.25	NT	NT	NT
Toluene	500	1,000	67	ND<0.25	NT	NT	NT
Trichloroethene	56	520	1.0	ND<0.25	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.25	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.25	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.25	NT	NT	NT
Xylenes (total)	500	1,000	19.5	ND<0.25	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.2 Page 115 of 117

Table A0 C-12.2

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

QE English Station, New Haven, C1											
Analyte	for	osure Criteria · Soll g/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Sol	II Sample Con	centratione (n	nm)				
		Industrial/	· · · · · · · · · · · · · · · · · ·			i) 				
	Residential		GB Area	тв	TD WWW.	TD MARKET					
Depth Below Grade (ft.)	T CSIGERIA	Commercial	OD Alea	TB-JJJJJ (2.3-4.3)	TB-KKKKK (0.0-0.3)	TB-KKKKK	TB-KKKKK				
Sample Collection Date				4/5/2002	4/5/2002	(1-2) 4/5/2002	(4-5) 4/5/2002				
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1242	11	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0,50				
PCB-1248	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
PCB-1254	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
PCB-1260	1	10	NA NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
Cyanide (total)	1,400	41,000	NA	NT	NT	NT	NT				
SPLP Metals											
Antimony	NA	NA NA	0.06	ND<0.006	NT	NT	NT				
Arsenic	NA	NA	0.5	ND<0.05	NT	NT	NT				
Barium	NA	NA	10	0.43	NT	NT	NT				
Copper	NA	NA	13	ND<0.04	NT	NT	NT				
Lead	NA	NA NA	0.15	ND<0.013	NT	NT	NT				
Mercury	NA	NA	0.02	ND<0.002	NT	NT	NT				
Nickel	NA	NA NA	1.0	ND<0.05	NT	NT	NT				
Selenium	NA	NA NA	0.50	ND<0.01	NT	NT	NT				
Thallium	NA	NA	0.05	ND<0.005	NT	NT	NT				
Vanadium	NA	NA	0.50	ND<0.05	NT	NT	NT				
Zinc	NA NA	NA NA	50	0.34	NT	NT	NT				
Total Metals											
Antimony	27	8,200	NA	ND<2.0	NT	NT	NT				
Arsenic	10	10	NA	ND<1.0	NT	NT	NT				
Barlum	4,700	140,000	NA	36	NT	NT	NT				
Beryllium	2	2	NA	ND<1.0	NT	NT	NT				
Cadmium	34	1,000	NA	0.71	NT	NT	NT				
Chromium	100*	100*	NA	6.8	NT	NT	NT				
Copper	2,500	76,000	NA	13	NT	NT	NT				
Lead	500	1,000	NA	17	NT	NT	NT				
Mercury	20	610	NA NA	ND<0.20	NT	NT	NT				
Nickel	1,400	7,500	NA	5.3	NT	NT	NT				
Selenium	340	10,000	NA	ND<1.0	NT	NT	NT				

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030a
Table AOC-12.2 Page 116 of 117

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	for	esure Criteria Soil g/kg)	Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)					
		Industrial/							
	Residential	Commercial	GB Area	TB-JJJJJ	TB-KKKKK	ТВ-ККККК	тв-кккк		
Depth Below Grade (ft.)			<u> </u>	(2.3-4.3)	(0.0-0.3)	(1-2)	(4-5)		
Sample Collection Date				4/5/2002	4/5/2002	4/5/2002	4/5/2002		
Total Metals (Cont'd)									
Silver	340	10,000	NA	ND<2.0	NT	NT	NT		
Thallium	5.4	160	NA	4.2	NT	NT	NT		
Vanadium	470	14,000	NA	16	NT	NT	NT		
Zinc	20,000	610,000	NA	17	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	NT	NT	NT		

81 -		
IVU	ies:	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Not enough residual sample to analyze for leachable (SPLP) PCBs. Additional sample was collected for SPLP PCB testing on May 8, 2002. SPLP PCBs were not detected above the laboratory minimum detection limit.

(2) = Sample also tested for leachable (SPLP) PCBs. None detected above laboratory minimum detection limit.

(3) = Sample also tested for hexavalent chromium. None detected above laboratory minimum detection limit.

(4) = Submitted as a Quality Control (QC) duplicate sample.

Table HbC-12.3

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/			1			<u> </u>	<u> </u>		
Depth Below Grade (ft.)	Residential	Commercial	GB Area	SS-AA	SS-AA	SS-BB	SS-BB	SS-CC	SS-CC		
Sample Collection Date				(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	(0.3-1.3)		
CAMPIO CONCENSION DATE				4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	4/3/02		
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)											
Acenaphlhene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<1.0		
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<1.0		
Anthracene	1,000	2,500	400	NT	ND<0.20	NT	NT	NT	ND<1.0		
Benzo[a]anthracene	1	7.8	1	NT	0.82	NT	NT	NT	1.3		
Benzo[a]pyrene	1	1	1	NT	1.0	NT	NT	NT	1.6		
Benzo[b]fluoranthene	1	7.8	1	NT	1.5	NT	NT	NT	2.0		
Benzo[g,h,i]perylene	1,000	2,500	42	NT	0.47	NT	NT	NT	1.5		
Benzo[k]fluoranthene	8.4	78	1	NT	0.61	NT	NT	NT	ND<1.0		
Chrysene	84	780	1	NT	0.80	NT	NT	NT	1.8		
Dibenz[a,h]anthracene	1	1	1	NT	ND<0.20	NT	NT	NT	ND<1.0		
Fluoranthene	1,000	2,500	56	NT	1.1	NT	NT	NT	2.2		
Fluorene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<1.0		
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	0.59	NT	NT	NT	1.4		
Naphthalene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<1.0		
Phenanthrene	1,000	2,500	40	NT	0.59	NT	NT	NT	2.0		
Pyrene	1,000	2,500	40	NT	1.1	NT	NT	NT	2.3		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)				 							
PCB-1260	 	- 1	•		- 40						
FOD-1200	1 1	10	NA NA	ND<0.50 ⁽¹⁾	0.83 ⁽¹⁾	ND<0.50	ND<0.50	ND<0.50	ND<0.50		

Table 30C-12 3

Comparison of Surface Soll Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Direct Exposure Criteria for Soli (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)		0.11				
- Paralyto	101 301	Industrial/	Son (mg/kg)		5011	Sample Con	entrations (ppm)	
	Residential	Commercial	GB Area	SS-AA	SS-AA	SS-BB	SS-BB	ss-cc	ss-cc
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-1,3)	(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	(0.3-1.3)
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	4/3/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)									4/3/02
Ethylbenzene									
	500	1,000	10.1	NT	ND<0.25	NT	NT	NT	ND<1.3
Isopropylbenzene	500	1,000	132	NT	ND<0.25	NT	NT	NT	ND<1.3
Naphthalene	1,000	2,500	56	NT	ND<0.25	NT	NT	NT	ND<1.3
n-Propylbenzene	500	1,000	14	NT	ND<0.25	NT	NT	NT	ND<1.3
Toluene	500	1,000	67	NT	ND<0.25	NT	NT	NT	ND<1.3
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.25	NT	NT	NT	ND<1.3
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.25	NT	NT	NT	ND<1.3
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.25	NT	NT	NT	ND<1.3
Xylenes (total)	500	1,000	19.5	NT	ND<0.25	NT	NT	NT	ND<1.3
SPLP Metals									
Arsenic	NA	NA	0.5	NT	ND<0.05	NT	NT	NT	ND<0.05
Barlum	NA	NA	10	NT	0.17	NT	NT	NT	0.25
Copper	NA	NA	13	NT	ND<0.04	NT	NT	NT	ND<0.04
Lead	NA	NA	0.15	NT	0.035	NT	NT	NT	ND<0.013
Mercury	NA	NA	0.02	NT	ND<0.002	NT	NT	NT	ND<0.002
Selenium	NA	NA	0.5	NT	ND<0.01	NT	NT	NT	ND<0.002
Vanadium	NA	NA	0.5	NT	0.055	NT	NT	NT	ND<0.05
Zinc	_NA	NA	50	NT	0.21	NT	NT	NT	0.26

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		sure Criteria	Pollutant Mobility Criteria for					-	
Analyte	for Soll	(mg/kg)	Soil (mg/kg)	<u> </u>	Soil	Sample Cond	entrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	SS-AA	SS-AA	SS-BB	SS-BB	ss-cc	ss-cc
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-1,3)	(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	(0.3-1.3)
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	4/3/02
Total Metals								NT	4/3/02
Antimony	27	8,200	NA	NT	ND<2.0	NT	NT	NT	ND<2.0
Arsenic	10	10	NA	NT	22	NT	NT	NT	14
Barium	4,700	140,000	NA	NT	43	NT	NT	NT	58
Beryllium	2	2	NA	NT	ND<1.0	NT	NT	NT	ND<1.0
Cadmium	34	1,000	NA	NT	2.5	NT	NT	NT	1.4
Chromium	100*	100*	NA	NT	7.1	NT	NT	NT	12
Copper	2,500	76,000	NA	NT	95	NT	NT	NT	110
Lead	500	1,000	NA	NT	170	NT	NT	NT	160
Mercury	20	610	NA	NT	0.24	NT	NT	NT	ND<0.20
Nickel	1,400	7,500	NA	NT	28	NT	NT	NT	18
Selenium	340	10,000	NA	NT	ND<1.0	NT	NT	NT	1.1
Silver	340	10,000	NA	NT	ND<2.0	NT	NT	NT	ND<2.0
Thallium	5.4	160	NA	NT	14	NT	NT	NT	4.3
Vanadium	470	14,000	NA	NT	180	NT	NT	NT	32
Zinc	20,000	610,000	NA	NT	170	NT	NT	NT	73
Connecticut Extractable Total									
Petroleum Hydrocarbons (CTETPH) Notes:	500	2,500	2,500	NT	ND<50	NT	NT	NT	ND<50

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

= Not applicable.

= Not detected above laboratory minimum detection limit.

= Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

= Sample also tested for leachable (SPLP) PCBs. SPLP PCBs were not detected above laboratory minimum detection limit.

Table AOC-12.3

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	1	sure Criteria (mg/kg)	Pollutant Mobility Criterla for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	SS-DD	SS-DD	SS-EE	SS-EE	SS-FF	00.00	
Depth Below Grade (ft.)			057404	(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	SS-GG	
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	(0.0-0.3) 4/3/02	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	NT	NT	NT	0.71	NT	ND<0.20	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	0.24	NT	ND<0.20	
Anthracene	1,000	2,500	400	NT	NT	NT	1.6	NT	ND<0.20	
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	26	NT	1.2	
Benzo[a]pyrene	1	1	1	NT	NT	NT	46	NT	1.3	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	110	NT	2.5	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	7.2	NT	0.45	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	66	NT	1.1	
Chrysene	84	780	1	NT	NT	NT	33	NT	1.8	
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	3.5	NT	0.20	
Fluoranthene	1,000	2,500	56	NT	NT	NT	95	NT	1.7	
Fluorene	1,000	2,500	56	NT	NT	NT	0.43	NT	ND<0.20	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	11	NT	0.50	
Naphthalene	1,000	2,500	56	NT	NT	NT	0.51	NT	0.29	
Phenanthrene	1,000	2,500	40	NT	NT	NT	47	NT	1.7	
Pyrene	1,000	2,500	40	NT	NT	NT	85	NT	2.2	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								772-11		
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.80 ⁽¹⁾	ND<0.50	

Table AOC-12.3

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

			Pollutant								
	Disease France	0-141-	Mobility								
A maluta		sure Criteria	Criteria for								
Analyte	101 2011	(mg/kg)	Soll (mg/kg)		Soll	Sample Con	centrations (p	pm)	·		
	Residential	Industrial/ Commercial	GB Area	SS-DD	SS-DD	SS-EE	SS-EE	SS-FF	SS-GG		
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	(0.0-0.3)		
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	4/3/02		
USEPA Method 8260 Votatile				<u> </u>							
Organic Compounds (VOCs)					·	1			j		
Ethylbenzene	500	1,000	10.1	NT	NT	NT	ND<0.005	NT	ND<0.25		
Isopropylbenzene	500	1,000	132	NT	NT	NT	ND<0.005	NT	ND<0.25		
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.005	NT	ND<0.25		
л-Propylbenzene	500	1,000	14	NT	NT	NT	ND<0.005	NT	ND<0.25		
Toluene	500	1,000	67	NT	NT	NT	ND<0.005	NT	ND<0.25		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	ND<0.005	NT	ND<0.25		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	NT	ND<0.25		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	NT	ND<0.25		
Xylenes (total)	500	1,000	19.5	NT	NT	NT	ND<0.005	NT	ND<0.25		
SPLP Metals			-		<u> </u>						
Arsenic	NA	NA NA	0.5	NT	NT	NT	ND<0.05	NT	ND<0.05		
Barium	NA	NA	10	NT	NT	NT	0.73	NT	0.27		
Copper	NA	NA	13	NT	NT	NT	ND<0.04	NT	ND<0.04		
Lead	NA	NA	0.15	NT	NT	NT	ND<0.013	NT	ND<0.013		
Mercury	NA	NA	0.02	NT	NT	NT	ND<0.002	NT	ND<0.002		
Selenium	NA	NA	0.5	NT	NT	NT	ND<0.01	NT	ND<0.01		
Vanadium	NA	NA	0.5	NT	NT	NT	ND<0.05	NT	ND<0.05		
Zinc	NA	NA	50	NT	NT	NT	0.41	NT	0.31		

Table AUC-12.3

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Statlon, New Haven, CT

			Poliutant			·				
	Direct Eypo	sure Criteria	Mobility Criteria for							
Analyte			Soil (mg/kg)	Sali Samula Canacatasti ()						
Nilaiyio	for Soll (mg/kg)		Con (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Commercial	GB Area	SS-DD	SS-DD	SS-EE	SS-EE	SS-FF	SS-GG	
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	(0.3-1.3)	(0.0-0.3)	(0.0-0.3)	
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	
Total Metals										
Antimony	27	8,200	NA	NT	NT	NT	ND<2.0	NT	ND<2.0	
Arsenic	10	10	NA	NT	NT	NT	1.7	NT	20	
Barium	4,700	140,000	NA	NT	NT	NT	35	NT	52	
Beryllium	2	2	NA	NT	NT	NT	ND<1.0	NT	ND<1.0	
Cadmium	34	1,000	NA	NT	NT	NT	1.1	NT	1.3	
Chromium	100*	100*	NA	NT	NT	NT	7.0	NT	8.2	
Copper	2,500	76,000	NA	NT	NT	NT	45	NT	130	
Lead	500	1,000	NA	NT	NT	NT	29	NT	140	
Mercury	20	610	NA	NT	NT	NT	ND<0.20	NT	ND<0.20	
Nickel	1,400	7,500	NA	NT	NT	NT	9.0	NT	20	
Selenium	340	10,000	NA	NT	NT	NT	ND<1.0	NT	2.2	
Silver	340	10,000	NA	NT	NT	NT	ND<2.0	NT	ND<2.0	
Thallium	5.4	160	NA	NT	NT	NT	8.5	NT	7.5	
Vanadium	470	14,000	NA	NT	NT	NT	41	NT	130	
Zinc	20,000	610,000	NA	NT	NT	NT	37	NT	36	
Connecticut Extractable Total	 									
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	480	NT	ND<50	

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NI = Not tested

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Sample also tested for leachable (SPLP) PCBs. SPLP PCBs were not detected above laboratory minimum detection limit.

Tab C-12.3

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	1	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
,	Residential	Industrial/ Commercial	GB Area	SS-GG	SS-HH	SS-II	SS-JJ			
Depth Below Grade (ft.)	1100100111101	- Committee Contain	OD Alea	(1,0-1,5)	(0.0-0.3)	(0.0-0.3)	(0.0-0.3)	SS-KK (0.0-0.3)	SS-LL	
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	(0.0-0.3) 4/3/02	
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)									•	
Acenaphthene	1,000	2,500	84	1.1	NT	ND<0.20	NT	NT	NT	
Acenaphthylene	1,000	2,500	84	1.7	NT	ND<0.20	NT	NT	NT	
Anthracene	1,000	2,500	400	8.8	NT	ND<0.20	NT	NT	NT	
Benzo[a]anthracene	1	7.8	1	11	NT	0.77	NT	NT	NT	
Benzo[a]pyrene	1	1	1	13	NT	1.1	NT	NT	NT	
Benzo[b]fluoranthene	1	7.8	1	21	NT	1.9	NT	NT	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	2.8	NT	0.42	NT	NT	NT	
Benzo[k]fluoranthene	8.4	78	1	6.7	NT	0.82	NT	NT	NT	
Chrysene	84	780	1	9.9	NT	1.2	NT	NT	NT	
Dibenz[a,h]anthracene	1	1	1	1.2	NT	ND<0.20	NT	NT	NT	
Fluoranthene	1,000	2,500	56	37	NT	1.4	NT	NT	NT	
Fluorene	1,000	2,500	56	ND<0.20	NT	ND<0.20	NT	NT	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	3.4	NT	0.48	NT	NT	NT	
Naphthalene	1,000	2,500	56	ND<0.20	NT	ND<0.20	NT	NT	NT	
Phenanthrene	1,000	2,500	40	42	NT	1.3	NT	NT	NT	
Pyrene	1,000	2,500	40	28	NT	1.7	NT	NT	NT	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								<u> </u>		
PCB-1260	1 1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.83 ⁽¹⁾	ND<0.50	

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		sure Criteria	Pollutant Mobility Criteria for						
Analyte	for Soil	(mg/kg)	Soil (mg/kg)	Soli Sample Concentrations (ppm)					
	Residential	industrial/ Commercial	GB Area	SS-GG	SS-HH	SS-II	SS-JJ	SS-KK	SS-LL
Depth Below Grade (ff.)				(1.0-1.5)	(0.0-0.3)	(0.0-0.3)	(0.0-0.3)	(0.0-0.3)	(0.0-0.3)
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	4/3/02
USEPA Method 8260 Volatile						1			
Organic Compounds (VOCs)				<u> </u>				{	!
Ethylbenzene	500	1,000	10.1	ND<0.005	NT	0.015	NT	NT	NT
Isopropylbenzene	500	1,000	132	ND<0.005	NT	ND<0.005	NT	NT	NT
Naphthalene	1,000	2,500	56	ND<0.005	NT	ND<0.005	NT	NT	NT
n-Propylbenzene	500	1,000	14	ND<0.005	NT	ND<0.005	NT	NT	NT
Toluene	500	1,000	67	ND<0.005	NT	0.049	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.005	NT	ND<0.005	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.005	NT	ND<0.005	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.005	NT	ND<0.005	NT	NT	NT
Xylenes (total)	500	1,000	19.5	ND<0.005	NT	0.095	NT	NT	NT
SPLP Metals					 -				
Arsenic	NA.	NA	0.5	ND<0.05	NT	ND<0.05	NE		
Barium	NA NA	NA NA	10	0.25	NT	0.38	NT	NT	NT NT
Copper	NA NA	NA NA	13	ND<0.04	NT	ND<0.04	NT	NT	NT NT
Lead	NA NA	NA NA	0.15	ND<0.04 ND<0.013	NT NT	0.076	NT	NT	NT
Mercury	NA NA	NA NA	0.02	ND<0.013		1	NT	NT	NT
Selenium	NA NA	NA NA	0.02		NT T	ND<0.002	NT	NT	NT
Vanadium	NA NA	NA NA	0.5	ND<0.01	NT	ND<0.01	NT	NT	NT
Zinc	NA NA			ND<0.05	NT NT	ND<0.05	NT	NT	NT.
ZIIC	NA NA	NA	50	0.24	NT	0.28	NT	NT	NT

Table HbC-12.3

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

		sure Criteria	Pollutant Mobility Criteria for				· · · · · · · · · · · · · · · · · · ·		-	
Analyte	for Soli	(mg/kg)	Soll (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	SS-GG	SS-HH	SS-II	SS-JJ		22.11	
Depth Below Grade (ft.)			0071104	(1.0-1.5)	(0.0-0.3)	(0.0-0.3)	(0.0-0.3)	SS-KK	SS-LL	
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/3/02	(0.0-0.3)	(0.0-0.3)	
Total Metals			-		4/3/02	4/3/02	4/3/02	4/3/02	4/3/02	
Antimony	27	8,200	NA	2.5	NT	ND<2.0	NT	NT	NT	
Arsenic	10	10	NA NA	33	NT	9.3	NT	NT		
Barium	4,700	140,000	NA.	85	NT	35	NT	NT	NT NT	
Beryllium	2	2	NA	ND<1.0	NT	ND<1.0	NT	NT		
Cadmium	34	1,000	NA	2.6	NT	3.9	NT	NT	NT	
Chromium	100*	100*	NA	12	NT	17	NT	NT	NT	
Copper	2,500	76,000	NA	110	NT	95	NT	NT	NT NT	
Lead	500	1,000	NA NA	430	NT	410	NT	NT		
Mercury	20	610	NA	3.1	NT	ND<0.20	NT	NT	NT NT	
Nickel	1,400	7,500	NA	18	NT	19	NT	NT	NT	
Selenium	340	10,000	NA	ND<1.0	NT	ND<1.0	NT	NT	NT	
Silver	340	10,000	NA	ND<2.0	NT	ND<2.0	NT	NT	NT	
Thallium	5.4	160	NA	18	NT	22	NT	NT	NT	
Vanadium	470	14,000	NA	29	NT	92	NT	NT	NT	
Zinc	20,000	610,000	NA	62	NT	43	NT	NT	NT	
Connecticut Extractable Total	<u> </u>									
Petroleum Hydrocarbons (CTETPH) Notes;	500	2,50 0	2,500	ND<50	NT	70	NT	NT	NT	

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

Not applicable.

= Not detected above laboratory minimum detection limit. ND

= Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure. Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

(1) = Sample also tested for leachable (SPLP) PCBs. SPLP PCBs were not detected above laboratory minimum detection limit.

= Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.3 Page 9 of 12

Tab C-12 3

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	66.144						
Depth Below Grade (ft.)	Lesidettiidi	Commercial	GD Alea	(0.0-0.3)	SS-NN (0.0-0.3)	SS-00 (0.0.0.3)	SS-PP	SS-PP		
Sample Collection Date				4/3/02	4/3/02	(0.0-0.3) 4/3/02	(0.0-0.3) 4/4/02	(1.0-1.3) 4/4/02		
USEPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20		
Acenaphthylene	1,000	2,500	84	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20		
Anthracene	1,000	2,500	400	0.25	ND<0.20	ND<0.20	NT	ND<0.20		
Benzo(a)anthracene	1	7.8	1	0.70	0.32	ND<0.20	NT	1.3		
Benzo[a]pyrene	1	1	1	0.92	0.59	0.23	NT	1.6		
Benzo[b]fluoranthene	1	7.8	1	1.7	0.87	0.33	NT	2.8		
Benzo[g,h,i]perylene	1,000	2,500	42	0.62	ND<0.20	0.21	NT	0.69		
Benzo[k]fluoranthene	8.4	78	1	0.77	0.28	ND<0.20	NT	1.2		
Chrysene	84	780	1	0.96	0.64	0.20	NT	1.9		
Dibenz[a,h]anthracene	1	1	1	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20		
Fluoranthene	1,000	2,500	56	1.4	0.42	0.37	NT	2.6		
Fluorene	1,000	2,500	56	ND<0.20	ND<0.20	ND<0.20	NT	ND<0.20		
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.65	ND<0.20	0.25	NT	0.89		
Naphthalene	1,000	2,500	56	0.37	0.36	ND<0.20	NT	ND<0.20		
Phenanthrene	1,000	2,500	40	0.78	0.89	0.25	NT	1.3		
Pyrene	1,000	2,500	40	1.3	0.41	0.31	NT	2.5		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)			-							
PCB-1260	1	10	NA.	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		

Tabi 1 4 C-12 3

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	Direct Expo	sure Criteria	Pollutant Mobility Criteria for					
Analyte	for Soil	(mg/kg)	Soll (mg/kg)	[Soil Sampl	e Concentrat	ions (npm)	
		Industrial/				1	Ι (ρριιι)	
	Residential	Commercial	GB Area	SS-MM	SS-NN	ss-00	SS-PP	SS-PP
Depth Below Grade (ft.)				(0.0-0.3)	(0.0-0.3)	(0.0-0.3)	(0.0-0.3)	(1.0-1.3)
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/4/02	4/4/02
USEPA Method 8260 Volatile								
Organic Compounds (VOCs))		ľ	
Ethylbenzene	500	1,000	10.1	ND<0.25	ND<0.25	NT	NT	NT
Isopropylbenzene	500	1,000	132	ND<0.25	ND<0.25	NT	NT	NT
Naphthalene	1,000	2,500	56	ND<0.25	ND<0.25	NT	NT	NT
n-Propylbenzene	500	1,000	14	ND<0.25	ND<0.25	NT	NT	NT
Toluene	500	1,000	67	ND<0.25	ND<0.25	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.25	ND<0.25	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.25	ND<0.25	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.25	ND<0.25	NT	NT	NT
Xylenes (total)	500	1,000	19.5	ND<0.25	ND<0.25	NT	NT	NT
SPLP Metals						···		
Arsenic	NA	NA	0.5	ND<0.05	ND<0.05	ND<0.05	NT	ND<0.05
Barlum	NA	NA	10	0.30	0.35	0.28	NT	0.26
Copper	NA	NA	13	ND<0.04	ND<0.04	ND<0.04	NT	ND<0.04
Lead	NA	NA	0.15	0.029	ND<0.013	ND<0.013	NT	0.065
Mercury	NA	NA	0.02	ND<0.002	ND<0.002	ND<0.002	NT	ND<0.002
Selenium	NA	NA	0.5	ND<0.01	ND<0.01	ND<0.01	NT	ND<0.002
Vanadium	NA	NA	0.5	ND<0.05	ND<0.05	ND<0.05	NT	ND<0.005
Zinc	NA	NA	50	0.18	0.14	0.17	NT	0.24

Table AGC-12.3

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soli (mg/kg)		Soli Sampi	e Concentrat	ions (ppm)	
		Industrial/					(μμγ	
	Residential	Commercial	GB Area	SS-MM	SS-NN	SS-00	SS-PP	SS-PP
Depth Below Grade (ft.)				(0.0-0.3)	(0.0-0.3)	(0.0-0.3)	(0.0-0.3)	(1.0-1.3)
Sample Collection Date				4/3/02	4/3/02	4/3/02	4/4/02	4/4/02
Total Metals				:				
Antimony	27	8,200	NA	ND<2.0	ND<2.0	ND<2.0	NT	ND<2.0
Arsenic	10	10	NA	16	20	10	NT	29
Barium	4,700	140,000	NA	32	40	33	NT	55
Beryllium	2	2 .	NA	ND<1.0	ND<1.0	ND<1.0	NT	ND<1.0
Cadmium	34	1,000	NA	2.0	0.75	0.90	NT	1.8
Chromium	100*	100*	NA	13	3.9	3.7	NT	8.0
Copper	2,500	76,000	NA	200	41	24	NT	50
Lead .	50 0	1,000	NA	210	60	46	NT	160
Mercury	20	610	NA	0.65	ND<0.20	ND<0.20	NT	ND<0.20
Nickel	1,400	7,500	NA	11	3.5	3.7	NT	11
Selenium	340	10,000	NA	ND<1.0	2.4	2.0	NT	1.0
Silver	340	10,000	NA	ND<2.0	ND<2.0	ND<2.0	NT	ND<2.0
Thallium	5.4	160	NA	9.1	5.7	3,5	NT	8.8
Vanadium	470	14,000	NA	35	40	12	NT	58
Zinc	20,000	610,000	NA	130	8.5	16	NT	62
Connecticut Extractable Total			.					
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	240	ND<50	NT	NT	ND<50

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

= Not applicable.

= Not detected above laboratory minimum detection limit. ND

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leaching Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium. (1) = Sample also tested for leachable (SPLP) PCBs. SPLP PCBs were not

detected above faboratory minimum detection limit.

= Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030a Table AOC-12.3 Page 12 of 12

Tall outh 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soll Sampl	e Concentrat	ions (ppm)		
	Residential	Industrial/ Commercial	GB Area	TB-DDD	TB-FFF	TB-LLLLL	TB-LLLLL	TB-LLLLL	TB-LLLLL	
Depth Below Grade (ft.)				(5-7)	(5-7)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)		TB-LLLLL
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	(2.3-4.3) 7/18/02	(5-7)
USEPA Method 8270C Polynuclear							7710/02	7710702	1/10/02	7/18/02
Aromatic Hydrocarbons (PAHs)									ľ	
Acenaphthene	1,000	2,500	84	NT	NT	NT	ND<1.0	2.0	0.21	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	ND<1.0	ND<0.20		NT
Anthracene	1,000	2,500	400	NT	NT	NT	ND<1.0	2.2	ND<0.20	NT NT
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	ND<1.0		0.27	NT NT
Benzo[a]pyrene	1	1	1	NT	NT	NT	ND<1.0	8.5	1.6	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	ND<1.0	8.2	1.5	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	ND<1.0	11	1.9	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	ND<1.0	6.8	1.2	NT NT
Chrysene	84	780	1	NT	NT	NT	ND<1.0	3.3	0.77	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT		9.5	1.7	NT
Fluoranthene	1,000	2,500	56	NT	NT	NT	ND<1.0	1.8	0.33	NT
Fluorene	1,000	2,500	56	NT	NT	NT	ND<1.0	16	3.1	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	ND<1.0	1.1	ND<0.20	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<1.0	7.5	1.3	NT
Phenanthrene	1,000	2,500	40	NT	NT	NT	ND<1.0	0.89	ND<0.20	NT
Pyrene	1,000	2,500	40	NT	NT	NT	ND<1.0 ND<1.0	11	2.1	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)							ND-1.0	14	2.7	NT
Benzene	21	200	0.2	NT	0.05	NT	ND<0.001	NT	NT	NT
sec-Butylbenzene	500	1,000	14	NT	0.90	NT	ND<0.005	NT	NT	NT
Ethylbenzene	500	1,000	10.1	NT	3.1	NT	ND<0.005	NT NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	1.8	NT	ND<0.005	NT	NT	NT
4-Isopropyltoluene	500	1,000	41.8	NT	2.6	NT	ND<0.005	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	3.0	NT	ND<0.005	NT	- NT	NT
n-Propylbenzene	500	1,000	14	NT	3,6	NT	ND<0.005	NT	NT	NT
Tetrachloroethene	12	110	1	NT	ND<0.25	NT	ND<0.005	NT	NT	NT

Table Jouth.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

	Direct Expo	sure Criteria	Pollutant Mobility Criteria for			<u> </u>				
Analyte		(mg/kg)	Soll (mg/kg)			Soil Sample	Concentrati	ions (ppm)		
	Residential	Industrial/ Commercial	GB Area	TB-DDD	TB-FFF	TB-LLLLL	TB-LLLLL	TB-LLLLL	TB-LLLLL	TB-LLLLL
Depth Below Grade (ft.)				(5-7)	(5-7)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)										171002
Toluene	500	1,000	67	NT	ND<0.25	NT	ND<0.005	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.25	NT	ND<0.005	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	25	NT	ND<0.005	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	32	NT	ND<0.005	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	11.7	NT	ND<0.005	NT	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)										
PCB-1260	1	10	NA	0.56	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082					·					
PCB-1260	NA	NA	0.005	ND<0.0005	NT	NT	NT	NT	NT	NT
SPLP Metals										
Arsenic	NA	NA	0.5	NT	NT	NT	NT	ND<0.004	ND<0.004	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	0.82	NT
Copper	NA	NA	13	NT	NT	NT	NT	NT	ND<0.04	NT
Lead	NA	NA	0.15	NT	NT	NT	NT	NT	ND<0.013	NT
Thallium	NA	NA	0.05	NT	NT	NT	NT	NT	ND<0.005	NT
Vanadium	NA	NA	0.50	NT	NT	NT	NT	NT	ND<0.05	NT
Zinc	NA NA	NA	50	NT	NT	NT	NT	NT	0,41	NT
Total Metals										
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	ND<2.0	NT
Arsenic	10	10	NA	11	9.2	1.0	1.5	1.2	1.2	ND<1.0
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	32	NT NT
Chromium	100°	100*	NA	NT	NT	NT	NT	NT	10	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	47	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT	51	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT	ND<0.20	NT

Table South.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)			Soil Sample	- Concentrat	ions (ppm)		
	Residential	Industrial/ Commercial	GB Area	TB-DDD	TB-FFF	TB-LLLLL	TB-LLLLL	TB-LLLLL	TB-LLLLL	TB-LLLLL
Depth Below Grade (ft.)				(5-7)	(5-7)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02
Total Metals	<u> </u>									
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	10	NT
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	ND<1.0	NT
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT	43	NT
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	58	NT
Cyanide (Total)	1,400	41,000	NA	NT	ND<5.0	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	NT	NT	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L). = 100 mg/kg for hexavalent chromium.

Table South 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	-	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		So	oil Sample Con	centrations (ppm)	
	Residential	Industrial/ Commercial	GB Area	TB-LLLLL	TB-LLLLL	ТВ-МММММ	ТВ-МММММ	ТВ-МММММ	ТВ-МММММ
Depth Below Grade (ft.)				(15-17)	(20-22)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)	(2.3-4.3)
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)					<u> </u>				
Acenaphthene	1,000	2,500	84	NT	NT	NT	ND<0.20	NT	ND<0.20
Acenaphthylene	1,000	2,500	84	NT	NT	NT	ND<0.20	NT	ND<0.20
Anthracene	1,000	2,500	400	NT	NT	NT	ND<0.20	NT	0.21
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	0.49	NT	0.62
Benzo[a]pyrene	1	1	1	NT	NT	NT	0.54	NT	0.64
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	0.64	NT	0.82
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	0.46	NT	0.57
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	0.26	NT	0.32
Chrysene	84	780	1	NT	NT	NT	0.56	NT	0.80
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	ND<0.20	NT	ND<0.20
Fluoranthene	1,000	2,500	56	NT	NT	NT	0.82	NT	1.4
Fluorene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	0.48	NT	0.60
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	ND<0.20
Phenanthrene	1,000	2,500	40	NT	NT	NT	0.27	NT	1,1
Pyrene	1,000	2,500	40	NT	NT	NT	0.79	NT	1.2
USEPA Method 8260 Volatile Organic Compounds (VOCs)						-			
Benzene	21	200	0.2	NT	NT	NT	NT	ND<0.001	NT
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	ND<0.005	NT
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	ND<0.005	NT
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	ND<0.005	NT
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	ND<0.005	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.005	NT NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	ND<0.005	NT
Tetrachloroethene	12	110	1	NT	NT	NT	NT	ND<0.005	NT

Tall Just 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)								
	Residential	Industrial/ Commercial	GB Area	TB-LLLLL	TB-LLLLL	ТВ-МММММ	ТВ-МММММ	ТВ-МММММ	ТВ-МММММ		
Depth Below Grade (ft.)				(15-17)	(20-22)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)	(2.3-4.3)		
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02		
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
Toluene	500	1,000	67	NT	NT	NT	NT	ND<0.005	NT		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	ND<0.005	NT		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	ND<0.005	NT		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	ND<0.005	NT		
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	ND<0.005	NT		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1260	1	10	NA NA	ND<0.50	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
SPLP PCBs USEPA Method 8082											
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT		
SPLP Metals											
Arsenic	NA	NA	0.5	NT	NT	NT	NT	ND<0.004	ND<0.004		
Barlum	NA	NA	10	NT	NT	NT	NT	1.0	1.0		
Copper	NA	NA	13	NT	NT	NT	NT	ND<0.04	ND<0.04		
Lead	NA	NA	0.15	NT	NT	NT	NT	ND<0.013	ND<0.013		
Thallium	NA	NA	0.05	NT	NT	NT	NT	ND<0.005	ND<0.005		
Vanadium	NA	NA NA	0.50	NT	NT	NT	NT	ND<0.05	ND<0.05		
Zinc	NA	NA	50	NT	NT	NT	NT	0.56	0.52		
Total Metals											
Antimony	27	8,200	NA	NT	NT	NT	NT	ND<2.0	ND<2.0		
Arsenic	10	10	NA	ND<1.0	3.2	NT	ND<1.0	1.3	ND<1.0		
Barium	4,700	140,000	NA	NT	NT	NT	NT	29	18		
Chromium	100°	100*	NA	NT	NT	NT	NT	7.7	3.9		
Copper	2,500	76,000	NA	NT	NT	NT	NT	39	45		
Lead	500	1,000	NA	NT	NT	NT	NT	20	12		
Mercury	20	610	NA	NT	NT	NT	NT	ND<0.20	ND<0.20		

Table Couth.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		osure Criterla I (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)						
	Residential	Industrial/ Commercial	GB Area	TB-LLLLL	TB-LLLLL	TB-MMMMM		ТВ-МММММ	TR.MMMM
Depth Below Grade (ft.)				(15-17)	(20-22)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)	
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	(2.3-4.3) 7/18/02
Total Metals								17.0702	7710702
Nickel	1,400	7,500	NA	NT	NT	NT	NT	0.6	
Selenium	340	10,000	NA	NT	NT	NT	NT	8.6	7.0
Vanadium	470	14,000	NA .	NT	NT	NT	NT NT	ND<1.0	ND<1.0
Zinc	20,000	610,000	NA	NT	NT	NT	NT NT	49 33	65
Cyanide (Total)	1,400	41,000	NA NA	NT	NT	NT	NT	NT NT	35 NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	ND<50	NT	ND<50

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Table South.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)								
	Residential	Industrial/ Commercial	GB Area	ТВ-МММММ	ТВ-МММММ	ТВ-МММММ	TB-NNNNN	TB-NNNNN	TB-NNNNN			
Depth Below Grade (ft.)				(5-7)	(10-12)	(20-22)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)			
Sampling Date	<u> </u>			7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02			
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)									1110/02			
Acenaphthene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<0.20			
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<0.20			
Anthracene	1,000	2,500	400	NT	ND<0.20	NT	NT	NT	ND<0.20			
Benzo[a]anthracene	1	7.8	1	NT	ND<0.20	NT	NT	NT	ND<0.20			
Benzo[a]pyrene	1	1	1	NT	ND<0.20	NT	NT	NT	ND<0.20			
Benzo[b]fluoranthene	1	7.8	1	NT	ND<0.20	NT	NT	NT	ND<0.20			
Benzo[g,h,i]perylene	1,000	2,500	42	NT	ND<0.20	NT	NT	NT	ND<0.20			
Benzo[k]fluoranthene	8.4	78	1	NT	ND<0.20	NT	NT	NT	ND<0.20			
Chrysene	84	780	1	NT	ND<0.20	NT	NT	NT	ND<0.20			
Dibenz[a,h]anthracene	1	1	1	NT	ND<0.20	NT	NT	NT	ND<0.20			
Fluoranthene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<0.20			
Fluorene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<0.20			
Indeno[1,2,3-cd]pyrene	1	7.8_	1	NT	ND<0.20	NT	NT	NT	ND<0.20			
Naphthalene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<0.20			
Phenanthrene	1,000	2,500	40	NT	ND<0.20	NT	NT	NT	ND<0.20			
Pyrene	1,000	2,500	40	NT	ND<0.20	NT	NT	NT	ND<0.20			
USEPA Method 8260 Volatile Organic Compounds (VOCs)			<u> </u>									
Benzene	21	200	0.2	NT	NT	NT	NT	NT	NT			
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT			
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT NT	NT	NT			
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT			
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	NT			
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT NT	NT			
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT NT	NT			
Tetrachloroethene	12	110	1	NT	NT	NT	NT	NT NT	NT			

Table South.1 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

			Pollutant	1					
İ	Direct Evac	sure Criteria	Mobility Criteria for						
Analyte		(mg/kg)	Soil (mg/kg)		C-11		4 - 4 - 4		
, unary co	101 00.1	Industrial	Our (mg/kg)	 	J 301	Sample Con	centrations (p	pm)	
	Residential	Commercial	GB Area	ТВ-МММММ	ТВ-МММММ	тв-ммммм	TB-NNNNN	TB-NNNNN	TB-NNNNN
Depth Below Grade (ft.)				(5-7)	(10-12)	(20-22)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)							<u>-</u>		
Toluene	500	1,000	67	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1260	1	10 .	NA	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082									
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NŤ	NT
SPLP Metals									
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT
Copper	NA	NA	13	NT	NT	NT	NT	NT	NT
Lead	NA	NA	0.15	NT	NT	NT	NT	NT	NT
Thallium	NA	NA NA	0.05	NT	NT	NT	NT	NT	NT
Vanadium	NA	NA	0.50	NT	NT	NT	NT	NT	NT
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT
Total Metals									
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT
Arsenic	10	10	NA	1.2	ND<1.0	3.0	NT	NT	ND<1.0
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT	NT NT
Chromium	100*	100*	NA	NT	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT

Table South.1 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	· · · · · · · · · · · · · · · · · · ·		Pollutant Mobility Criteria for Soil (mg/kg)		Soil	centrations (p	s (ppm)		
	Residential	Industrial/ Commercial	GB Area	ТВ-МММММ	ТВ-МММММ				TB-NNNNN
Depth Below Grade (ft.)				(5-7)	(10-12)	(20-22)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02
Total Metals	·			 					
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT
Selenium .	340	10,000	NA	NT	NT	NT	NT	NT	NT
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	ND<50	NT	NT	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.
Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Table South.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-NNNNN	TB-NNNNN		TB-00000		TB-00000	
Depth Below Grade (ft.)				(2.3-4.3)	(5-7)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)							7710,02	1710/02	1710/02	
Acenaphthene	1,000	2,500	84	ND<0.20	NT	NT	NT	0.45	ND<1.0	
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	NT	NT	ND<0.20	ND<1.0	
Anthracene	1,000	2,500	400	ND<0.20	NT	NT	NT	1.9	ND<1.0	
Benzo[a]anthracene	1	7.8	1	ND<0.20	NT	NT	NT	3.5	1.3	
Benzo[a]pyrene	1	1	1	ND<0.20	NT	NT	NT	3.2	1.8	
Benzo[b]fluoranthene	1	7.8	1	ND<0.20	NT	NT	NT	3.8	2.1	
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	NT	NT	NT	2.9	1.9	
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	NT	NT	NT	1.4	ND<1.0	
Chrysene	84	780	1	ND<0.20	NT	NT	NT	3.7	1.6	
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	NT	NT	0.67	ND<1.0	
Fluoranthene	1,000	2,500	56	0.25	NT	NT	NT	7.5	2.2	
Fluorene	1,000	2,500	56	ND<0.20	NT	NT	NT	0.52	ND<1.0	
Indeno[1,2,3-cd]pyrene	1	7.8	1	ND<0.20	NT	NT	NT	3.0	1.9	
Naphthalene	1,000	2,500	56	ND<0.20	NT	NT	NT	ND<0.20	ND<1.0	
Phenanthrene	1,000	2,500	40	ND<0.20	NT	NT	NT	6.2	ND<1.0	
Pyrene	1,000	2,500	40	0.23	NT	NT	NT	6.1	2.4	
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
Benzene	21	200	0.2	NT	NT	NT	NT	NT	ND<0.001	
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	ND<0.005	
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	ND<0.005	
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	ND<0.005	
4-isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	ND<0.005	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.005	
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	ND<0.005	
Tetrachloroethene	12	110	1	NT	NT	NT	NT	NT	ND<0.005	

Table South.1 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soll (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)							
	Industrial/		Son (mg/kg)								
	Residential	Commercial	GB Area	TB-NNNNN	TB-NNNNN	тв-00000	TB-00000	TB-00000	TB-00000		
Depth Below Grade (ft.)	·			(2.3-4.3)	(5-7)	(0.0-0.3)	(0.3-1.3)	(1.3-2.3)	(2.3-4.3)		
Sampling Date				7/18/02	7/18/02	7/18/02	7/18/02	7/18/02	7/18/02		
USEPA Method 8260 Volatile Organic Compounds (VOCs)							<u></u>				
Toluene	500	1,000	67	NT	NT	NT	NT	NT	ND<0.005		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	ND<0.005		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	ND<0.005		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	ND<0.005		
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	ND<0.005		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	-										
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
SPLP PCBs USEPA Method 8082											
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT		
SPLP Metals											
Arsenic	NA	NA	0.5	NT	NT	NT	ND<0.004	ND<0.004	0.02		
Barium	NA	NA	10	NT	NT	NT	0.34	0.26	0.96		
Copper	NA	NA	13	NT	NT	NT	0.087	ND<0.04	ND<0.04		
Lead	NA	NA	0.15	NT	NT	NT	ND<0.013	ND<0.013	0.039		
Thallium	NA	NA	0.05	NT	NT	NT	ND<0.005	ND<0.005	ND<0.005		
Vanadium	NA	NA	0.50	NT	NT	NT	ND<0.05	ND<0.05	1.5		
Zinc	NA	NA	- 50	NT	NT	NT	0.18	0.11	0.47		
Total Metals											
Antimony	27	8,200	NA	NT	NT	NT	ND<2.0	ND<2.0	ND<2.0		
Arsenic	10	10	NA	ND<1.0	1.9	NT	ND<1.0	ND<1.0	5.8		
Barium	4,700	140,000	NA	NT	NT	NT	21	20	23		
Chromium	100*	100°	NA	NT	NT	NT	6.5	5.7	7.5		
Copper	2,500	76,000	NA	NT	NT	NT	37	21	44		
Lead	500	1,000	NA	NT	NT	NT	7.9	18	18		
Mercury	20	610	NA	NT	NT	NŤ	ND<0.20	ND<0.20	ND<0.20		

Table South.1 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soll (mg/kg)		Pollutant Mobility Criterla for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-NNNNN	TB-NNNNN	TB-00000	TB-00000	TB-00000	TD 00000	
Depth Below Grade (ft.)				(2.3-4.3)	(5-7)	(0.0-0.3)				
Sampling Date			-	7/18/02	7/18/02	7/18/02	(0.3-1.3) 7/18/02	(1.3-2.3)	(2.3-4.3)	
Total Metals	f					7710/02	7710702	7/18/02	7/18/02	
Nickel	1,400	7,500	NA NA	NT	NT	NIT				
Selenium	340	10,000	NA NA	NT	NT	NT	10	6.3	21	
Vanadium	470	14,000	NA NA	NT		NT	ND<1.0	ND<1.0	ND<1.0	
Zinc	20,000	610,000	NA NA	NT	NT NT	NT	52	28	220	
Cyanide (Total)						NT	19	19	31	
	1,400	41,000	NA	NT	NT	NT	NT	NT	ND<5.0	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	NT	NT	NT	NT	167	

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Table South 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soll (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
		Industrial/					TB-PPPPP/	TB-PPPPP/	TB-PPPPP/	
Davids Data On 1 (fr)	Residential	Commercial	GB Area	TB-00000	TB-00000	TB-00000	MW-N	MW-N	MW-N	
Depth Below Grade (ft.)				(5-7)	(10-12)	(15-16)	(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	
Sampling Date				7/18/02	7/18/02	7/18/02	7/19/02	7/19/02	7/19/02	
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	1,000	2,500	84	ND<1.0	ND et 0	115 -4 6				
Acenaphthylene	1,000	2,500	84		ND<1.0	ND<1.0	NT	ND<0.20	ND<0.20	
Anthracene	1,000	2,500	400	1.5	ND<1.0	ND<1.0	NT	ND<0.20	ND<0.20	
Benzo[a]anthracene	1,000	7.8	400	1.1	1.0	ND<1.0	NT	ND<0.20	ND<0.20	
Benzo[a]pyrene	1	1		2.9	5.3	ND<1.0	NT	0.50	0.61	
Benzo[b]fluoranthene	1	7.8	1	3.8	7.2	ND<1.0	NT	0.64	0.88	
Benzo[g,h,i]perylene	1,000		1	3.5	7.3	ND<1.0	NT	0.80	1.1	
Benzo[k]fluoranthene		2,500	42	3.4	4.2	ND<1.0	NT	0.39	0.52	
	8.4	78	1	1.9	3.6	ND<1.0	NT	0.36	0.47	
Chrysene Dibenz[a,h]anthracene	84	780	1	3.8	5.3	ND<1.0	NT	0.52	0.72	
Fluoranthene	1 200	1	1	ND<1.0	1.1	ND<1.0	NT	ND<0.20	ND<0.20	
Fluorene	1,000	2,500	56	3.2	6.9	1.2	NT	0.85	1.2	
	1,000	2,500	56	ND<1.0	ND<1.0	ND<1.0	NT	ND<0.20	ND<0.20	
Indeno[1,2,3-cd]pyrene	1	7.8	1	2.8	4.8	ND<1.0	NT	0.37	0.55	
Naphthalene	1,000	2,500	56	ND<1.0	ND<1.0	ND<1.0	NT	ND<0.20	ND<0.20	
Phenanthrene	1,000	2,500	40	1.1	2.5	ND<1.0	NT	0.32	0.44	
Pyrene	1,000	2,500	40	6.8	16	2.9	NT	0.88	1.1	
USEPA Method 8260 Volatile Organic Compounds (VOCs)		-								
Benzene	21	200	0.2	ND<0.001	ND<0.001	ND<0.001	NT	NT	NT	
sec-Butylbenzene	500	1,000	14	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	
Ethylbenzene	500	1,000	10,1	ND<0.005	ND<0.005	ND<0.005	NT	NT		
Isopropylbenzene	500	1,000	132	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	
4-Isopropyltoluene	500	1,000	41.8	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	
Naphthalene	1,000	2,500	56	ND<0.005	ND<0.005	ND<0.005	NT		NT	
n-Propylbenzene	500	1,000	14	ND<0.005	ND<0.005	ND<0.005	NT	NT NT	NT NT	
Tetrachloroethene	12	110	1							
1 CHACHIOLOGUICHO	14	110		ND<0.005	ND<0.005	ND<0.005	NT	NT	NT	

Table South 1

		sure Criteria	Pollutant Mobility Criteria for						
Analyte	for Soil	(mg/kg)	Soli (mg/kg)		Soil	Sample Con	centrations (p		
	Residential	Industrial/ Commercial	GB Area	TB-00000	TB-00000	TB-00000	TB-PPPPP/ MW-N	TB-PPPPP/ MW-N	TB-PPPPP/ MW-N
Depth Below Grade (ft.)				(5-7)	(10-12)	(15-16)	(0.0-0.3)	(0.3-1.3)	(2.3-4.3)
Sampling Date				7/18/02	7/18/02	7/18/02	7/19/02	7/19/02	7/19/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Toluene	500	1,000	67	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT
Xylenes (total)	500	1,000	19.5	ND<0.005	ND<0.005	ND<0.005	NT	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1260	1	10	NA	9.7	0.71	ND<0.50	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082				 		<u>. </u>			
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT
SPLP Metals									
Arsenic	NA	NA NA	0.5	NT	NT	NT	NT	NT	ND<0.004
Barium	NA	NA	10	NT	NT	NT	NT	NT	0.45
Copper	NA	NA	13	NT	NT	NT	NT	NT	ND<0.04
Lead	NA	NA	0.15	NT	NT	NT	NT	NT	ND<0.013
Thallium	NA	NA	0.05	NT	NT	NT	NT	NT	ND<0.005
Vanadium	NA	NA	0.50	NT	NT	NT	NT	NT	ND<0.05
Zinc	NA	NA	50	NT	NT	NT	NT	NT	0.22
Total Metals			· ·						
Antimony	27	8,200	NA	ND<2.0	NT	NT	NT	NT	2.5
Arsenic	10	10	NA	3.1	1.0	NT	NT	1.5	8.3
Barium	4,700	140,000	NA	8.0	NT	NT	NT	NT	61
Chromium	100°	100*	NA	5.2	NT	NT	NT	NT	9.5
Copper	2,500	76,000	NA	46	NT	NT	NT	NT	76
Lead	500	1,000	NA	35	NT	NT	NT	NT	170
Mercury	20	610	NA	ND<0.20	NT	NT	NT	NT	0.30

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soli Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-00000	TB-00000	TB-00000	TB-PPPPP/ MW-N	TB-PPPPP/ MW-N	TB-PPPPP/ MW-N	
Depth Below Grade (ft.)				(5-7)	(10-12)	(15-16)	(0.0-0.3)	(0.3-1.3)	(2.3-4.3)	
Sampling Date	<u> </u>			7/18/02	7/18/02	7/18/02	7/19/02	7/19/02	7/19/02	
Total Metais				 						
Nickel	1,400	7,500	NA	7.9	NT	NT	NT	NT	6.8	
Selenium	340	10,000	NA	ND<1.0	NT	NT	NT	NT	ND<1.0	
Vanadium	470	14,000	NA	130	NT	NT	NT	NT	14	
Zinc	20,000	610,000	NA	34	NT	NT	NT	NT	130	
Cyanide (Total)	1,400	41,000	NA	ND<5.0	ND<5.0	ND<5.0	NT	NT	ND<5.0	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	1,860	553	NT	NT	NT	116	

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.
Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Ta wouth.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soli Sample Concentrations (ppm)							
		Industrial/		TB-PPPPP/	TB-PPPPP/	TB-PPPPP/	TB-PPPPP/	TB-PPPPP/	<u> </u>		
Denth Balance Conde (th)	Residential	Commercial	GB Area	MW-N	MW-N	MW-N	MW-N	MW-N	TB-QQQQQ		
Depth Below Grade (ft.) Sampling Date				(5-7)	(10-12)	(15-17)	(20-22)	(25-27)	(0.0-0.3)		
				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02		
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)											
Acenaphthene	1,000	2,500	84	6.8	1.6	1.3	NT	NT	NT		
Acenaphthylene	1,000	2,500	84	5.5	5.0	2.4	NT	NT			
Anthracene	1,000	2,500	400	31	12	7.2	NT	NT	NT NT		
Benzo[a]anthracene	1	7.8	1	63	23	14	NT	NT	NT		
Benzo[a]pyrene	1	1	1	56	25	15	NT	NT	NT		
Benzo[b]fluoranthene	1	7.8	1	65	29	19	NT	NT	NT		
Benzo(g,h,i)perylene	1,000	2,500	42	27	12	6.7	NT	NT	NT		
Benzo[k]fluoranthene	8.4	78	1	36	14	8.5	NT	NT	NT		
Chrysene	84	780	1	56	22	14	NT	NT	NT		
Dibenz[a,h]anthracene	1	1	1	9.2	1.2	1.9	NT	NT	NT		
Fluoranthene	1,000	2,500	56	130	59	37	NT	NT	NT		
Fluorene	1,000	2,500	56	13	4.4	2.8	NT	NT	NT		
Indeno[1,2,3-cd]pyrene	1	7.8	1	33	14	7.9	NT	NT	NT		
Naphthalene	1,000	2,500	56	5.9	3.6	2.2	NT	NT	NT		
Phenanthrene	1,000	2,500	40	110	49	30	NT	NT	NT		
Pyrene	1,000	2,500	40	100	49	30	NT	NT	NT		
USEPA Method 8260 Volatile Organic Compounds (VOCs)									<u> </u>		
Benzene	21	200	0.2	ND<0.001	NT	ND<0.001	NT	NT	NT		
sec-Butylbenzene	500	1,000	14	ND<0.005	NT	ND<0.005	NT	NT	NT		
Ethylbenzene	500	1,000	10.1	ND<0.005	NT	ND<0.005	NT	NT	NT		
Isopropylbenzene	500	1,000	132	ND<0.005	NT	ND<0.005	NT	NT	NT		
4-Isopropyltaluene	500	1,000	41.8	ND<0.005	NT	ND<0.005	NT	NT	NT		
Naphthalene	1,000	2,500	56	0.14	NT	0.096	NT	NT	NT		
n-Propylbenzene	500	1,000	14	ND<0.005	NT	ND<0.005	NT	NT	NT		
Tetrachloroethene	12	110	1	0.0081	NT	ND<0.005	NT	NT	NT		

Tall Duth 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		osure Criteria I (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
		Industrial/		TB-PPPPP/	TB-PPPPP/	TB-PPPPP/	TB-PPPPP/	TB-PPPPP/	Γ		
	Residential	Commercial	GB Area	MW-N	MW-N	MW-N	MW-N	MW-N	тв-ооооо		
Depth Below Grade (ft.)				(5-7)	(10-12)	(15-17)	(20-22)	(25-27)	(0.0-0.3)		
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02		
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
Toluene	500	1,000	67	ND<0.005	NT	ND<0.005	NT	NT	NT		
1,1,1-Trichloroethane	500	1,000	40	ND<0.005	NT	ND<0.005	NT	NT	NT		
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.005	NT	ND<0.005	NT	NT	NT		
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.005	NT	ND<0.005	NT	NT	NT		
Xylenes (total)	500	1,000	19.5	ND<0.005	NT	ND<0.005	NT	NT	NT		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	-										
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
SPLP PCBs USEPA Method 8082											
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT		
SPLP Metals											
Arsenic	NA NA	NA	0.5	NT	NT	NT	NT	NT	NT		
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT		
Copper	NA	NA	13	NT	NT	NT	NT	NT	NT		
Lead	NA	NA	0.15	NT	NT	NT	NT	NT	NT		
Thallium	NA	NA	0.05	NT	NT	NT	NT	NT	NT		
Vanadium	NA	NA	0.50	NT	NT	NT	NT	NT	NT		
Zinc	NA	NA	50	NT	NT	NT	NT	NT	NT		
Total Metals											
Antimony	27	8,200	NA	NT	NT	NT	NT	NT NT	NT		
Arsenic	10	10	NA NA	8.6	4.5	5.1	ND<1.0	3.3			
Barium	4,700	140,000	NA NA	NT NT	NT	NT	NT NT	NT	NT NT		
Chromium	100°	100°	NA	NT	NT	NT	NT	NT	NT		
Copper	2,500	76,000	NA NA	NT	NT	NT	NT	NT	NT		
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT		
Mercury	20	610	NA	NT	NT	NT	NT NT	NT	NT		

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030d
Table South.1 Page 17 of 63

Table 3 buth 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
		Industrial/		TB-PPPPP/	TB-PPPPP/	TB-PPPPP/		TB-PPPPP/		
	Residential	Commercial	GB Area	MW-N	MW-N	MW-N	MW-N	MW-N	TB-QQQQQ	
Depth Below Grade (ft.)				(5-7)	(10-12)	(15-17)	(20-22)	(25-27)	(0.0-0.3)	
Sampling Date	<u> </u>			7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	
Total Metals										
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT	
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT	
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT	NT	
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT	
Cyanide (Total)	1,400	41,000	NA	ND<5.0	NT	NT	NT	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	1,037	NT	NT	NT	NT	NT	

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Table Ulumb 1

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-QQQQQ	TB-QQQQQ	TB-QQQQQ	TB-QQQQQ	TB-QQQQQ	TB-RRRRR		
Depth Below Grade (ft.)				(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(10-12)	(0.0-0.3)		
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02		
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)											
Acenaphthene	1,000	2,500	84	ND<0.20	NT	ND<0.20	ND<0.20	ND<1.0	NT		
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	ND<0.20	ND<0.20	ND<1.0	NT		
Anthracene	1,000	2,500	400	0.30	NT	ND<0.20	0.29	ND<1.0	NT		
Benzo[a]anthracene	1	7.8	1	2.7	NT	0.31	1.0	1.1	NT		
Benzo[a]pyrene	1	1	1	3.8	NT	0.39	1.1	2.8	NT		
Benzo[b]fluoranthene	1	7.8	1	5.2	NT	0.52	1.3	1.4	NT		
Benzo[g,h,i]perylene	1,000	2,500	42	1.9	NT	ND<0.20	0.50	2.5	NT		
Benzo[k]fluoranthene	8.4	78	1	2.5	NT	0.24	0.62	ND<1.0	NT		
Chrysene	84	780	1	3.4	NT	0.37	0.97	1.8	NT		
Dibenz[a,h]anthracene	1	1	1_	ND<0.20	NT	ND<0.20	ND<0.20	ND<1.0	NT		
Fluoranthene	1,000	2,500	56	5.8	NT	0.77	2.1	ND<1.0	NT		
Fluorene	1,000	2,500	56	ND<0.20	NT	ND<0.20	ND<0.20	ND<1.0	NT		
Indeno[1,2,3-cd]pyrene	1	7.8	11	2.2	NT	0.21	0.54	1.1	NT		
Naphthalene	1,000	2,500	56	ND<0.20	NT	ND<0.20	ND<0.20	ND<1.0	NT		
Phenanthrene	1,000	2,500	40	1.8	NT	0.36	0.95	ND<1.0	NT		
Pyrene	1,000	2,500	40	5.2	NT	0.69	1.8	4.0	NT		
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
Benzene	21	200	0.2	NT	ND<0.001	NT	ND<0.001	ND<0.001	NT		
sec-Butylbenzene	500	1,000	14	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT		
Ethylbenzene	500	1,000	10.1	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT		
Isopropylbenzene	500	1,000	132	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT		
4-Isopropyltoluene	500	1,000	41.8	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT		
Naphthalene	1,000	2,500	56	NT	0.20	NT	0.0052	ND<0.005	NT		
n-Propylbenzene	500	1,000	14	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT		
Tetrachloroethene	12	110	1	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT		

Tall-Louth 1

	Direct Expo	sure Criteria	Pollutant Mobility Criteria for						
Analyte	for Soil	(mg/kg)	Soil (mg/kg)		Soil	Sample Con-	centrations (p	pm)	
	Residential	Industrial/ Commercial	GB Area	TB-QQQQQ	ТВ-QQQQQ	TB-QQQQQ	TB-QQQQQ	TB-QQQQQ	TB-RRRRR
Depth Below Grade (ft.)				(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(10-12)	(0.0-0.3)
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Toluene	500	1,000	67	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT
Xylenes (total)	500	1,000	19.5	NT	ND<0.005	NT	ND<0.005	ND<0.005	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082									
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT
SPLP Metals									
Arsenic	NA	NA	0.5	NT	NT	NT	ND<0.004	NT	NT
Barium	NA	NA	10	NT	NT	NT	0.37	NT	NT
Copper	NA NA	NA	13	NT	NT	NT	ND<0.04	NT	NT
Lead	NA	NA	0.15	NT	NT	NT	ND<0.013	NT	NT
Thallium	NA	NA_	0.05	NT	NT	NT	ND<0.005	NT	NT
Vanadium	NA	NA	0.50	NT	NT	NT	ND<0.05	NT	NT
Zinc	NA	NA	50	NT	NT	NT	0.15	NT	ΝT
Total Metals				-					
Antimony	27	8,200	NA	NT	NT	NT	2.9	NT	NT
Arsenic	10	10	NA	4.0	1.3	2.5	4.1	ND<1.0	NT
Barium	4,700	140,000	NA	NT	NT	NT	18	NT	NT
Chromium	100*	100*	NA	NT	NT	NT	15	NT	NT
Copper	2,500	76,000	NA	NT ·	NT	NT	70	NT	NT
Lead	500	1,000	NA	NT	NT	NT	24	NT	NT
Mercury	20	610	NA	NT	NT	NT	ND<0.20	NT	NT

Ta buth.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-QQQQQ	-				TB-RRRR		
Depth Below Grade (ft.)				(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(10-12)	(0.0-0.3)		
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02		
Total Metals	<u> </u>										
Nickel	1,400	7,500	NA	NT	NT	NT	19	NT	NT		
Selenium	340	10,000	NA	NT	NT	NT	1.1	NT	NT		
Vanadium	470	14,000	NA	NT	NT	NT	18	NT	NT		
Zinc	20,000	610,000	NA	NT	NT	NT	37	NT	NT		
Cyanide (Total)	1,400	41,000	NA	NT	NT	ND<5.0	ND<5.0	ND<5.0	ND<5.0		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	NT	ND<50	ND<50	884	NT		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.
Units are mittigrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Talle Jouth 1

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-RRRR	TB-RRRRR	TB-RRRR	TB-RRRRR	TB-RRRRR	TB-RRRR		
Depth Below Grade (ft.)				(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(15-17)	(20-22)		
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02		
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)						-					
Acenaphthene	1,000	2,500	84	ND<0.20	NT	ND<0.20	NT	NT	NT		
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	ND<0.20	NT	NT	NT		
Anthracene	1,000	2,500	400	ND<0.20	NT	ND<0.20	NT	NT NT	NT		
Benzo[a]anthracene	1	7.8	1	ND<0.20	NT	ND<0.20	NT	NT	NT		
Benzo[a]pyrene	1	1	1	ND<0.20	NT	ND<0.20	NT	NT	NT		
Benzo[b]fluoranthene	1	7.8	1	ND<0.20	NT	ND<0.20	NT	NT	NT		
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	NT	ND<0.20	NT	NT	NT		
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	NT	ND<0.20	NT	NT	NT		
Chrysene	84	780	1	ND<0.20	NT	ND<0.20	NT	NT	NT		
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	ND<0.20	NT	NT	NT		
Fluoranthene	1,000	2,500	56	ND<0.20	NT	ND<0.20	NT	NT	NT		
Fluorene	1,000	2,500	56	ND<0.20	NT	ND<0.20	NT	NT	NT		
Indeno[1,2,3-cd]pyrene	_ 1	7.8	1	ND<0.20	NT	ND<0.20	NT	NT	NT		
Naphthalene	1,000	2,500	56	ND<0.20	NT	ND<0.20	NT	NT	NT		
Phenanthrene	1,000	2,500	40	ND<0.20	NT	ND<0.20	NT	NT	NT		
Pyrene	1,000	2,500	40	ND<0.20	NT	ND<0.20	NT	NT	NT		
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
Benzene	21	200	0.2	NT	NT	ND<0.001	ND<0.001	ND<0.001	NT		
sec-Butylbenzene	500	1,000	14	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
Ethylbenzene	500	1,000	10.1	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
Isopropylbenzene	500	1,000	132	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
4-Isopropyltoluene	500	1,000	41.8	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
Naphthalene	1,000	2,500	56	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
Tetrachloroethene	12	110	1	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		

Tall Louth 1

		 _									
Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
·	Residential	Industriat/ Commercial	GB Area	TB-RRRR	TB-RRRR	TB-RRRR	TB-RRRRR	TB-RRRR	TB-RRRRR		
Depth Below Grade (ft.)				(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(15-17)	(20-22)		
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02		
USEPA Method 8260 Volatile Organic Compounds (VOCs)								.710,02	1710/02		
Toluene	500	1,000	67	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
Xylenes (total)	500	1,000	19.5	NT	NT	ND<0.005	ND<0.005	ND<0.005	NT		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)											
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
SPLP PCBs USEPA Method 8082											
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT		
SPLP Metals											
Arsenic	NA	NA	0.5	NT NT	ND<0.004	NT	NT	NT	NE		
Barlum	NA	NA	10	NT	0.70	NT	NT	NT	NT NT		
Copper	NA	NA	13	NT	ND<0.04	NT	NT	NT NT	NT		
Lead	NA	NA	0.15	NT	ND<0.013	NT	NT	NT	NT		
Thallium	NA	NA	0.05	NT	ND<0.005	NT NT	NT	NT	NT		
Vanadium	NA	NA	0.50	NT	ND<0.05	NT	NT	NT	NT		
Zinc	NA	NA	50	NT	0.26	NT	NT	NT	NT		
Total Metals											
Antimony	27	8,200	NA	NT	ND<2.0	NT	NT	NT	NT		
Arsenic	10	10	NA NA	ND<1.0	ND<1.0	ND<1.0	ND<1.0	3.1	3.3		
Barium	4,700	140,000	NA	NT	19	NT NT	NT NT	NT	NT		
Chromium	100*	100*	NA	NT	5.2	NT	NT	NT	NT		
Copper	2,500	76,000	NA	NT	7.5	NT	NT	NT	NT		
Lead	500	1,000	NA	NT	5.0	NT	NT	NT	NT		
Mercury	20	610	NA NA	NT	ND<0.20	NT	NT	NT	NT		

Table South.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-RRRRR	TB-RRRR	TB-RRRR	TB-RRRR	TB-RRRRR	TB-RRRRR	
Depth Below Grade (ft.)				(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(15-17)		
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	(20-22) 7/19/02	
Total Metals								1110102	1713/02	
Nickel	1,400	7,500	NA	NT	3.6	NT	NT	NT	NIT	
Selenium	340	10,000	NA	NT	ND<1.0	NT	NT	NT	NT	
Vanadium	470	14,000	NA	NT	16	NT	NT	NT	NT	
Zinc	20,000	610,000	NA	NT	11	NT	NT	NT	NT NT	
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	ND<50	NT	ND<50	ND<50	NT	NT	

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tall huth 1

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soll Sample Concentrations (ppm)					
	Desidential	Industrial/	27.4	TB-SSSSS/	TB-SSSSS/	TB-SSSSS/		TB-SSSSS/	
Depth Below Grade (ft.)	Residential	Commercial	GB Area	MW-O	MW-O	MW-O	MW-O	MW-O	ТВ-ТТТТТ
Sampling Date				(0.0-0.3) 7/19/02	(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(0.0-0.3)
				1119102	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)				!					
Acenaphthene	4.000	0.500		<u> </u>					
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	NT	ND<0.20
Anthracene	1,000	2,500	84	NT	NT	NT	NT	NT_	ND<0.20
	1,000	2,500	400	NT	NT	NT	NT	NT	ND<0.20
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	NT	ND<0.20
Benzo[a]pyrene	1	11	1	NT	NT	NT	NT	NT	ND<0.20
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	NT	ND<0.20
Benzo(g,h,i)perylene	1,000	2,500	42	NT	NT	NT	NT	NT	ND<0.20
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	NT	ND<0.20
Chrysene	84	780	11	NT	NT	NT	NT	NT	ND<0.20
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	NT	NT	ND<0.20
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.20
Fluorene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	NT	NT	ND<0.20
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	ND<0.20
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	NT	ND<0.20
Pyrene	1,000	2,500	40	NT	NT	NT	NT	NT	ND<0.20
USEPA Method 8260 Volatile Organic Compounds (VOCs)		_							
Benzene	21	200	0.2	NT	NT	ND<0.001	ND<0.001	NT	NT
sec-Butylbenzene	500	1,000	14	NT	NT	ND<0.005	ND<0.005	NT	NT
Ethylbenzene	500	1,000	10.1	NT	NT	ND<0.005	ND<0.005	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	ND<0.005	ND<0.005	NT	NT
4-Isopropyltoluene	500	1,000	41.8	NT	NT	ND<0.005	ND<0.005	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	ND<0.005	ND<0.005	NT	NT NT
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.005	ND<0.005	NT	NT
Tetrachloroethene	12	110	1	NT	NT	ND<0.005	ND<0.005	NT	NT

Tall Louth 1

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soil	Sample Con	centrations (p	ns (ppm)	
		Industrial/		TB-SSSSS/	TB-SSSSS/	TB-SSSSS/		TB-SSSSS/	
	Residential	Commercial	GB Area	MW-O	MW-O	MW-O	MW-O	MW-O	тв-тттт
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(0.0-0.3)
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Toluene	500	1,000	67	NT	NT	ND<0.005	ND<0.005	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	ND<0.005	ND<0.005	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	ND<0.005	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	ND<0.005	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	ND<0.005	ND<0.005	NT	NT
USEPA Method 8082 Polychiorinated Biphenyls (PCBs)									
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082									
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT
SPLP Metals	_								
Arsenic	NA	NA	0.5	NT	ND<0.004	NT	NT	NT	NT
Barium	NA	NA	10	NT	0.54	NT	NT	NT	NT
Copper	NA	NA	13	NT	ND<0.04	NT	NT	NT	NT
Lead	NA	NA	0.15	NT	ND<0.013	NT	NT	NT	NT
Thallium	NA	NA	0.05	NT	ND<0.005	NT	NT	NT	NT
Vanadium	NA	NA	0.50	NT	ND<0.05	NT	NT	NT	NT
Zinc	NA	NA	50	NT	0.21	NT	NT	NT	NT NT
Total Metals									
Antimony	27	8,200	NA NA	NT	ND<2.0	NT	NT	NT	NT
Arsenic	10	10	NA	NT	ND<1.0	ND<1.0	1.2	ND<1.0	NT
Barium	4,700	140,000	NA NA	NT	21	NT NT	NT	NT NT	NT NT
Chromium	100°	100*	NA	NT	5.0	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	9.9	NT	NT	NT	NT NT
Lead	500	1,000	NA	NT	4.6	NT	NT	NT	NT
Mercury	20	610	NA	NT	ND<0.20	NT	NT	NT	NT

Table South.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)						
	Residential	Industrial/ Commercial	GB Area	TB-SSSSS/ MW-O	TB-SSSSS/ MW-O	TB-SSSSS/ MW-O	TB-SSSSS/	TB-SSSSS/	тв-тттт	
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(0.0-0.3)	
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	7/19/02	
Total Metals									7710702	
Nickel	1,400	7,500	NA NA	NT	4.5	NT	NT	NT	NT	
Selenium	340	10,000	NA	NT	ND<1.0	NT	NT	NT		
Vanadium	470	14,000	NA	NT	20	NT	NT	NT	NT NT	
Zinc	20,000	610,000	NA	NT	14	NT	NT	NT	NT NT	
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	ND<50	ND<50	ND<50	NT	NT	

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L). = 100 mg/kg for hexavalent chromium.

Tall buth 1

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soll	Sample Con	centrations (p	centrations (ppm)			
	Residential	Industrial/ Commercial	GB Area	тв-тттт	тв-тттт	тв-тттт	тв-тттт	TB-UUUUU	TB-UUUUU		
Depth Below Grade (ft.)				(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(0.0-0.3)	(0.3-1.3)		
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/22/02	7/22/02		
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)											
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	NT	NT	NT		
Acenaphthylene	1,000	2,500	84	NT	NT	ND<0.20	NT	NT	NT		
Anthracene	1,000	2,500	400	NT	NT	ND<0.20	NT	NT	NT		
Benzo[a]anthracene	1	7.8	1	NT	NT	0.81	NT	NT	NT		
Benzo[a]pyrene	1	1	1	NT	NT	0.77	NT	NT	NT		
Benzo[b]fluoranthene	1	7.8	1	NT	NT	0.98	NT	NT	NT		
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	0.41	NT	NT	NT		
Benzo[k]fluoranthene	8.4	78	1	NT	NT	0.40	NT	NT	NT		
Chrysene	84	780	1	NT	NT	0.91	NT	NT	NT		
Dibenz[a,h]anthracene	1	1	1	NT	NT	ND<0.20	NT	NT	NT		
Fluoranthene	1,000	2,500	56	NT	NT	1.6	NT	NT	NT		
Fluorene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT		
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	0.56	NT	NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	ND<0.20	NT	NT	NT		
Phenanthrene	1,000	2,500	40	NT	NT	1.1	NT	NT	NT		
Pyrene	1,000	2,500	40	NT	NT	1.3	NT	NT	NT		
USEPA Method 8260 Volatile Organic Compounds (VOCs)	-										
Benzene	21	200	0.2	NT	NT	NT	NT	NT	NT		
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT		
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT		
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT		
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT		
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT		
Tetrachloroethene	12	110	1	NT	NT	NT	NT	NT	NT		

Tall Jouth 1

Analyte	-	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soil	Sample Con	centrations (p	centrations (ppm)				
	Residential	Industrial/ Commercial	GB Area	тв-тттт	ТВ-ТТТТ	тв-тттт	ТВ-ТТТТ	тв-иииии	тв-иииии			
Depth Below Grade (ft.)				(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(0.0-0.3)	(0.3-1.3)			
Sampling Date				7/19/02	7/19/02	7/19/02	7/19/02	7/22/02	7/22/02			
USEPA Method 8260 Volatile Organic Compounds (VOCs)												
Toluene	500	1,000	67	NT	NT	NT	NT	NT	NT			
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT			
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT			
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT			
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	NT			
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)												
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
SPLP PCBs USEPA Method 8082												
PCB-1260	NA	NA_	0.005	NT	NT	NT	NT	NT	NT			
SPLP Metals												
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT	NT			
Barium	NA	NA	10	NT	NT	NT	NT	NT	NT			
Copper	NA	NA	13	NT	NT	NT	NT	NT	NT			
Lead	NA	NA NA	0.15	NT	NT	NT	NT	NT	NT			
Thallium	NA	NA	0.05	NT	NT	NT	NT	NT	NT			
Vanadium	NA	NA NA	0.50	NT	NT	NT	NT	NT	NT			
Zinc	NA	NA NA	50	NT	NT	NT	NT	NT	NT			
Total Metals												
Antimony	27	8,200	NA	NT	NT	NT	NT	NT	NT			
Arsenic	10	10	NA	ND<1.0	ND<1.0	ND<1.0	2.1	1.2	1.4			
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT NT	NT			
Chromium	100°	100*	NA	NT	NT	NT	NT	NT	NT			
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT	NT			
Lead	500	1,000	NA	NT	NT	NT	NT	NT	NT			
Mercury	20	610	NA	NT	NT	NT	NT	NT	NT			

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030d
Table South.1 Page 29 of 63

Analyte		esure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soil	Sample Con	centrations (opm)	
	Residential	Industrial/ Commercial	CD A	TD T-1					
D-41-7-1-0-1-40	Residential	Commercial	GB Area	тв-тттт	ТВ-ТТТТ	ТВ-ТТТТТ	тв-тттт	TB-UUUUU	TB-UUUUU
Depth Below Grade (ft.)				(0.3-1.3)	(1.3-2.3)	(2.3-4.3)	(5-7)	(0.0-0.3)	(0.3-1.3)
Sampling Date			·	7/19/02	7/19/02	7/19/02	7/19/02	7/22/02	7/22/02
Total Metals									
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT	NT
Selenium	340	10,000	NA	NT	NT	NT	NT	NT	NT
Vanadium	470	14,000	NA NA	NT	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT	NT
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT_	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	ND<50	NT	NT	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.
Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tall Louth 1

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soil	Sample Cond	centrations (p	-	
	Residential	Industrial/ Commercial	GB Area	тв-иииии	TB-UUUUU	TB-UUUUU	TB-VVVVV	TB-VVVV	TB-VVVVV
Depth Below Grade (ft.)				(1.3-2.3)	(2.3-4.3)	(5-7)	(0.0-0.3)	(0.3-1.8)	(2-3.5)
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)					<u></u>				
Acenaphthene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<0.20
Acenaphthylene	1,000	2,500	84	NT	ND<0.20	NT	NT	NT	ND<0.20
Anthracene	1,000	2,500	400	NT	ND<0.20	NT	NT	NT	ND<0.20
Benzo[a]anthracene	1	7.8	1	NT	0.30	NT	NT	NT	0.35
Benzo[a]pyrene	1	1	1	NT	0.33	NT	NT	NT	0.45
Benzo[b]fluoranthene	1	7.8	1	NT	0.40	NT	NT	NT	0.63
Benzo[g,h,i]perylene	1,000	2,500	42	NT	ND<0.20	NT	NT	NT	0.25
Benzo[k]fluoranthene	8.4	78	1	NT	0.23	NT	NT	NT	0.23
Chrysene	84	780	1	NT	0.35	NT	NT	NT	0.42
Dibenz(a,h)anthracene	1	1	1	NT	ND<0.20	NT	NT	NT	ND<0.20
Fluoranthene	1,000	2,500	56	NT	0.56	NT	NT	NT	0.59
Fluorene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<0.20
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	ND<0.20	NT	NT	NT	0.28
Naphthalene	1,000	2,500	56	NT	ND<0.20	NT	NT	NT	ND<0.20
Phenanthrene	1,000	2,500	40	NT	0.46	NT	NT	NT	0.27
Pyrene	1,000	2,500	40	NT	0.51	NT	NT	NT	0.58
USEPA Method 8260 Volatile Organic Compounds (VOCs)			-						
Benzene	21	200	0.2	NT	NT	NT	NT	NT	NT
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	NT
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	NT
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	NT
Tetrachloroethene	12	110	1	NT	NT	NT	NT	NT	NT

Talle Jouth.1

Analyte	_	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soil	Sample Con	centrations (r		
	Danista-41-1	Industrial/							
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-UUUUU	TB-UUUUU	TB-UUUUU	TB-VVVVV	TB-VVVVV	TB-VVVVV
Sampling Date				(1.3-2.3)	(2.3-4.3)	(5-7)	(0.0-0.3)	(0.3-1.8)	(2-3.5)
				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Toluene	500	1,000	67	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082									
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	NT
SPLP Metals									
Arsenic	NA	NA	0.5	NT	ND<0.004	NT	NT	NT	NT
Barium	NA	NA	10	NT	0.76	NT	NT	NT	NT
Copper	NA	NA	13	NT	ND<0.04	NT	NT	NT	NT
Lead	NA	NA	0.15	NT	ND<0.013	NT	NT	NT	NT
Thallium	NA	NA	0.05	NT	ND<0.005	NT	· NT	NT	NT
Vanadium	NA	NA	0.50	NT	ND<0.05	NT	NT	NT	NT
Zinc	NA	NA	50	NT	0.28	NT	NT	NT	NT
Total Metals									
Antimony	27	8,200	NA	NT	ND<2.0	NT	NT	NT	NT
Arsenic	10	10	NA	1.2	1.2	2.2	2.2	1.5	1.4
Barium	4,700	140,000	NA	NT	23	NT	NT	NT NT	NT
Chromium	100*	100°	NA	NT	8.4	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	22	NT	NT	NT	NT
Lead	500	1,000	NA	NT	16	NT	NT	NT	NT
Mercury	20	610	NA	NT	ND<0.20	NT	NT	NT	NT

Table South.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)		Soil	contestions (r	nm)				
		Industrial/				Soil Sample Concentrations (ppm)					
	Residential	Commercial	GB Area	ТВ-ИИИИИ	TB-UUUUU	TB-UUUUU	TB-VVVVV	TB-VVVVV	TB-VVVV		
Depth Below Grade (ft.)				(1.3-2.3)	(2.3-4.3)	(5-7)	(0.0-0.3)	(0.3-1.8)	(2-3.5)		
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	7/22/02		
Total Metals	 										
Nickel	1,400	7,500	NA	NT	7.0	NT	NT	NT	NT		
Selenium	340	10,000	NA	NT	ND<1.0	NT	NT	NT	NT		
Vanadium	470	14,000	NA	NT	26	NT	NT	NT	NT		
Zinc	20,000	610,000	NA	NT	29	NT	NT	NT	NT		
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	NT	NT	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	90	NT	NT	NT	95		

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tallsouth,1

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soil Sam	nple Concentrat	ple Concentrations (ppm)			
	Residential	Industrial/ Commercial	GB Area	TB-VVVVV	TB-WWWWW	TB-WWWWW		TB-WWWWW		
Depth Below Grade (ft.)				(5-6.5)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)		
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02		
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	172502		
Acenaphthene	1,000	2,500	84	NT	NT	NT	ND<1.0	NT NT		
Acenaphthylene	1,000	2,500	84	NT	NT	NT	ND<1.0	NT NT		
Anthracene	1,000	2,500	400	NT	NT	NT	ND<1.0	NT		
Benzo[a]anthracene	11	7.8	1	NT	NT	NT	ND<1.0	NT		
Benzo[a]pyrene	1	1	1	NT	NT	NT	1.9	NT		
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	ND<1.0	NT		
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	4.2	NT		
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	ND<1.0	NT		
Chrysene	84	780	1	NT	NT	NT	ND<1.0	NT		
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	ND<1.0	NT		
Fluoranthene	1,000	2,500	56	NT	NT	NT	ND<1.0	NT		
Fluorene	1,000	2,500	56	NT	NT	NT	ND<1.0	NT		
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	ND<1.0	NT		
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<1.0	NT		
Phenanthrene	1,000	2,500	40	NT	NT	NT	ND<1.0	NT		
Pyrene	1,000	2,500	40	NT	NT	NT	ND<1.0	NT		
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
Benzene	21	200	0.2	NT	NT	ND<0.001	ND<0.001	0.0074		
sec-Butylbenzene	500	1,000	14	NT	NT	ND<0.005	ND<0.005	ND<0.005		
Ethylbenzene	500	1,000	10.1	NT	NT	ND<0.005	ND<0.005	ND<0.005		
Isopropylbenzene	500	1,000	132	NT	NT	ND<0.005	ND<0.005	ND<0.005		
4-Isopropyitoluene	500	1,000	41.8	NT	NT	ND<0.005	ND<0.005	ND<0.005		
Naphthalene	1,000	2,500	56	NT	NT	ND<0.005	ND<0.005	ND<0.005		
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.005	ND<0.005	ND<0.005		
Tetrachioroethene	12	110	1	NT	NT	0.11	0.03	0.018		

Table South.1

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Sail Sa-		ole Concentrations (ppm)				
,,	10, 00.	Industrial/	oon (mg/kg)		John San	ipie Concentra	ions (ppm)				
	Residential	Commercial	GB Area	TB-VVVV	TB-WWWWW	TB-WWWWW	TB-WWWW	TB-WWWWW			
Depth Below Grade (ft.)				(5-6.5)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)			
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02			
USEPA Method 8260 Volatile Organic Compounds (VOCs)											
Toluene	500	1,000	67	NT	NT	ND<0.005	ND<0.005	0.0085			
1,1,1-Trichloroethane	500	1,000	40	NT	NT	0.02	0.014	0.009			
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	ND<0.005	ND<0.005			
1,3,5-Trimethylbenzene	500	1,000	70	NT NT	NT	ND<0.005	ND<0.005	ND<0.005			
Xylenes (total)	500	1,000	19.5	NT	NT	ND<0.005	ND<0.005	ND<0.005			
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)				-							
PCB-1260	1	10	NA	ND<0.50	1.0	53	, ND<0.50	ND<0.50			
SPLP PCBs USEPA Method 8082											
PCB-1260	NA	NA	0.005	NT	ND<0.0005	ND<0.0005	NT	NT			
SPLP Metals											
Arsenic	NA	NA	0.5	NT	NT	0.014	NT	NT			
Barium	NA	NA	10	NT	NT	0.78	NT	NT			
Copper	NA	NA	13	NT	NT	0.051	NT	NT			
Lead	NA	NA	0.15	NT	NT	0.06	NT	NT			
Thallium	NA	NA	0.05	NT	NT	0.0064	NT	NT			
Vanadium	NA	NA	0.50	NT	NT	0.12	NT	NT			
Zinc	NA	NA	50	NT	NT	0.42	NT	NT			
Total Metals		-			-						
Antimony	27	8,200	NA	NT	NT	2,7	NT	NT			
Arsenic	10	10	NA	ND<1.0	NT	2.9	4.5	5.8			
Barium	4,700	140,000	NA	NT	NT	21	NT	NT			
Chromium	100°	100°	NA	NT	NT	9.9	NT	NT			
Copper	2,500	76,000	NA	NT	NT	51	NT	NT			
Lead	500	1,000	NA	NT	NT	81	NT	NT			
Mercury	20	610	NA	NT	NT	1.4	NT	NT			

Tall outh 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soll (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-VVVVV	TB-WWWWW	TB-WWWWW	TB-WWWWW	TB-WWWWW			
Depth Below Grade (ft.)				(5-6,5)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)			
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02			
Total Metals											
Nickel	1,400	7,500	NA	NT	NT	11	NT	NT			
Selenium	340	10,000	NA	NT	NT	1.1	NT	NT			
Vanadium	470	14,000	NA	NT	NT	32	NT	NT			
Zinc	20,000	610,000	NA	NT	NT	77	NT	NT			
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	ND<5.0	NT			
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	330	345	NT			

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Table South.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

			Pollutant		· -			
	Disect Func		Mobility					
Analyte		sure Criteria	Criteria for	ļ				
Analyte	tor Soil	(mg/kg) Industrial/	Soil (mg/kg)		Soil Sam	ple Concentration	ons (ppm)	
	Residential	Commercial	GB Area	TB-XXXXX	TB-XXXXX	TB-XXXXX	TB-XXXXX	TB-XXXXX
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)	(10-12)
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
USEPA Method 8270C Polynuclear								
Aromatic Hydrocarbons (PAHs)								
Acenaphthene	1,000	2,500	84	NT	ND<0.20	ND<0.20	NT	NT
Acenaphthylene	1,000	2,500	84	NT	2.0	ND<0.20	NT	NT
Anthracene	1,000	2,500	400	NT	0.64	ND<0.20	NT	NT
Benzo[a]anthracene	1	7.8	1	NT ·	2.6	ND<0.20	NT	NT
Benzo[a]pyrene	1	1	1	NT	4.1	ND<0.20	NT	NT
Benzo[b]fluoranthene	1	7.8	1	NT	4.5	ND<0.20	NT	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	2.5	ND<0.20	NT	NT
Benzo[k]fluoranthene	8.4	78	1	NT	2.0	ND<0.20	NT	NT
Chrysene	84	780	1	NT	3.0	ND<0.20	NT	NT
Dibenz[a,h]anthracene	1	1	1	NT	0.63	ND<0.20	NT	NT
Fluoranthene	1,000	2,500	56	NT	2.8	0.23	NT	NT
Fluorene	1,000	2,500	56	NT	0.21	ND<0.20	NT	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	2.3	ND<0.20	NT	NT
Naphthalene	1,000	2,500	56	NT	0.79	ND<0.20	NT	NT
Phenanthrene	1,000	2,500	40	NT	1.2	ND<0.20	NT	NT
Pyrene	1,000	2,500	40	NT	5.8	0.27	NT	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)		_					,	_
Benzene	21	200	0.2	NT	ND<0.001	ND<0.001	NT	ND<0.001
sec-Butylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	NT	ND<0.005
Ethylbenzene	500	1,000	10.1	NT	ND<0.005	ND<0.005	NT	ND<0.005
Isopropylbenzene	500	1,000	132	NT	ND<0.005	ND<0.005	NT	ND<0.005
4-Isopropyltoluene	500	1,000	41.8	NT	ND<0.005	ND<0.005	NT	ND<0.005
Naphthalene	1,000	2,500	56	NT	ND<0.005	ND<0.005	NT	ND<0.005
n-Propylbenzene	500	1,000	14	NT	ND<0.005	ND<0.005	NT	ND<0.005
Tetrachloroethene	12	110	1	NT	0.012	0.0051	NT	ND<0.005

Tall Louth 1

		 1	Dellastant		.				
		ł	Pollutant Mobility						
	Direct Expo	sure Criteria	Criteria for						
Analyte		(mg/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)					
		Industrial/	oon (mgrkg)		Sui Sain	pie Concentrati	ons (ppm)		
	Residential	Commercial	GB Area	TB-XXXXX	TB-XXXXX	TB-XXXXX	TB-XXXXX	TB-XXXXX	
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)	(10-12)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Toluene	500	1,000	67	NT	ND<0.005	ND<0.005	NT	ND<0.005	
1,1,1-Trichloroethane	500	1,000	40	NT	ND<0.005	ND<0.005	NT	ND<0.005	
1,2,4-Trimethylbenzene	500	1,000	70	NT	ND<0.005	ND<0.005	NT	ND<0.005	
1,3,5-Trimethylbenzene	500	1,000	70	NT	ND<0.005	ND<0.005	NT	ND<0.005	
Xylenes (total)	500	1,000	19.5	NT	ND<0.005	ND<0.005	NT	ND<0.005	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)	-								
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
SPLP PCBs USEPA Method 8082									
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT	
SPLP Metals									
Arsenic	NA	NA	0.5	NT	NT	ND<0.004	NT	NT	
Barium	NA	NA	10	NT	NT	0.42	NT	NT	
Copper	NA	NA	13	NT	NT	ND<0.04	NT	NT	
Lead	NA	NA NA	0.15	NT	NT	ND<0.013	NT	NT	
Thallium	NA	NA	0.05	NT	NT	ND<0.005	NT	NT	
Vanadium	NA	NA	0.50	NT	NT	ND<0.05	NT	NT	
Zinc	NA	NA	50	NT	NT	0.58	NT	NT	
Total Metals									
Antimony	27	8,200	NA	NT	NT	3.3	NT	NT	
Arsenic	10	10	NA	NT	3.8	4.3	4.2	ND<1.0	
Barium	4,700	140,000	NA	NT	NT	15	NT	NDC1.0	
Chromium	100*	100*	NA	NT	NT	16	NT	NT	
Copper	2,500	76,000	NA	NT	NT	62	NT	NT	
Lead	500	1,000	NA	NT	NT	26	NT	NT	
Mercury	20	610	NA	NT	NT	1.1	NT	NT	

Table South.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)				
	Residential	Industrial/	GB Area	TB-XXXXX	TB-XXXXX			
Depth Below Grade (ft.)	- TODIOGRADA	Gommoroida	OB Alea			TB-XXXXX	TB-XXXXX	TB-XXXXX
Sampling Date				(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)	(10-12)
- Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
Total Metals								
Nickel	1,400	7,500	NA	NT	NT	15	NT	NT
Selenium	340	10,000	NA	NT	NT	1.6	NT	
Vanadium	470	14,000	NA	NT	NT	18	NT	NT
Zinc	20,000	610,000	NA	NT	NT	30	NT	NT
Cyanide (Total)	1.400	44.000					INI	NT
Cyanida (Total)	1,400	41,000	NA	NT	NT	ND<5.0	NT	ND<5.0
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	286	ND<50	NT	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.
Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tam outh.1

Comparison of Test Boring Soll Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	•	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-YYYYY	TB-YYYYY	ТВ-Үүүүү	TB-22777	TB-77777	
Depth Below Grade (ft.)				(0.0-0.3)	(0.3-2.3)	(4-6)	(0.0-0.3)	(0.3-2.3)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	NT	ND<0.20	
Anthracene	1,000	2,500	400	NT	NT	NT	NT	ND<0.20	
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	NT	0.38	
Benzo[a]pyrene	1	1	1	NT	NT	NT	NT	0.41	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	NT	0.44	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	NT	0.46	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	NT	ND<0.20	
Chrysene	84	780	1	NT	NT	NT	NT	0.40	
Dibenz(a,h)anthracene	1	1	1	NT	NT	NT	NT	ND<0.20	
Fluoranthene	1,000	2,500	56	NT	NT	NT	NT	0.59	
Fluorene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	
Indeno[1,2,3-cd]pyrene	11	_7.8	1	NT	NT	NT	NT	0.41	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	ND<0.20	
Phenanthrene	1,000	2,500	40	NT	NT	NT	NT	0.25	
Pyrene	1,000	2,500	40	NT	NT	NT	NT	0.68	
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Benzene	21	200	0.2	NT	NT	ND<0.001	NT	NT	
sec-Butylbenzene	500	1,000	14	NT	NT	ND<0.005	NT	NT	
Ethylbenzene	500	1,000	10.1	NT	NT	ND<0.005	NT	NT	
Isopropylbenzene	500	1,000	132	NT	NT	ND<0.005	NT	NT	
4-Isopropyltoluene	500	1,000	41.8	NT	NT	ND<0.005	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	ND<0.005	NT	NT	
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.005	NT	NT	
Tetrachloroethene	12	110	1	NT	NT	ND<0.005	NT	NT	

Tall outh 1

	Direct Expo	sure Criteria	Pollutant Mobility Criteria for					
Analyte		(mg/kg)	Soil (mg/kg)	Ī	Soil Same	pie Concentrati	ons (mm)	
	Residential	Industrial/ Commercial	GB Area	ТВ-Үүүүү				
Depth Below Grade (ft.)	residential	Commercial	GB Area	(0.0-0.3)	TB-YYYYY	TB-YYYYY	TB-ZZZZZ	TB-ZZZZZ
Sampling Date				7/22/02	(0.3-2.3) 7/22/02	(4-6) 7/22/02	(0.0-0.3) 7/22/02	(0.3-2.3) 7/22/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)		·					172402	112202
Toluene	500	1,000	67	NT	NT	ND<0.005	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	ND<0.005	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	. NT	ND<0.005	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	ND<0.005	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082								
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT
SPLP Metals								
Arsenic	NA	NA	0.5	NT	NT	NT	NT	ND<0.004
Barium	NA	NA	10	NT	NT	NT	NT	0.56
Copper	NA	NA	13	NT	NT	NT	NT	ND<0.04
Lead	NA NA	NA	0.15	NT	NT	NT	NT	ND<0.013
Thallium	NA	NA	0.05	NT	NT	NT	NT	ND<0.005
Vanadium	NA	NA	0.50	NT	NT	NT	NT	ND<0.05
Zinc	NA NA	NA	50	NT	NT	NT	NT	0.27
Total Metals			<u> </u>					
Antimony	27	8,200	NA	NT	NT	NT	NT	ND<2.0
Arsenic	10	10	NA	NT	2.2	4.6	NT	ND<1.0
Barium	4,700	140,000	NA	NT	NT	NT	NT	14
Chromium	100*	100*	NA	NT	NT	NT	NT	5.1
Copper	2,500	76,000	NA	NT	NT	NT	NT	30
Lead	500	1,000	NA	NT.	NT	NT	NT	28
Mercury	20	610	NA NA	NT	NT	NT	NT	ND<0.20

Talles outh 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)				
		Industrial/					уна (ррин)	<u>r — — i</u>
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-YYYYY	TB-YYYYY	TB-YYYYY	TB-ZZZZZ	TB- <u>ZZZZZ</u>
	 			(0.0-0.3)	(0.3-2.3)	(4-6)	(0.0-0.3)	(0.3-2.3)
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
Total Metals								
Nickel	1,400	7,500	NA	NT	NT	NT	NT	
Selenium	340	10,000	NA.	NT	NT		NT	6.8
Vanadium	470	14,000	NA NA	NT		NT	NT	ND<1.0
Zinc	20,000	610,000	NA NA		NT	NT	NT	52
· · · · · · · · · · · · · · · · · · ·	20,000	010,000	NA	NT	NT	NT	NT	27
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	NT	72
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	NT	ND<50

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tall outh 1

Analyte	Direct Exposure Criteria for Soll (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-ZZZZZ	TB-ZZZZZ	TB-ZZZZZ	ТВ-ААААА	ТВ-АААААА	
Depth Below Grade (ft.)				(2.3-4.3)	(5-7)	(10-12)	(0.0-0.3)	(0.3-2.3)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)							772252	HZZIOZ	
Acenaphthene	1,000	2,500	84	0.28	NT	NT	NT	ND<0.20	
Acenaphthylene	1,000	2,500	84	7.7	NT	NT	NT	0.49	
Anthracene	1,000	2,500	400	2.9	NT	NT	NT	0.35	
Benzo[a]anthracene	1	7.8	1	3.2	NT	NT	NT	0.93	
Benzo[a]pyrene	1	1	1	7.3	NT	NT	NT	1.2	
Benzo[b]fluoranthene	1	7.8	1	6.0	NT	NT	NT	1,1	
Benzo[g,h,i]perylene	1,000	2,500	42	5.1	NT	NT	NT	1.1	
Benzo[k]fluoranthene	8.4	78	1	2.6	NT	NT	NT	0.43	
Chrysene	84	780	1	3.5	NT	NT	NT	0.94	
Dibenz[a,h]anthracene	1	1	1	1.1	NT	NT	NT	0.94	
Fluoranthene	1,000	2,500	56	3.8	NT	NT	NT	1.2	
Fluorene	1,000	2,500	56	1.2	NT	NT	NT	ND<0.20	
Indeno[1,2,3-cd]pyrene	1	7.8	1	3.9	NT	NT	NT	0.98	
Naphthalene	1,000	2,500	56	3.4	NT	NT	NT	ND<0.20	
Phenanthrene	1,000	2,500	40	4.3	NT	NT	NT	0.44	
Pyrene	1,000	2,500	40	7.3	NT	NT	NT	1.5	
USEPA Method 8260 Volatile Organic Compounds (VOCs)								110	
Benzene	21	200	0.2	NT	NT	ND<0.001	NT	NT	
sec-Butylbenzene	500	1,000	14	NT	NT	ND<0.005	NT	NT	
Ethylbenzene	500	1,000	10.1	NT	NT	ND<0.005	NT	NT	
Isopropylbenzene	500	1,000	132	NT	NT	ND<0.005	NT	NT	
4-Isopropyltoluene	500	1,000	41.8	NT	NT	ND<0.005	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	ND<0.005	NT	NT	
n-Propylbenzene	500	1,000	14	NT	NT	ND<0.005	NT	NT	
Tetrachloroethene	12	110	1	NT	NT	ND<0.005	NT	NT	

Tille South.1

Analyte		esure Criteria I (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)						
	Dooldantiat	Industrial/					(ррііі)	I		
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-ZZZZZ	TB-ZZZZZ	TB-ZZZZZ	TB-AAAAAA	TB-AAAAAA		
Sampling Date				(2.3-4.3)	(5-7)	(10-12)	(0.0-0.3)	(0.3-2.3)		
				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02		
USEPA Method 8260 Volatile Organic Compounds (VOCs)										
Toluene	500	1,000	67	NT	NT	ND<0.005	NT	NT		
1,1,1-Trichloroethane	500	1,000	40	NT	NT	ND<0.005	NT	NT		
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	NT	NT		
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	ND<0.005	NT	NT		
Xylenes (total)	500	1,000	19.5	NT	NT	ND<0.005	NT	NT		
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								NI		
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	1.4	5.7		
SPLP PCBs USEPA Method 8082										
PCB-1260	NA	NA	0.005	NT	NT	NT	ND<0.0005	ND<0.0005		
SPLP Metals								775 40:0003		
Arsenic	NA	NA	0.5	0.0099	NT	NT		1:5 - 6 - 6 - 6		
Barium	NA	NA	10	0.67	NT	NT	NT NT	ND<0.004		
Copper	NA	NA	13	ND<0.04	NT	NT	NT	0.41		
Lead	NA	NA	0.15	0.033	NT	NT	NT	ND<0.04		
Thallium	NA	NA	0.05	ND<0.005	NT	NT	NT	ND<0.013		
Vanadium	NA	NA	0.50	ND<0.05	NT	NT	NT	ND<0.005		
Zinc	NA	NA	50	0.41	NT NT	NT	NT NT	0.20 0.22		
Total Metals								U.Z.E		
Antimony	27	8,200	NA	ND<2.0	NT	NT	\			
Arsenic	10	10	NA NA	3.5	7.1		NT NT	ND<2.0		
Barium	4,700	140,000	NA	26	NT NT	1.6 NT	NT	2.2		
Chromium	100°	100*	NA NA	8.9	NT	NT	NT NT	27		
Copper	2,500	76,000	NA	69	NT	NT	NT	18 42		
Lead	500	1,000	NA	65	NT NT	NT	NT	42		
Mercury	20	610	NA NA	ND<0.20	NT	NT	NT	ND<0.20		

Table South 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soll (mg/kg)	Soll Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-ZZZZZ	TB-ZZZZZ	TB-ZZZZZ	ТВ-АААААА	ТВ-АААААА	
Depth Below Grade (ft.)				(2.3-4.3)	(5-7)	(10-12)	(0.0-0.3)	(0.3-2.3)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
Total Metals	 	 -							
Nickel	1,400	7,500	NA	8.6	NT	NT	NT	130	
Selenium	340	10,000	NA	ND<1.0	NT	NT	NT	ND<1.0	
Vanadium	470	14,000	NA	24	NT	NT	NT	380	
Zinc	20,000	610,000	NA	74	NT	NT	NT	53	
Cyanide (Total)	1,400	41,000	NA	ND<5.0	NT	NT	NT	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	85 .	NT	NT	NT	125	

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L). = 100 mg/kg for hexavalent chromium.

Ta——outh.1
Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	_	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	ТВ-АААААА	ТВ-АААААА	ТВ-ВВВВВВ	ТВ-ВВВВВВ	TB-BBBBBB	
Depth Below Grade (ft.)				(2.3-4.3)	(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8270C Polynuclear									
Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	ND<1.0	0.63	NT	0.63	0.49	
Acenaphthylene	1,000	2,500	84	ND<1.0	3.3	NT	0.27	1.4	
Anthracene	1,000	2,500	400	ND<1.0	5.6	NT	1.9	2.2	
Benzo[a]anthracene	1	7.8	1	ND<1.0	41	NT	8.0	6.0	
Benzo[a]pyrene	1	1	1	ND<1.0	33	NT	5.5	7.3	
Benzo[b]fluoranthene	1	7.8	1	ND<1.0	67	NT	8.2	8.6	
Benzo[g,h,i]perylene	1,000	2,500	42	ND<1.0	22	NT	2.8	2.9	
Benzo[k]fluoranthene	8.4	78	1	ND<1.0	19	NT	3.1	4.8	
Chrysene	84	780	1	ND<1.0	30	NT	8.8	6.5	
Dibenz(a,h)anthracene	1	1	1	ND<1.0	1.9	NT	0.75	0.99	
Fluoranthene	1,000	2,500	56	ND<1.0	40	NT	19	11	
Fluorene	1,000	2,500	56	ND<1.0	1.0	NT	0.49	0.59	
Indeno[1,2,3-cd]pyrene	1	7.8	11	ND<1.0	28	NT	3.6	3.5	
Naphthalene	1,000	2,500	56	ND<1.0	1.7	NT	0.24	0.25	
Phenanthrene	1,000	2,500	40	ND<1.0	11	NT	12	5.8	
Pyrene	1,000	2,500	40	ND<1.0	80	NT	16	10	
USEPA Method 8260 Volatile Organic Compounds (VOCs)			· · · · ·						
Benzene	21	200	0.2	NT	NT	NT	NT	NT	
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	
Tetrachloroethene	12	110	1	NT	NT	NT	NT	NT	

Table South.1

Analyte	-	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	ons (ppm)				
	Residential	Industrial/ Commercial	GB Area	ТВ-АААААА	ТВ-АААААА	ТВ-ВВВВВВ	тв-вввввв	ТВ-ВВВВВВ
Depth Below Grade (ft.)			0071100	(2.3-4.3)	(10-12)	(0.0-0.3)	(0.3-2.3)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	(2.3-4.3) 7/22/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)								
Toluene	500	1,000	67	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT ·	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT NT	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT
USEPA Method 8082 Polychlorinated Biphenyis (PCBs)								
PCB-1260	1	10	NA	ND<0.50	2.9	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082								
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT
SPLP Metals								
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT
Copper	· NA	NA	13	NT	NT	NT	NT	NT
Lead	NA	NA	0.15	NT	NT	NT	NT	NT
Thallium	NA	NA	0.05	NT	NT	NT	NT	NT
Vanadium	NA	NA	0.50	NT	NT	NT	NT	NT
Zinc	NA	NA	50	NT	NT	NT	NT	NT
Total Metals								
Antimony	27	8,200	NA	NT	NT	NT	NT	NT
Arsenic	10	10	NA	ND<1.0	1.1	4.0	5.8	9.1
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT
Chromium	100*	100°	NA	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT

Tall Jouth 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)				
	Residential	Industrial/ Commercial	GB Area	ТВ-АААААА	ТВ-АААААА	ТВ-ВВВВВВ	TB-BBBBBB	ТВ-ВВВВВВ
Depth Below Grade (ft.)				(2.3-4.3)	(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
Total Metals								
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT NT
Selenium	340	10,000	NA	NT	NT	NT	NT	NT
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT
Cyanide (Total)	1,400	41,000	NA	ND<5.0	NT	NT	NT	ND<5.0
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	348	NT	NT	NT	156

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tall Luth 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	тв-вввввв	TB-BBBBBB	TB-CCCCCC	тв-ссссс	TB-CCCCCC	
Depth Below Grade (ft.)				(5-7)	(10-12)	(0.0-0.3)	(0.3-2.3)	(5-7)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	NT	NT	NT ·	ND<0.20	NT	
Acenaphthylene	1,000	2,500	84	NT	NT	NT	ND<0.20	NT	
Anthracene	1,000	2,500	400	NT	NT	NT	ND<0.20	NT	
Benzo[a]anthracene	1	7.8	1	NT	NT	NT	ND<0.20	NT	
Benzo[a]pyrene	1	1	1	NT	NT	NT	ND<0.20	NT	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	NT	ND<0.20	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	NT	ND<0.20	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	NT	ND<0.20	NT	
Chrysene	84	780	1	NT	NT	NT	ND<0.20	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	NT	ND<0.20	NT	
Fluoranthene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	
Fluorene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	NT	ND<0.20	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.20	NT	
Phenanthrene	1,000	2,500	40	NT	NT	NT	ND<0.20	NT	
Pyrene	1,000	2,500	40	NT	NT	NT	ND<0.20	NT	
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Benzene	21	200	0.2	NT	NT	NT	NT	NT	
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	
Ethylbenzene	500	1,000	10.1	- NT	NT	NT	NT	NT	
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	
Tetrachloroethene	12	110	1	NT	NT	NT	NT	NT	

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030d
Table South.1 Page 49 of 63

Tall outh.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

				•				
Analyte	Direct Expo	osure Criteria	Pollutant Mobility Criteria for			-		
Analyte	10r Sol	(mg/kg) Industrial/	Soil (mg/kg)	<u> </u>	Soil Sam	ple Concentrati	ons (ppm)	
	Residential	Commercial	GB Area	TB-BBBBBB	тв-вввввв	TB-CCCCCC	TB-CCCCCC	TB-CCCCC
Depth Below Grade (ft.)		,		(5-7)	(10-12)	(0.0-0.3)	(0.3-2.3)	(5-7)
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)								
Toluene	500	1,000	67	NT	NT	NT	NT	AIT
1,1,1-Trichloroethane	500	1,000	40	NT NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT
Xylenes (total)	- 500	1,000	19.5	NT	NT	NT	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1.3
SPLP PCBs USEPA Method 8082								
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	ND<0.0005
SPLP Metals								
Arsenic	NA	NA	0.5	NT	NT	NT	ND<0.004	NT
Barium	NA	NA	10	NT	NT	NT	0.22	NT
Copper	NA	NA	13	NT	NT	NT	ND<0.04	NT
Lead	NA	NA	0.15	NT	NT	NT	ND<0.013	NT
Thallium	NA	NA	0.05	NT	NT	NT	ND<0.005	NT
Vanadium	NA	NA NA	0.50	·NT	NT	NT	ND<0.05	NT
Zinc	NA	NA	50	NT	NT	NT	0.10	NT
Total Metals	·							
Antimony	27	8,200	NA	NT	NT	NT	ND<2.0	NT
Arsenic	10	10	NA NA	6.9	4.2	NT	ND<2.0	NT
Barium	4,700	140,000	NA	NT TN	NT	NT	19	9.0 NT
Chromium	100*	100°	NA	NT	NT	NT	4.9	NT
Copper	2,500	76,000	NA	NT	NT	NT	24	NT
Lead	500	1,000	NA	NT	NT	NT	7.4	NT
Mercury	20	610	NA	NT	NT	NT	ND<0.20	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030d Table South.1 Page 50 of 63

Talle outh.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-BBBBBB	ТВ-ВВВВВВ	TB-CCCCC		TD COOCOO	
Depth Below Grade (ft.)			057402	(5-7)	(10-12)	(0.0-0.3)	TB-CCCCCC	TB-CCCCCC	
Sampling Date				7/22/02	7/22/02	7/22/02	(0.3-2.3) 7/22/02	(5-7) 7/22/02	
Total Metals						772202	172202	1122102	
Nickel	1,400	7,500	NA NA	NT	NT	NT	8.6	NT	
Selenium	340	10,000	NA	NT	NT	NT	ND<1.0		
Vanadium	470	14,000	NA	NT	NT	NT	33	NT	
Zinc	20,000	610,000	NA	NT	NT	NT	50	NT NT	
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	ND<5.0	NT	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	NT	ND<50	75	

Notes:

mg/kg = milligrams per kllogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tal——outh.1 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Anaiyte	•	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soll (mg/kg)	Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-CCCCCC	TB-DDDDDD	TB-DDDDDD	TB-DDDDDD	TB-DDDDDD	
Depth Below Grade (ft.)				(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	ND<0.20	NT	
Acenaphthylene	1,000	2,500	84	NT	NT	ND<0.20	ND<0.20	NT	
Anthracene	1,000	2,500	400	NT	NT	ND<0.20	0.21	NT	
Benzo[a]anthracene	1	7.8	1	NT	NT	ND<0.20	1.3	NT	
Benzo[a]pyrene	1	1	1	NT	NT	ND<0.20	1.5	NT	
Benzo[b]fluoranthene	11	7.8	1	NT	NT	ND<0.20	2.0	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	ND<0.20	0.68	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	ND<0.20	1.1	NT	
Chrysene	84	780	1	NT	NT	ND<0.20	1.5	NT	
Dibenz[a,h]anthracene	1	1	1	NT	NT	ND<0.20	0.22	NT	
Fluoranthene	1,000	2,500	56	NT	NT	ND<0.20	2.6	NT	
Fluorene	_1,000	2,500	56	NT	NT	ND<0.20	ND<0.20	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	ND<0.20	0.83	NT	
Naphthalene	1,000	2,500	56	NT	NT	ND<0.20	ND<0.20	NT	
Phenanthrene	1,000	2,500	40	NT	NT	ND<0.20	1.8	NT	
Pyrene	1,000	2,500	40	NT	NT	ND<0.20	2.3	NT	
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Benzene	21	200	0.2	NT	NT	NT	NT	NT	
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	
Tetrachloroethene	12	110	1	NT .	NT	NT	NT	NT	

Ta th.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

				·				
Analyte	_	sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		Soil Sam	ole Concentrati	ons (maa)	
		Industrial/					, (pp)	
Depth Below Grade (ft.)	Residential	Commercial	GB Area	TB-CCCCCC	TB-DDDDDD	TB-DDDDDD	TB-DDDDDD	TB-DDDDDD
Sampling Date				(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)
				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)								
Toluene	500	1,000	67	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082								
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT
SPLP Metals								
Arsenic	NA	NA	0.5	NT	NT	NT	NT	NT
Barium	NA	NA	10	NT	NT	NT	NT	NT
Copper	NA	NA	13	NT	NT	NT	NT	NT
Lead	NA	NA	0.15	NT	NT	NT	NT	NT
Thallium	NA	NA	0.05	NT	NT	NT	NT	NT
Vanadium	NA	NA	0.50	NT	NT	NT	NT	NT
Zinc	NA	NA	50	NT	NT	NT	NT	NT
Total Metals								
Antimony	27	8,200	NA	NT	NT	NT	NT	NT
Arsenic	10	10	NA	1.4	NT	ND<1.0	3.0	4.1
Barium	4,700	140,000	NA	NT	NT	NT	NT	NT
Chromium	100*	100*	NA	NT	NT	NT	NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT
Lead	500	1,000	NA	NT	NT	NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT

Tall Duth 1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soll (mg/kg)		Soil Sam	ole Concentrati	ons (ppm)	
	Residential	Industrial/ Commercial	GB Area	TB-CCCCC		TB-DDDDDD	TB-DDDDDD	TB-DDDDDD
Depth Below Grade (ft.)				(10-12)	(0.0-0.3)	(0.3-2.3)		
Sampling Date				7/22/02	7/22/02	7/22/02	(2.3-4.3) 7/22/02	(5-7) 7/22/02
Total Metals								112302
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NE
Selenium	340	10,000	NA	NT	NT	NT	NT	NT NT
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	ND<50	NT	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L). = 100 mg/kg for hexavalent chromium.

Tam=outh.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)				
	Residential	Industrial/ Commercial	GB Area	TB-DDDDDD	TB-EEEEE	TB-EEEEE	TB-EEEEE	TB-EEEEEE
Depth Below Grade (ft.)				(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	ND<0.20	NT
Acenaphthylene	1,000	2,500	84	NT	NT	ND<0.20	ND<0.20	NT
Anthracene	1,000	2,500	400	NT	NT	ND<0.20	ND<0.20	NT
Benzo[a]anthracene	1	7.8	1	NT	NT	0.46	0.50	NT
Benzo[a]pyrene	1	1	1	NT	NT	0.51	0.64	NT
Benzo[b]fluoranthene	1	7.8	1	NT	NT	0.78	0.82	NT
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	0.23	0.33	NT
Benzo[k]fluoranthene	8.4	78	1	NT	NT	0.41	0.46	NT
Chrysene	84	780	1	NT	NT	0.59	0.57	NT
Dibenz[a,h]anthracene	1	1	1	NT	NT	ND<0.20	ND<0.20	NT
Fluoranthene	1,000	2,500	56	NT	NT	0.87	0.81	NT
Fluorene	1,000	2,500	56	NT	NT	ND<0.20	ND<0.20	NT
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	0.30	0.38	NT
Naphthalene	1,000	2,500	56	NT	NT	ND<0.20	ND<0.20	NT
Phenanthrene	1,000	2,500	40	NT	NT	0.29	0.38	NT
Pyrene	1,000	2,500	40	NT	NT	0.80	0.77	NT
USEPA Method 8260 Volatile Organic Compounds (VOCs)								
Benzene	21	200	0.2	NT	NT	NT	ND<0.001	NT
sec-Butylbenzene	500	1,000	14	NT	NT	NT	ND<0.005	NT
Ethylbenzene	500	1,000	10.1	NT	NT	NT	ND<0.005	NT
Isopropylbenzene	500	1,000	132	NT	NT	NT	ND<0.005	NT
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	ND<0.005	NT
Naphthalene	1,000	2,500	56	NT	NT	NT	ND<0.005	NT
n-Propylbenzene	500	1,000	14	NT	NT	NT	ND<0.005	NT
Tetrachioroethene	12	110	1	NT	NT	NT	ND<0.005	NT

Tal—outh.1 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

			Pollutant	Ţ					
			Mobility						
		sure Criteria	Criteria for						
Analyte	for Soi	(mg/kg)	Soil (mg/kg)	Soil Sample Concentrations (ppm)					
		Industrial/							
	Residential	Commercial	GB Area	TB-DDDDDD	TB-EEEEEE	TB-EEEEE	TB-EEEEEE	TB-EEEEEE	
Depth Below Grade (ft.)	·			(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8260 Volatile Organic			·						
Compounds (VOCs)									
Toluene	500	1,000	67	NT	NT	NT	ND<0.005	NT	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	ND<0.005	NT	
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	NT	
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	ND<0.005	NT	
Xylenes (total)	500	1,000	19.5	NT	NT	NT	ND<0.005	NT	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1260	1	10	NA	ND<0.50	ND<0.50	42	ND<0.50	2.6	
SPLP PCBs USEPA Method 8082									
PCB-1260	NA	NA	0.005	NT	NT	0.0018	NT	ND<0.0005	
SPLP Metals									
Arsenic	NA	NA	0.5	NT	NT	NT	0.014	NT	
Barium	NA NA	NA	10	NT	NT	NT	0.67	NT	
Copper	NA	NA	13	NT	NT	NT	ND<0.04	NT	
Lead	NA	NA	0.15	NT	NT	NT	ND<0.013	NT	
Thallium	NA	NA	0.05	NT	NT	NT	ND<0.005	NT	
Vanadium	NA	NA	0.50	NT	NT	NT	ND<0.05	NT	
Zinc .	NA	NA	50	NT	NT	NT	0.39	NT	
Total Metals									
Antimony	27	8,200	NA	NT	NT	NT	ND<2.0	NT	
Arsenic	10	10	NA	12	NT	2.4	9.7	11	
Barium	4,700	140,000	NA	NT	NT	NT	36	NT	
Chromium	100°	100°	NA	NT	NT	NT	10	NT	
Copper	2,500	76,000	NA	NT	NT	NT	72	NT	
Lead	500	1,000	NA	NT	NT	NT	58	NT	
Mercury	20	610	NA	NT	NT	NT	3.0	NT	

Table uth.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		esure Criteria I (mg/kg)	Pollutant Mobility Criteria for Soll (mg/kg)		Soil Sam	ple Concentrati	ons (ppm)	
	Residential	Industrial/ Commercial	GB Area	TB-DDDDDD	TB-EEEEEE	TB-EEEEE	TB-EEEEEE	TO FEFFE
Depth Below Grade (ft.)			<u> </u>	(10-12)	(0.0-0.3)	(0.3-2.3)		TB-EEEEEE
Sampling Date				7/22/02	7/22/02	7/22/02	(2.3-4.3) 7/22/02	(5-7) 7/22/02
Total Metals							772202	1122102
Nickel	1,400	7,500	NA	NT	NT	NT	9.3	NT
Selenium	340	10,000	NA	NT	NT	NT	ND<1.0	NT
Vanadium	470	14,000	NA	NT	NT	NT	23	NT
Zinc	20,000	610,000	NA	NT	NT	NT	78	NT
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	ND<5.0	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	ND<50	ND<50	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.
Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromlum.

Tab=uth.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-EEEEE	TB-FFFFF	TB-FFFFF	TB-FFFFFF	TB-FFFFF	
Depth Below Grade (ft.)			Carrioa	(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene	1,000	2,500	84	NT	NT	ND<0.20	ND<0.20	NT	
Acenaphthylene	1,000	2,500	84	NT	NT	ND<0.20	ND<0.20	NT	
Anthracene	1,000	2,500	400	NT	NT	ND<0.20	ND<0.20	NT	
Benzo[a]anthracene	_ 1	7.8	1	NT	NT	ND<0.20	ND<0.20	NT	
Benzo[a]pyrene	1	1	1	NT	NT	ND<0.20	ND<0.20	NT	
Benzo[b]fluoranthene	1	7.8	1	NT	NT	ND<0.20	ND<0.20	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	NT	NT	ND<0.20	ND<0.20	NT	
Benzo[k]fluoranthene	8.4	78	1	NT	NT	ND<0.20	ND<0.20	NT	
Chrysene	84	780	1	NT	NT	ND<0.20	ND<0.20	NT	
Dibenz[a,h]anthracene	1	1	11	NT	NT	ND<0.20	ND<0.20	NT	
Fluoranthene	1,000	2,500	56	NT	NT	ND<0.20	ND<0.20	NT	
Fluorene	1,000	2,500	56	NT	NT	ND<0.20	ND<0.20	NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	NT	NT	ND<0.20	ND<0.20	NT	
Naphthalene	1,000	2,500	56	NT	NT	ND<0.20	ND<0.20	NT	
Phenanthrene	1,000	2,500	40	NT	NT	ND<0.20	ND<0.20	NT	
Pyrene	1,000	2,500	40	NT	NT	ND<0.20	ND<0.20	NT	
USEPA Method 8260 Volatile Organic Compounds (VOCs)	-								
Benzene	21	200	0.2	NT	NT	NT	NT	NT	
sec-Butylbenzene	500	1,000	14	NT	NT	NT	NT	NT	
Ethylbenzene	500	1,000	10.1	NT	NT	NT	NT	NT	
Isopropylbenzene	500	1,000	132	NT	NT	NT	NT	NT	
4-Isopropyltoluene	500	1,000	41.8	NT	NT	NT	NT	NT	
Naphthalene	1,000	2,500	56	NT	NT	NT	NT	NT	
n-Propylbenzene	500	1,000	14	NT	NT	NT	NT	NT	
Tetrachloroethene	12	110	1	NT	NT	NT	NT	NT	

Table South.1 Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)					
	Residential	Industrial/ Commercial	GB Area	TB-EEEEEE	TB-FFFFF	TB-FFFFF	TB-FFFFFF	TB-FFFFF	
Depth Below Grade (ft.)				(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(5-7)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8260 Volatile Organic Compounds (VOCs)									
Toluene	500	1,000	67	NT	NT	NT	NT	NT	
1,1,1-Trichloroethane	500	1,000	40	NT	NT	NT	NT	NT	
1,2,4-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	
1,3,5-Trimethylbenzene	500	1,000	70	NT	NT	NT	NT	NT	
Xylenes (total)	500	1,000	19.5	NT	NT	NT	NT	NT	
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)									
PCB-1260	1	10	NA	ND<0.50	7.5	ND<0.50	ND<0.50	ND<0.50	
SPLP PCBs USEPA Method 8082	_								
PCB-1260	NA	NA	0.005	NT	ND<0.0005	NT	NT	NT	
SPLP Metals									
Arsenic	NA	NA	0.5	NT	NT	ND<0.004	ND<0.004	NT	
Barium	NA	NA	10	NT	NT	0.34	0.42	NT	
Copper	NA	NA	13	NT	NT	ND<0.04	ND<0.04	NT	
Lead	NA	NA	0.15	NT	NT	ND<0.013	ND<0.013	NT	
Thallium	NA	N A	0.05	NT	NT	ND<0.005	ND<0.005	NT	
Vanadium	NA	NA	0.50	NT	NT	ND<0.05	ND<0.05	NT	
Zinc	NA	NA	50	NT	NT	0.27	0.23	NT	
Total Metals									
Antimony	27	8,200	NA	NT	NT	ND<2,0	ND<2.0	NT	
Arsenic	10	10	NA	5.8	NT	ND<1.0	ND<1.0	ND<1.0	
Barium .	4,700	140,000	NA	NT	NT	19	9.6	NT	
Chromium	100*	100°	NA	NT	NT	4.4	3.0	NT	
Copper	2,500	76,000	NA	NT	NT	6.9	37	NT	
Lead	500	1,000	NA	NT	NT	21	4.6	NT	
Mercury	20	610	NA	NT	NT	ND<0.20	ND<0.20	NT	

Table South.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	1	esure Criteria I (mg/kg)						
	Residential	Industrial/ Commercial	GB Area	TB-EEEEEE	TB-FFFFF			
Depth Below Grade (ft.)	- TOO IO CITALIA	Gommoroidi	GD Alea			TB-FFFFFF	TB-FFFFF	TB-FFFFF
Sampling Date				(10-12) 7/22/02	(0.0-0.3) 7/22/02	(0.3-2.3) 7/22/02	(2.3-4.3) 7/22/02	(5-7) 7/22/02
Total Metals								
Nickel	1,400	7,500	NA	NT	NT	2.9	6.4	NT
Selenium	340	10,000	NA	NT	NT	ND<1.0	ND<1.0	NT
Vanadium	470	14,000	NA	NT	NT	14	61	NT
Zinc	20,000	610,000	NA	NT	NT	14	24	NT
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	NT	NT
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	ND<50	ND<50	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.
 = Concentration exceeds associated criterion.

Ta uth.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Exposure Criteria for Soil (mg/kg)		Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)					
		Industrial/	(Jon Jain	l concentrati	ons (ppm)		
	Residential	Commercial	GB Area	TB-FFFFF	TB-GGGGGG	TB-GGGGG	TB-GGGGG	TB-GGGGG	
Depth Below Grade (ft.)				(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(10-12)	
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02	
USEPA Method 8270C Polynuclear Aromatic Hydrocarbons (PAHs)								172202	
Acenaphthene	1,000	2,500	84	0.26	NT	ND<0.20	ND 40.00		
Acenaphthylene	1,000	2,500	84	ND<0.20	NT	ND<0.20	ND<0.20 ND<0.20	NT	
Anthracene	1,000	2,500	400	0.34	NT	ND<0.20		NT NT	
Benzo[a]anthracene	1	7,8	1	0.38	NT	ND<0.20	ND<0.20 ND<0.20	NT	
Benzo[a]pyrene	1	1	1	0.43	NT	ND<0.20	ND<0.20	NT	
Benzo[b]fluoranthene	1	7,8	1	0.46	NT	ND<0.20	ND<0.20	NT	
Benzo[g,h,i]perylene	1,000	2,500	42	ND<0.20	NT	ND<0.20	ND<0.20 ND<0.20	NT	
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	NT	ND<0.20	ND<0.20	NT NT	
Chrysene	84	780	1	0.40	NT	ND<0.20	ND<0.20	NT	
Dibenz[a,h]anthracene	1	1	1	ND<0.20	NT	ND<0.20	ND<0.20	NT	
Fluoranthene	1,000	2,500	56	0.86	NT	ND<0.20	ND<0.20	NT	
Fluorene	1,000	2,500	56	ND<0.20	NT	ND<0.20	ND<0.20	NT NT	
Indeno[1,2,3-cd]pyrene	1	7.8	1	0,21	NT	ND<0.20	ND<0.20	NT	
Naphthalene	1,000	2,500	56	0.24	NT	ND<0.20	ND<0.20	NT	
Phenanthrene	1,000	2,500	40	0.86	NT	ND<0.20	ND<0.20	NT	
Pyrene	1,000	2,500	40	0.88	NT	ND<0.20	ND<0.20	NT	
USEPA Method 8260 Volatile Organic Compounds (VOCs)							3,25		
Benzene	21	200	0.2	ND<0.001	NT	NT	NT	NT	
sec-Butylbenzene	500	1,000	14	ND<0.005	NT	NT	NT	NT	
Ethylbenzene	500	1,000	10.1	ND<0.005	NT	NT	NT	NT	
Isopropyibenzene	500	1,000	132	ND<0.005	NT	NT	NT	NT	
4-Isopropyltoluene	500	1,000	41.8	ND<0.005	NT	NT	NT	NT	
Naphthalene	1,000	2,500	56	ND<0.005	NT	NT	NT	NT	
n-Propylbenzene	500	1,000	14	ND<0.005	NT	NT	NT	NT	
Tetrachloroethene	12	110	1	ND<0.005	NT	NT	NT	NT	

Tamouth.1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte	Direct Expo	esure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)		9-21 O			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Industrial/	Gon (mg/kg)		Soli Sam	pie Concentrati	ons (ppm)	
	Residential	Commercial	GB Area	TB-FFFFF	TB-GGGGG	TB-GGGGG	TB-GGGGG	TB-GGGGG
Depth Below Grade (ft.)				(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(10-12)
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02
USEPA Method 8260 Volatile Organic Compounds (VOCs)								TIZEIUZ
Toluene	500	1,000	67	ND<0.005	NT	NT	NT	NT
1,1,1-Trichloroethane	500	1,000	40	ND<0.005	NT	NT	NT	NT
1,2,4-Trimethylbenzene	500	1,000	70	ND<0.005	NT	NT	NT	NT
1,3,5-Trimethylbenzene	500	1,000	70	ND<0.005	NT	NT	NT	NT
Xylenes (total)	500	1,000	19.5	ND<0.005	NT	NT	NT	NT
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)								
PCB-1260	1	10	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
SPLP PCBs USEPA Method 8082								
PCB-1260	NA	NA	0.005	NT	NT	NT	NT	NT
SPLP Metals								
Arsenic	NA	NA	0.5	NT	NT	NT	NIT.	
Barium	NA	NA	10	NT	NT	NT NT	NT NT	NT
Copper	NA	NA	13	NT	NT	NT	NT	NT
Lead	NA	NA	0.15	NT	NT	NT	NT NT	NT
Thallium	NA	NA	0.05	NT	NT.	NT	NT	NT
Vanadium	NA	NA	0.50	NT	NT	NT	NT	NT NT
Zinc	NA	NA	50	NT	NT	NT	NT	NT
Total Metals								
Antimony	27	8,200	NA	NT	NT	NT		
Arsenic	10	10	NA NA	3.8	NT	ND<1.0	NT NT	NT
Barium	4,700	140,000	NA NA	NT	NT	NT NT	ND<1.0	ND<1.0
Chromium	100*	100*	NA NA	NT NT	NT	NT	NT NT	NT
Copper	2,500	76,000	NA	NT	NT	NT	NT	NT NT
Lead	500	1,000	NA	NT	NT	NT NT	NT	NT
Mercury	20	610	NA	NT	NT	NT	NT	NT

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-00T-030d Table South.1 Page 62 of 63

Table South,1

Comparison of Test Boring Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, Connecticut

Analyte		sure Criteria (mg/kg)	Pollutant Mobility Criteria for Soil (mg/kg)	Soil Sample Concentrations (ppm)							
	Residential	Industrial/ Commercial	GB Area	TB-FFFFF	TB-GGGGG			TB-GGGGG			
Depth Below Grade (ft.)				(10-12)	(0.0-0.3)	(0.3-2.3)	(2.3-4.3)	(10-12)			
Sampling Date				7/22/02	7/22/02	7/22/02	7/22/02	7/22/02			
Total Metals											
Nickel	1,400	7,500	NA	NT	NT	NT	NT	NT			
Selenium	340	10,000	NA	NT	NT	NT	NT	NT			
Vanadium	470	14,000	NA	NT	NT	NT	NT	NT			
Zinc	20,000	610,000	NA	NT	NT	NT	NT	NT			
Cyanide (Total)	1,400	41,000	NA	NT	NT	NT	NT	NT			
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	NT	NT	ND<50	ND<50	NT			

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium.

Tall outh 2

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QF/Fnalish	Station	New Haven	Connecticut

	QE/Engli	ish Station, N	lew Haven, Con	recticut		
			Pollutant			
	I		Mobility			
		sure Criteria	Criteria for			
Analyte	for Soil	(mg/kg)	Soil (mg/kg)	Soil Sam	ple Concentration	ns (ppm)
		Industrial/				
Death Balancondo (6)	Residential	Commercial	GB Area	SS-QQ	SS-RR	SS-SS
Depth Below Grade (ft.)				(0.5-1.0)	(0.3-0.5)	(0.3-0.5)
Sampling Date				7/18/02	7/19/02	7/19/02
SPLP Metals						
Arsenic	NA	NA	0.5	ND<0.004	ND<0.004	NT
Total Metals						
Antimony	27	8,200	NA NA	NT	7.6	NT
Arsenic	10	10	NA NA	ND<1.0	13	2.6
Barium	4,700	140,000	NA NA	NT	60	
Chromium	100*	100*	NA NA	NT	37	NT NT
Copper	2,500	76,000	NA NA	NT	120	NT NT
Lead	500	1,000	NA NA	NT	160	NT NT
Mercury	20	610	NA NA	NT	0.25	NT NT
Nickel	1,400	7,500	NA NA	NT	51	NT NT
Selenium	340	10,000	NA NA	NT	2.8	NT
Vanadium	470	14,000	NA NA	NT	150	NT NT
Zinc	20,000	610,000	NA	NT	210	NT NT
USEPA Method 8270C Polynuclear						10.7
Aromatic Hydrocarbons (PAHs)	ļ					
Acenaphthene	1,000	2,500	84	ND<0.20	0.25	ND<0.20
Acenaphthylene	1,000	2,500	84	0.50	0.23	ND<0.20
Anthracene	1,000	2,500	400	ND<0.20	0.47	ND<0.20
Benzo[a]anthracene	1	7.8	1	0.26	2.3	0.26
Benzo[a]pyrene	1	1	1	0.29	2.2	0.36
Benzo[b]fluoranthene	1	7.8	1	0.37	3.5	0.55
Benzo[g,h,i]perylene	1,000	2,500	42	0.37	1.3	ND<0.20
Benzo[k]fluoranthene	8.4	78	1	ND<0.20	1.3	0.24
Chrysene	84	780	1	0.39	3.0	0.24
Dibenz[a,h]anthracene	1	1	1	ND<0.20	0.41	ND<0.20
Fluoranthene	1,000	2,500	56	0.54	5.2	0.61
Fluorene	1,000	2,500	56	ND<0.20	0.20	ND<0.20

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030d
Table South.2 Page 1 of 2

Tall Just 2

Comparison of Surface Soil Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria

QE/English Station, New Haven, Connecticut

	QE/Engi	ish Station, N	ew Haven, Con	necticut		
	<u> </u>		Pollutant Mobility			.
	Direct Expo	sure Criteria	Criteria for			
Analyte		(mg/kg)		C-11 C		
	101 3011	Industrial/	Soil (mg/kg)	Soil San	ple Concentratio	ns (ppm)
	Residential	Commercial	GB Area	SS-QQ	SS-RR	SS-SS
Depth Below Grade (ft.)				(0.5-1.0)	(0.3-0.5)	(0.3-0.5)
Sampling Date				7/18/02	7/19/02	7/19/02
USEPA Method 8270C Polynuclear						
Aromatic Hydrocarbons (PAHs)	i i					
Indeno[1,2,3-cd]pyrene	1	7.8	1	0.36	1.5	ND<0.20
Naphthalene	1,000	2,500	56	ND<0.20	0.20	ND<0.20
Phenanthrene	1,000	2,500	40	0.26	3.3	0.23
Pyrene	1,000	2,500	40	0.53	4.4	0.53
USEPA Method 8082 Polychlorinated Biphenyls (PCBs)						
PCB-1260	1	10	NA	ND<0.50	1.0	3.2
SPLP PCBs USEPA Method 8082						
PCB-1260	NA	NA	0.005	ND<0.0005	ND<0.0005	ND<0.0005
Connecticut Extractable Total						
Petroleum Hydrocarbons (CTETPH)	500	2,500	2,500	56	NT	NT

Notes:

mg/kg = milligrams per kilogram.

ppm = Parts per million (comparable to mg/kg).

NA = Not applicable.
ND = Not detected.
NT = Not tested.

= Less than minimum detection limit.

SPLP = Test performed on leachate from Synthetic Precipitation Leachate Procedure.

Units are milligrams per liter (mg/L).

= 100 mg/kg for hexavalent chromium. = Concentration exceeds associated criterion.

	Surface Water Protection		n Criteria for				<u> </u>	<u></u>	 .			
Analyte	Criteria (µg/L)	Ground V	Vater (ppb)			Ground \	Nater Samp	le Concentr	ations (pp	b)		
		Residential	Industrial/ Commercial	MW-1	MW-2	MW-2 MW-3 MW-2					ח	
Sample Collection Date				6-18-98	6-18-98	6-18-98	5-29-01	9-11-01	6-18-98	6-1-01	9-14-01	
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	NT	NT	NT	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50	
USEPA Method 8270 Polynuclear Aromatics (PAHs)												
Acenaphthene	NC	NC	NC	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	
Anthracene	1,100,000	NC	NC	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	
Benzo[a]anthracene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.06	ND<0.06	ND<0.30	ND<0.06	ND<0.06	
Benzo[a]pyrene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.20	ND<0.20	
Benzo[b]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.08	ND<0.08	ND<0.30	ND<0.08	ND<0.08	
Benzo[g,h,i]perylene	NC	NC	NC	ND<20	ND<20	ND<20	ND<1.0	ND<1.0	ND<20	ND<1.0	ND<1.0	
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	
Chrysene	NC NC	NC	NC	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	
Dibenz[a,h]anthracene	NC	NC	NC	ND<20	ND<20	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	
Fluoranthene	3,700	NC	NC	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	
Fluorene	140,000	NC	NC	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	
Indeno[1,2,3-cd]pyrene	, NC	NC	NC	ND<20	ND<20	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	
Phenanthrene	0.3	NC	NC	ND<0.07	ND<0.07	ND<0.07	ND<0.077	ND<0.077	ND<0.07	ND<0.077	ND<0.077	
Pyrene	110,000	NC	NC	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)			-									
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5.0	3.3	2.2	
4-Isopropyltoluene	NC	NC	NC	NT	NT	NT	ND<1.0	ND<1.0	NT	ND<1.0	ND<1.0	
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1,0	2.1	ND<1.0	

|||||₇

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	n Criteria for Vater (ppb)	Ground Water Sample Concentrations (ppb)									
			Industrial/										
		Residential	Commercial	MW-1 MW-2 MW-3 MW-4D									
Sample Collection Date	 	<u></u>	6-		6-18-98	6-18-98	5-29-01	9-11-01	6-18-98	6-1-01	9-14-01		
Total Metals								 -					
Arsenic	4	NC	NC	ND<50	ND<50	ND<50	ND<4	ND<4	ND<50	ND<4	ND<4		
Barium	NC	NC	NC	ND<500	ND<500	ND<500	ND<50	82	ND<500	ND<50	ND<50		
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5		
Copper	48	NC	NC	NT	NT	NT	ND<40	ND<40	NT	ND<40	ND<40		
Lead	13	NC	NC	ND<5	ND<5	ND<5	ND<13	ND<13	ND<5	ND<13	ND<13		
Nickel	880	NC	NC	NT	NT	NT	ND<50	ND<50	NT	ND<50	ND<50		
Selenium	50	NC	NC	ND<10	ND<10	ND<10	24	ND<10	20J	19	ND<10		
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT		
Zinc	123	NC	NC	NT	NT	NT	ND<10	ND<10	NT	ND<10	ND<10		
Connecticut Extractable Total													
Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	NT	NT	ND<100	ND<100	NT	ND<100	ND<100		

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.
ppb = parts per billion.

μg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

[[· · · · ·			
	Surface Water			,							
	Protection	Volatilizatio	n Criteria for								
Analyte	Criteria (µg/L)	Ground V	/ater (ppb)			Ground Wa	ater Sample Concentrations (ppb)				
			Industrial/						<u> </u>		
		Residential	Commercial		MW-4S			MW-5		MW-5A ⁽¹⁾	MW-6
Sample Collection Date				6-18-98	5-31-01	9-14-01	6-18-98	5-30-01	9-14-01	9-14-01	6-18-98
USEPA Method 8082											
PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	NT	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50	ND<0.50	ND<1.0
USEPA Method 8270 Polynuclear		_									
Aromatics (PAHs)									ł	ŀ	
Acenaphthene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0
Benzo[a]anthracene	0.3	NC	NC	ND<0.30	ND<0.06	ND<0.06	ND<0.30	ND<0.06	ND<0.06	ND<0.06	ND<0.30
Benzo[a]pyrene	0.3	NC	NC	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.20	ND<0.20	ND<0.20	ND<0.30
Benzo(b)fluoranthene	0.3	NC	NC	ND<0.30	ND<0.08	ND<0.08	ND<0.30	ND<0.08	ND<0.08	ND<0.08	ND<0.30
Benzo[g,h,i]perylene	NC	NC	NC	ND<20	ND<1.0	ND<1.0	ND<20	ND<1.0	ND<1.0	ND<1.0	ND<20
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0
Dibenz[a,h]anthracene	NC	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	ND<0.50	ND<20
Fluoranthene	3,700	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0
Fluorene	140,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0
Indeno[1,2,3-cd]pyrene	· NC	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	ND<0.50	ND<20
Phenanthrene	0.3	NC	NC	ND<0.077	ND<0.077	ND<0.077	ND<0.07	ND<0.077	ND<0.077	ND<0.077	ND<0.07
Pyrene	110,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0
USEPA Method 8021B/8260 Volatile											
Organic Compounds (VOCs)			•								
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	4.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	NT	ND<1.0	ND<1.0	NT	NT	ND<1.0	NT	NT
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	n Criteria for Vater (ppb)										
		Residential	Industrial/ Commercial		MW-4S			MW-5		MW-5A ⁽¹⁾	MW-6		
Sample Collection Date				6-18-98	5-31-01	9-14-01	6-18-98	5-30-01	9-14-01	6-18-98			
Total Metals		<u> </u>											
Arsenic	4	NC	NC	ND<50	ND<4	ND<4	ND<50	86	29	38	ND<50		
Barium	NC	NC	NC	ND<500	ND<50	81	ND<500	ND<50	ND<50	ND<50	ND<500		
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5		
Copper	48	NC	NC	NT	76	ND<40	NT	ND<40	ND<40	ND<40	NT		
Lead	13	NC	NC	ND<5	ND<13	ND<13	22	ND<13	ND<13	ND<13	21		
Nickel	880	NC	NC	NT	ND<50	ND<50	NT	ND<50	ND<50	ND<50	NT		
Selenium	50	NC	NC	ND<10	ND<10	ND<10	ND<10	14	ND<10	ND<10	ND<10		
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT		
Zinc	123	NC	NC	NT	120	40	NT	ND<10	ND<10	ND<10	NT		
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	ND<100	ND<100	NT	ND<100	ND<100	ND<100	NT		

 _	• -	
	te	

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.
ppb = parts per billion.

µg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

| | | | e 7

Analyte	Surface Water Protection Criteria (µg/L)		n Criterla for Vater (ppb)			Ground	d Water Sa	mple Cond	centrations	s (ppb)		
			Industrial/									
Sample Collection Date	 	Residential	Commercial	6 40 00	MW-7	0.44.04	0.40.00	MW-9A	2 12 21		MW-10	
				6-18-98	5-29-01	9-11-01	6-18-98	5-30-01	9-13-01	6-19-98	5-30-01	9-12-01
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	NT	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)												
Acenaphthene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	7.5	6.6	ND<5.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	2.2	8.9	8.1	ND<0.30	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	1.3	2.5	ND<0.30	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	ND<0.30	ND<0.06	ND<0.06	ND<0.30	0.33	5.6	ND<0.30	ND<0.06	0.30
Benzo[a]pyrene	0.3	NC	NC	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.20	4.4	ND<0.30	ND<0.20	0.20
Benzo[b]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.08	ND<0.08	ND<0.30	ND<0.08	6.1	ND<0.30	ND<0.08	0.25
Benzo[g,h,i]perylene	NC	NC	NC	ND<20	ND<1.0	ND<1.0	ND<20	ND<1.0	1.0	ND<20	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	2.8	ND<0.30	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	4.7	ND<5.0	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	4.5	16	ND<5.0	1.0	1.4
Fluorene	140,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	12	14	ND<5.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	NC	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	1.3	ND<20	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	ND<0.07	ND<0.077	ND<0.077	0.61	1.3	2.8	ND<0.07	ND<0.077	0.19
Pyrene	110,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	3.5	13	ND<5.0	1.2	1.5
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)												
Bromodichioromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5.0	2.9	6.3
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	NT	ND<1.0	ND<1.0	NT	ND<1.0	ND<1.0	NT	NT	ND<1.0
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.0	6.8	1.2
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	n Criteria for Vater (ppb)			Ground	i Water Sa	mple Cond	entrations	s (ppb)			
		Residential	Industrial/ Commercial		MW-7		MW-9A				MW-10		
Sample Collection Date				6-18-98	5-29-01	9-11-01	6-18-98	5-30-01	9-13-01	6-19-98	5-30-01	9-12-01	
Total Metals	<u> </u>												
Arsenic	4	NC	NC	ND<50	ND<4	ND<4	ND<50	ND<4	ND<4	ND<50	ND<4	ND<4	
Barium	NC	NC	NC	ND<500	ND<50	ND<50	ND<500	ND<50	ND<50	ND<500	ND<50	65	
Cadmium	6	NC	NC	5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	
Copper	48	NC	NC	NT	41	51	NT	ND<40	ND<40	NT	ND<40	ND<40	
Lead	13	NC	NC	9	ND<13	ND<13	ND<5	ND<13	ND<13	ND<5	ND<13	ND<13	
Nickel	880	NC	NC	NT	ND<50	ND<50	NT	ND<50	ND<50	NT	ND<50	ND<50	
Selenium	50	NC	NC	ND<10	15	ND<10	ND<10	15	ND<10	R	14	12	
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT	NT	
Zinc	123	NC	NC	NT	70	260	NT	ND<10	ND<10	NT	ND<10	ND<10	
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	ND<100	ND<100	NT	490	120	NT	ND<100	ND<100	

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.
ppb = parts per billion.

μg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

| | | | 7

	<u></u>											
	Surface Water											
	Protection	1	n Criteria for			_						
Analyte	Criteria (µg/L)	Ground V	/ater (ppb)			Grou	nd Water S	ample Con	centrations	(ppb)		
		Residential	Industrial/ Commercial		MW-12			MW-13			MW-14D	
Sample Collection Date				6-19-98	5-31-01	9-12-01	6-19-98	5-31-01	9-13-01	6-18-98	5-31-01	9-13-01
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	ND<1.0	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)					-			· · · · · · · · · · · · · · · · · · ·	!			
Acenaphthene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	ND<0.30	ND<0.06	ND<0.06	ND<0.30	ND<0.06	ND<0.06	ND<0.30	ND<0.06	ND<0.06
Benzo[a]pyrene	0.3	NC	NC	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.20	ND<0.20
Benzo[b]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.08	ND<0.08	ND<0.30	ND<0.08	ND<0.08	ND<0.30	ND<0.08	ND<0.08
Benzo[g,h,i]perylene	NC	NC	NC	ND<20	ND<1.0	ND<1.0	ND<20	ND<1.0	ND<1.0	ND<20	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Fluorene	140,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	NC ·	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	ND<0.07	ND<0.077	ND<0.077	ND<0.07	ND<0.077	ND<0.077	ND<0.07	ND<0.077	ND<0.077
Pyrene	110,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)												- ·
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	12	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	NT	NT	ND<1.0	NT	ND<1.0	ND<1.0	NT	ND<1.0	ND<1.0
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	n Criteria for Vater (ppb)			Grou	ınd Water S	ample Con	centrations	entrations (ppb)					
		Residential	Industrial/ Commercial		MW-12	-		MW-13			MW-14D				
Sample Collection Date				6-19-98	5-31-01	9-12-01	6-19-98	5-31-01	9-13-01	6-18-98	5-31-01	9-13-01			
Total Metals								· · · · · · · · · · · · · · · · · · ·							
Arsenic	4	NC	NC	ND<50	ND<4	ND<4	ND<50	ND<4	ND<4	ND<50	ND<4	ND<4			
Barium	NC	NC	NC	ND<500	ND<50	60	ND<500	ND<50	63	ND<500	160	190			
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5			
Copper	48	NC	NC	NT	ND<40	ND<40	NT	ND<40	ND<40	NT	ND<40	ND<40			
Lead	13	NC	NC	ND<5	ND<13	ND<13	7J	ND<13	ND<13	ND<5	ND<13	ND<13			
Nickel	880	NC	NC	NT	ND<50	ND<50	NT	ND<50	ND<50	NT	ND<50	ND<50			
Selenium	50	NC	NC	R	ND<10	ND<10	R	ND<10	ND<10	10J	29	13			
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT	NT			
Zinc	123	NC	NC	NT	21	20	NT	ND<10	ND<10	NT	ND<10	ND<10			
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	ND<100	180	NT	ND<100	ND<100	NT	130	ND<100			

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

ppb = parts per billion.

μg/L = micrograms per liter (comparable to ppb).

= Analyte was tested for, but data validation findings indicate that the testing

results are unusable

= based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

= results found outside of recommended control limits. Duplicate sample for quality control (QC) purposes.

| | | | | 7

	T .											
Analyte	Surface Water Protection Criteria (µg/L)		n Criteria for /ater (ppb)			Gro	ınd Water	Sample Cor	ncentrations	s (dqq)		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Industrial/]		
		Residential	Commercial		MW-14S			MW-15			MW-16	
Sample Collection Date		ļ		6-19-98	5-31-01	9-13-01	6-18-98	5-30-01	9-13-01	6-18-98	5-30-01	9-13-01
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	NT	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)												
Acenaphthene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	0.47	ND<0.06	0.09	ND<0.30	ND<0.06	ND<0.06	ND<0.30	ND<0.06	ND<0.06
Benzo[a]pyrene	0.3	NC	NC	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.20	ND<0.20
Benzo[b]fluoranthene	0.3	NC	NC	0.73	ND<0.08	0.13	ND<0.30	ND<0.08	ND<0.08	ND<0.30	ND<0.08	ND<0.08
Benzo[g,h,i]perylene	NC	NC	NC	ND<20	ND<1.0	ND<1.0	ND<20	ND<1.0	ND<1.0	ND<20	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	0.92	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Fluorene	140,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	NC.	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	0.36	ND<0.077	0.11	ND<0.07	ND<0.077	ND<0.077	ND<0.07	ND<0.077	ND<0.077
Pyrene	110,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)												
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	NT	ND<1.0	ND<1.0	NT	ND<1.0	ND<1.0	NT	ND<1.0	ND<1.0
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichlomethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Table 7
Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	on Criteria for Vater (ppb)			Gro	und Water	Sample Cor	ncentrations	s (ppb)		
		Residential	Industrial/ Commercial	i	MW-14S			MW-15			MW-16	
Sample Collection Date				6-19-98	5-31-01	9-13-01	6-18-98	5-30-01	9-13-01	6-18-98	5-30-01	9-13-01
Total Metals										-		
Arsenic	4	NC	NC	ND<50	ND<4	ND<4	ND<50	ND<4	ND<4	ND<50	ND<4	ND<4
Barium	NC	NC	NC	ND<500	120	220	ND<500	ND<50	ND<50	ND<500	ND<50	51
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
Copper	48	NC	NC	NT	ND<40	ND<40	NT	ND<40	ND<40	NT	ND<40	ND<40
Lead	13	NC	NC	6J	ND<13	ND<13	ND<5	ND<13	ND<13	5J	ND<13	ND<13
Nickel	880	NC	NC	NT	ND<50	ND<50	NT	ND<50	ND<50	NT	ND<50	ND<50
Selenium	50	NC	NC	R	ND<10	ND<10	R	12	ND<10	R	ND<10	ND<10
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	123	NC	NC	NT	NT	ND<10	NT	ND<10	ND<10	NT	ND<10	ND<10
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	ND<100	ND<100	NT	ND<100	ND<100	NT	ND<100	ND<100

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

ppb = parts per billion. μg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

results found outside of recommended control limits.
 Duplicate sample for quality control (QC) purposes.

| | | | 7

	T		·								
	Surface Water										
	Protection	Volatilizatio	n Criteria for								1
Analyte	Criteria (µg/L)	Ground V	/ater (ppb)			Ground Wa	ater Sampl	e Concenti	rations (ppb)	
			Industrial/								
		Residential	Commercial		MW-17D			MW-17S			<i>I</i> -18
Sample Collection Date				6-18-98	5-31-01	9-13-01	6-19-98	5-30-01	9-13-01	5-30-01	9-13-01
USEPA Method 8082											
PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	NT	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear											
Aromatics (PAHs)											
Acenaphthene	NC	NC	NC	ND<5.0	3.5	2.6	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	ND<0.30	ND<0.06	ND<0.06	ND<0.30	ND<0.06	ND<0.06	ND<0.06	ND<0.06
Benzo[a]pyrene	0.3	NC	NC	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.20	ND<0.20	ND<0.20	ND<0.20
Benzo[b]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.08	ND<0.08	ND<0.30	ND<0.08	ND<0.08	ND<0.08	ND<0.08
Benzo[g,h,i]perylene	NC	NC	NC	ND<20	ND<1.0	ND<1.0	ND<20	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Fluoranthene	3,700	NC_	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Fluorene	140,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	· NC	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<050	ND<0.50	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	0.54	ND<0.077	ND<0.077	ND<0.07	0.71	ND<0.077	ND<0.077	ND<0.077
Pyrene	110,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)			1		-						
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	NT	ND<1.0	ND<1.0	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Table 7

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)		on Criteria for Vater (ppb)	Ground Water Sample Concentrations (ppb)							
		Residential	Industrial/ Commercial		MW-17D			MW-17S		MW	'-18
Sample Collection Date				6-18-98	5-31-01	9-13-01	6-19-98	5-30-01	9-13-01	5-30-01	9-13-01
Total Metals					-						
Arsenic	4	NC	NC	ND<50	ND<4	ND<4	ND<50	ND<4	ND<4	ND<4	ND<4
Barium	NC	NC	NC	ND<500	110	120	ND<500	ND<50	80	ND<50	ND<50
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
Copper	48	NC	NC	NT	ND<40	ND<40	NT	ND<40	ND<40	ND<40	ND<40
Lead	13	NC	NC	ND<5	ND<13	ND<13	ND<5	ND<13	ND<13	ND<13	ND<13
Nickel	880	NC	NC	NT	ND<50	ND<50	NT	ND<50	ND<50	ND<50	ND<50
Selenium	50	NC	NC	ND<10	26	ND<10	R	12	ND<10	11	ND<10
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	123	NC	NC	NT	ND<10	ND<10	NT	ND<10	ND<10	ND<10	ND<10
Connecticut Extractable Total											
Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	170	ND<100	NT	ND<100	ND<100	ND<100	ND<100

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested. ppb = parts per billion.

μg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)		n Criteria for Vater (ppb)		Groui	nd Water Sa	mple Cond	centrations	(ppb)	
•		Residential	Industrial/ Commercial		MW-19		MW-20	Į.	MW-21	
Sample Collection Date		residential	Outmicroial	6-18-98	5-30-01	9-13-01	6-18-98	6-18-98	5-30-01	9-13-01
USEPA Method 8082										
PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	NT	ND<0.50	ND<0.50	NT	ND<1.0	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)										
Acenaphthene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<1.5
Anthracene	1,100,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0
Benzo[a]anthracene	0.3	NC	NC	ND<0.30	ND<0.06	ND<0.06	ND<0.30	ND<0.30	ND<0.06	4.9
Benzo[a]pyrene	0.3	NC	NC	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.30	ND<0.20	4.8
Benzo[b]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.08	ND<0.08	ND<0.30	ND<0.30	ND<0.08	6.8
Benzo[g,h,i]perylene	NC	NC	NC	ND<20	ND<1.0	ND<1.0	ND<20	ND<20	ND<1.0	ND<5.0
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	3.7
Chrysene	NC NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<5.0	ND<1.0	5.2
Dibenz[a,h]anthracene	NC_	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<20	ND<0.50	ND<2.5
Fluoranthene	3,700	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<5.0	ND<1.0	13
Fluorene	140,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0
indeno[1,2,3-cd]pyrene ·	NC	NC	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<20	ND<0.50	ND<2.5
Phenanthrene	0.3	NC	NC	1.3	ND<0.077	ND<0.077	ND<0.07	ND<0.07	ND<0.077	1.8
Pyrene	110,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<5.0	ND<1.0	16
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)										
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	NT	ND<1.0	ND<1.0	NT	NT	ND<1.0	ND<1.0
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	on Criteria for Vater (ppb)		Grour	nd Water Sa	mple Cond	entrations	(ppb)	
		Residential	Industrial/ Commercial		MW-19		MW-20		MW-21	-
Sample Collection Date				6-18-98	5-30-01	9-13-01	6-18-98	6-18-98	5-30-01	9-13-01
Total Metals										
Arsenic	4	NC	NC	ND<50	ND<4	ND<4	ND<50	ND<50	ND<4	ND<4
Barium	NC	NC	NC	ND<500	ND<50	ND<50	ND<500	ND<500	ND<50	83
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
Copper	48	NC	NC	NT	ND<40	ND<40	NT	NT	ND<40	ND<40
Lead	13	NC	NC	ND<5	ND<13	ND<13	ND<5	ND<5	ND<13	ND<13
Nickel	880	NC	NC	NT	ND<50	ND<50	NT	NT	ND<50	ND<50
Selenium	50	NC	NC	R	ND<10	ND<10	R	R	ND<10	ND<10
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT
Zinc	123	NC	NC	NT	ND<10	ND<10	NT	NT	ND<10	ND<10
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	ND<100	860	NT	NT	520	2,200

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

ppb = parts per billion.

 $\mu g/L$ = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

												
Analyte	Surface Water Protection Criteria (µg/L)		n Criteria for /ater (ppb)			Grour	ıd Water S	ample Con	centration	s (ppb)		
			Industrial/							- (P.P)		
		Residential	Commercial		MW-22				M	W-50		
Sample Collection Date				6-18-98	5-31-01	9-11-01	3-14-00	6-20-00	9-25-00	12-18-00	6-1-01	9-12-01
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NT	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)												
Acenaphthene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	NT	NT	NT	NT	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	ND<0.30	ND<0.06	ND<0.06	NT	NT	NT	NT	ND<0.06	ND<0.06
Benzo[a]pyrene	0.3	NC	NC	ND<0.30	ND<0.20	ND<0.20	NT	NT	NT	NT	ND<0.20	ND<0.20
Benzo[b]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.08	ND<0.08	NT	NT	NT	NT	ND<0.08	ND<0.08
Benzo[g,h,i]perylene	NC	NC	NC	ND<20	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	NT	NT	NT	NT	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	ND<5.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	ND<20	ND<0.50	ND<0.50	NT	NT	NT	NT	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC	ND<5.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
Fluorene	140,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	NC.	NC	NC	ND<20	ND<0.50	ND<0.50	NT	NT	NT	NT	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	ND<0.07	ND<0.077	ND<0.077	NT	NT	NT	NT	ND<0.077	ND<0.077
Pyrene	110,000	NC	NC	ND<5.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)												
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	2.1
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	NT	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0
Trichloroethene	2.340	219	540	ND<1.0	ND<1.0	ND<1.0	NT	NT	NT	NT	ND<1.0	ND<1.0

ADVANCED ENVIRONMENTAL INTERFACE, INC.
AEI-00T-030
Table 7 Page 15 of 30

. Analyte	Surface Water Protection Volatilization Criteria for Criteria (µg/L) Ground Water (ppb)					Groun	d Water S	ample Con	centration	s (ppb)		
		Residential	Industrial/ Commercial		MW-22				M	W-50		
Sample Collection Date				6-18-98	5-31-01	9-11-01	3-14-00	6-20-00	9-25-00	12-18-00	6-1-01	9-12-01
Total Metals										i		
Arsenic	4	NC	NC	ND<50	ND<4	ND<4	NT	NT	NT	NT	ND<4	ND<4
Barium	NC	NC	NC	ND<500	ND<50	ND<50	NT	NT	NT	NT	ND<50	59
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	NT	NT	NT	NT	ND<5	ND<5
Copper	48	NC	NC	NT	ND<40	ND<40	NT	NT	NT	NT	ND<40	ND<40
Lead	13	NC	NC	ND<5	ND<13	ND<13	NT	NT	NT	NT	ND<13	ND<13
Nickel	880	NC	NC	NT	ND<50	ND<50	NT	NT_	NT	NT	ND<50	ND<50
Selenium	50	NC	NC	ND<10_	ND<10	ND<10	NT	NT	NT	NT	25	27
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	123	NC	NC	NT	110	48	NT	NT	NT	NT	12	ND<10
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	ND<100	ND<100	NT	NT	NT	NT	350	240

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

ppb = parts per billion.

µg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

Table 7

Analyte	Surface Water Protection Criteria (µg/L)		n Criteria for Vater (ppb)		Grou	nd Water	Sample Co	ncentration	s (ppb)	
	[Residential	Industrial/ Commercial			M	N-51			MW-51A ⁽¹⁾
Sample Collection Date				3-14-00	6-20-00	9-25-00	12-18-00	6-1-01	9-12-01	6-1-01
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)								-		
Acenaphthene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	NT	NT	NT	NT	ND<0.30	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	NT	NT	NT	NT	ND<0.06	0.11	ND<0.06
Benzo[a]pyrene	0.3	NC	NC	NT	NT	NT	NT	ND<0.20	ND<0.20	ND<0.20
Benzo[b]fluoranthene	0.3	NC	NC	NT	NT	NT	NT	ND<0.08	0.18	ND<0.08
Benzo[g,h,i]perylene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	NT	NT	NT	NT	ND<0.30	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	NT	NT	NT	NT	ND<0.50	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
Fluorene	140,000	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	NC	NC	NC	NT	NT	NT	NT	ND<0.50	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	NT	NT	NT	NT	ND<0.077	0.08	ND<0.077
Pyrene	110,000	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)										
Bromodichloromethane	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	NT	NT	NT	NT	2.8	1.8	2.8
1,1-Dichloroethene	96	1	6	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	88	1,500	3,820	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	2,340	219	540	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0

Table 7
Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio Ground V		Grou	ind Water	Sample Co	ncentration	s (ppb)		
		Residential	Industrial/ Commercial			M\	N-51			MW-51A ⁽¹
Sample Collection Date				3-14-00	6-20-00	9-25-00	12-18-00	6-1-01	9-12-01	6-1-01
Total Metals	 									
Arsenic	4	NC	NC	NT	NT	NT	NT	ND<4	ND<4	ND<4
Barium	NC	NC	NC	NT	NT	NT	NT	67	84	64
Cadmium	6	NC	NC	NT	NT	NT	NT	ND<5	ND<5	ND<5
Copper	48	NC	NC	NT	NT	NT	NT	ND<40	ND<40	ND<40
Lead	13	NC	NC	NT	NT	NT	NT	ND<13	ND<13	ND<13
Nickel	880	NC	NC	NT	NT	NT	NT	ND<50	ND<50	ND<50
Selenium	50	NC	NC	NT	NT	NT	NT	30	43	33
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT
Zinc	123	NC	NC	NT NT NT ND<10 ND<10						ND<10
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	NT	NT	NT	2,300	800	2,500

	_		_		
N	_	٨.	_	_	4

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

ppb = parts per billion.

 μ g/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

|||||||||| 7

Analyte	Surface Water Protection Criteria (µg/L)	Volatilization Criteria for Ground Water (ppb)		Ground Water Sample Concentrations (ppb)						
		Residential	Industrial/ Commercial	MW-52						
Sample Collection Date		Residential		3-14-00	6-20-00	9-25-00	12-18-00	5-31-01	9-13-01	
USEPA Method 8082										
PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
USEPA Method 8270 Polynuclear Aromatics (PAHs)										
Acenaphthene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	
Acenaphthylene	0.3	NC	NC	NT	NT	NT	NT	ND<0.30	ND<0.30	
Anthracene	1,100,000	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	
Benzo[a]anthracene	0.3	NC	NC	NT_	NT	NT	NT	ND<0.06	0.68	
Benzo[a]pyrene	0.3	NC	NC	NT	NT_	NT	NT	ND<0.20	0.73	
Benzo[b]fluoranthene	0.3	NC	NC	NT	NT	NT	NT	ND<0.08	1.1	
Benzo[g,h,i]perylene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	
Benzo[k]fluoranthene	0.3	NC	NC_	NT	NT	NT	NT	ND<0.30	0.61	
Chrysene	NC	NC	NC	NT	NT	NT_	NT	ND<1.0	ND<1.0	
Dibenz[a,h]anthracene	NC	NC	NC	NT	NT	NT	NT	ND<0.50	ND<0.50	
Fluoranthene	3,700	NC	NC	NT	NT	NT	NT	ND<1.0	1.8	
Fluorene	140,000	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	
Indeno[1,2,3-cd]pyrene	NC	NC	NC	NT	NT	NT	NT	ND<0.50	ND<0.50	
Phenanthrene	0.3	NC	NC	NT	NT	NT	NT	ND<0.077	0.39	
Pyrene	110,000	NC	NC	NT	NT	NT	NT	ND<1.0	1.5	
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)					_					
Bromodichloromethane	NC	NC	NC	NT _	NT	NT	NT	ND<1.0	ND<1.0	
Chloroform	14,100	287	710	NT	NT	NT	NT	ND<1.0	ND<1.0	
1,1-Dichloroethane	NC	34,600	50,000	NT	NT	NT	NT	1.7	4.2	
1,1-Dichloroethene	96	1	6	NT	NT	NT	NT	1.7	ND<1.0	
cis-1,2-Dichloroethene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	
4-isopropyltoluene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	
Tetrachloroethene	88	1,500	3,820	NT	NT	NT	NT	1.9	1.2	
1,1,1-Trichloroethane	62,000	20,400	50,000	NT	NT	NT	NT	16	14	
Trichloroethene	2,340	219	540	NT	NT	NT	NT	ND<1.0	ND<1.0	

Table 7

Analyte	Surface Water Protection Criteria (µg/L)	Volatilization Criteria for Ground Water (ppb)		Ground Water Sample Concentrations (ppb)					
		Residential	Industrial/ Commercial	MW-52					
Sample Collection Date				3-14-00	6-20-00	9-25-00	12-18-00	5-31-01	9-13-01
Total Metals									
Arsenic	4	NC	NC	NT	NT	NT	NT	ND<4	ND<4
Barium	NC	NC	NC	NT	NT	NT	NT	ND<50	ND<50
Cadmium	6	NC	NC	NT	NT	NT	NT	ND<5	ND<5
Copper	48	NC	NC	NT	NT	NT	NT	ND<40	ND<40
Lead	13	NC	NC	NT	NT	NT	NT	ND<13	ND<13
Nickel	880	NC	NC	NT	NT	NT	NT	ND<50	75
Selenium	50	NC	NC	NT	NT	NT	NT	45	ND<10
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT
Zinc	123	NC	NC	NT	NT	NT	NT	ND<10	60
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	NT	NT	NT	960	1,500

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

ppb = parts per billion.

μg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

|||||||| 7

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

<u> </u>	[<u> </u>	 .				 -		
•	Surface Water Protection	 Volatilizatio	n Criteria for								
Analyte	Criteria (µg/L)	Ground V	Vater (ppb)			Ground V	Vater Samp	le Concent	rations (pp	b)	
			Industrial				·			· ·	
		Residential	Commercial			M	N-53			MV	V-A
Sample Collection Date				3-14-00	6-20-00	9-25-00	12-18-00	6-1-01	9-12-01	6-1-01	9-12-01
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)											
Acenaphthene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	NT	NT	NT	NT	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	NT	NT	NT	NT	ND<0.06	ND<0.06	ND<0.06	ND<0.06
Benzo[a]pyrene	0.3	NC	NC	NT	NT	NT	NT	ND<0.20	ND<0.20	ND<0.20	ND<0.20
Benzo[b]fluoranthene	0.3	NC	NC	NT	NT	NT	NT	ND<0.08	ND<0.08	ND<0.08	ND<0.08
Benzo[g,h,i]perylene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	NT	NT	NT	NT	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	NT	NT	NT	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Fluorene	140,000	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	· NC	NC	NC	NT	NT	NT	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	NT	NT	NT	NT	ND<0.077	0.21	ND<0.077	ND<0.077
Pyrene	110,000	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)											
Bromodichloromethane	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	NT	NT	NT	NT	ND<1.0	ND<1.0	1.4	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	NT	NT	NT	NT	1.6	3.0	ND<1.0	ND<1.0
1,1-Dichloroethene	96	1	6	NT	NT	NT	NT	1.1	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	88	1,500	3,820	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	NT	NT	NT	NT	12	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	2,340	219	540	NT	NT	NT	NT	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)		on Criteria for Vater (ppb)			Ground V	Vater Samp	le Concent	rations (pp	b)	
		Residential	Commercial			M	N-53			MV	V-A
Sample Collection Date				3-14-00	6-20-00	9-25-00	12-18-00	6-1-01	9-12-01	6-1-01	9-12-01
Total Metals											
Arsenic	4	NC	NC	NT	NT	NT	NT	ND<4	ND<4	ND<4	ND<4
Barium	NC	NC	NC	NT	NT	NT	NT	ND<50	52	110	95
Cadmium	6_	NC	NC	NT	NT	NT	NT	ND<5	ND<5	ND<5	ND<5
Copper	48	NC	NC	NT	NT	NT	NT	ND<40	ND<40	ND<40	ND<40
Lead	13	NC	NC	NT	NT	NT	NT	ND<13	ND<13	ND<13	ND<13
Nickel	880	NC	NC	NT	NT	NT	NT	ND<50	ND<50	ND<50	ND<50
Selenium	50	NC	NC	NT	NT	NT	NT	29	22	16	12
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	123	NC	NC	NT	NT	NT	NT	20	ND<10	18	ND<10
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	NT	NT	NT	NT	790	200	ND<100	ND<100

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

ppb = parts per billion.

μg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing results are unusable

= based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits. Duplicate sample for quality control (QC) purposes.

= Concentration exceeds associated criterion.

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	I		 .								
	Surface Water										
	Protection	Volatilizatio	n Criteria for								
Analyte	Criteria (µg/L)	Ground V	Vater (ppb)		(Ground Wat	er Sample	Concentra	ations (ppt)	
		Residential	Industrial/ Commercial	MW		MW	DC	MW-C			
Sample Collection Date		100 Genua	Commercial	5-31-01	9-13-01	5-31-01	9-11-01	5-29-01			V-D
				3-31-01	9-13-01	3-31-01	9-11-01	5-29-01	9-11-01	5-29-01	9-11-01
USEPA Method 8082	l	NC	NC								
PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear									 		
Aromatics (PAHs)		_							1		
Acenaphthene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	3.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	0.42	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	ND<0.06	ND<0.06	ND<0.06	ND<0.06	ND<0.06	0.99	ND<0.06	ND<0.06
Benzo[a]pyrene	0.3	NC	NC	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20	0.78	ND<0.20	ND<0.20
Benzo[b]fluoranthene	0.3	NC	NC	ND<0.08	ND<0.08	ND<0.08	ND<0.08	ND<0.08	0.92	ND<0.08	ND<0.08
Benzo[g,h,i]perylene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	0.47	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.0	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.5	ND<1.0	ND<1.0
Fluorene	140,000	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	· NC	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.53	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	ND<0.077	ND<0.077	ND<0.077	0.14	0.16	3.2	ND<0.077	ND<0.077
Pyrene	110,000	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.1	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)									-		•
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1.1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1,0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Table 7
Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	n Criterla for Vater (ppb)			Ground Wat	er Sample	Concentra	ntions (ppb)	
		Residential	Industrial/ Commercial	MW	/-BD	MW-	·BS	MV	V-C	MV	 V-D
Sample Collection Date				5-31-01	9-13-01	5-31-01	9-11-01	5-29-01	9-11-01	5-29-01	9-11-01
Total Metals											
Arsenic	4	NC	NC	ND<4	ND<4	ND<4	ND<4	ND<4	ND<4	ND<4	6
Barium	NC	NC	NC	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
Copper	48	NC	NC	ND<40	ND<40	ND<40	ND<40	71	ND<40	ND<40	ND<40
Lead	13	NC	NC	ND<13	ND<13	ND<13	ND<13	55	ND<13	ND<13	ND<13
Nickel	880	NC	NC	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
Selenium	50	NC	NC	67	ND<10	ND<10	ND<10	58	ND<10	32	ND<10
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	123	NC	NC	ND<10	ND<10	75	140	220	38	ND<10	13
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	110	ND<100	ND<100	320	ND<100	160	ND<100	140

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

ppb = parts per billion.

µg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

= Concentration exceeds associated criterion.

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)		on Criteria for Vater (ppb)			Ground W:	ater Samni	e Concentra	ations (not	n	
	1		Industrial			O. Gaing 111	aci campi	c ooncentra	tuons (ppr	<u>''</u>	
		Residential	Commercial	MW	/- E	ми	V-F	Mν	/-G	l _{MW-}	GA ⁽¹⁾
Sample Collection Date				5-29-01	9-11-01	5-30-01	9-11-01	5-30-01	9-12-01	5-30-01	9-12-01
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)											
Acenaphthene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	1.9	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	0.47	ND<0.30	1.5	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	ND<1.0	ND<1.0	ND<1.0	1.2	ND<1.0	2.5	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	ND<0.06	0.28	ND<0.06	3.1	ND<0.06	10	ND<0.06	0.71
Benzo[a]pyrene	0.3	NC	NC	ND<0.20	ND<0.20	ND<0.20	3.0	ND<0.20	11	ND<0.20	0.72
Benzo[b]fluoranthene	0.3	NC	NC	ND<0.08	0.14	ND<0.08	3.4	ND<0.08	16	ND<0.08	1.0
Benzo[g,h,i]perylene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	2,1	ND<1.0	3.1	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	1.4	ND<0.30	5.8	ND<0.30	0.37
Chrysene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	3.1	ND<1.0	9.8	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.85	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC NC	ND<1.0	ND<1.0	ND<1.0	8.0	ND<1.0	19	ND<1.0	1.2
Fluorene	140,000	NC	NC	ND<1.0	ND<1.0	ND<1.0	2.1	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	· NC	NC	NC	ND<0.50	ND<0.50	ND<0.50	2.0	ND<0.50	4.1	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	ND<0.077	0.22	0.27	6.7	ND<0.077	8.0	ND<0.077	0.47
Pyrene	110,000	NC	NC	ND<1.0	ND<1.0	ND<1.0	6.7	ND<1.0	20	ND<1.0	1.3
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)											
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachioroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Table 7
Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	n Criteria for Vater (ppb)		ı	Ground Wa	ater Sampl	e Concentra	ations (ppb)	
		Residential	Industrial/ Commercial	MW	V-E	Mv	V-F	MW	<i>I</i> -G	MW-0	 ЗА ⁽¹⁾
Sample Collection Date				5-29-01	9-11-01	5-30-01	9-11-01	5-30-01	9-12-01	5-30-01	9-12-01
Total Metals	 	 									
Arsenic	4	NC	NC	ND<4	ND<4	ND<4	5	ND<4	ND<4	ND<4	ND<4
Barium	NC	NC	NC	57	73	ND<50	ND<50	130	140	130	140
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
Copper	48	NC	NC	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40
Lead	13	NC	NC	ND<13	ND<13	ND<13	ND<13	14	ND<13	ND<13	ND<13
Nickel	880	NC	NC	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
Selenium	50	NC	NC	21	ND<10	22	ND<10	16	13	17	14
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT
Zinc	123	NC	NC	ND<10	ND<10	70	ND<10	ND<10	ND<10	ND<10	ND<10
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	ND<100	ND<100	330	180	ND<100	ND<100	ND<100	110

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.
ppb = parts per billion.

μg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

= Concentration exceeds associated criterion.

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)		n Criteria for Vater (ppb)			Ground	d Water San	nple Conce	entrations ((ppb)		
		Residential	Industrial/ Commercial	MV	V-H	\$.4\	N-I	NAV	۷-٦	RANA	V-K	MW-L
Sample Collection Date		. 1001.0011.121		5-29-01	9-13-01	5-29-01	9-14-01	7-25-01	9-11-01	7-25-01	9-11-01	10-15-02
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)												
Acenaphthene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	ND<0.06	ND<0.06	ND<0.06	ND<0.06	ND<0.06	0.06	0.59	0.60	ND<0.06
Benzo[a]pyrene	0.3	NC	NC	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20	ND<0.20	0.48	0.43	ND<0.20
Benzo[b]fluoranthene	0.3	NC	NC	ND<0.08	ND<0.08	ND<0.08	ND<0.08	ND<0.08	0.09	0.63	0.46	ND<0.08
Benzo[g,h,i]perylene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	0.30	ND<0.30
Chrysene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.1	ND<1.0	ND<1.0
Fluorene	140,000	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	NC ·	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			ND<0.50
Phenanthrene	0.3	NC	NC	ND<0.077	ND<0.077	ND<0.077	ND<0.077	0.17	0.09	0.52	0.16	ND<0.077
Pyrene	110,000	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.3	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile Organic Compounds (VOCs)												
Bromodichloromethane	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<0.50
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	15
Tetrachloroethene	88	1,500	3,820	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Table 7

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	on Criteria for Vater (ppb)			Ground	l Water San	nple Conce	entrations	(ppb)		
		Residential	Industrial/ Commercial	MV	V-H	M	V-I	M\	N-J	MV	V-K	MW-L
Sample Collection Date				5-29-01	9-13-01	5-29-01	9-14-01	7-25-01	9-11-01	7-25-01	9-11-01	10-15-02
Total Metals	 	<u> </u>	 									
Arsenic	4	NC	NC	ND<4	ND<4	ND<4	ND<4	ND<4	ND<4	ND<4	ND<4	ND<4
Barium	NC	NC	NC	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	72	71	ND<50
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
Copper	48	NC	NC	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40
Lead	13	NC	NC	ND<13	ND<13	ND<13	ND<13	ND<13	ND<13	19	ND<13	ND<13
Nickel	880	NC	NC	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
Selenium	50	NC	NC	23	ND<10	18	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10
Vanadium	NC	NC	NC	NT	NT	NT	NT	NT	NT	NT	NT	ND<50
Zinc	123	NC	NC	ND<10	ND<10	18	18	25	ND<10	46	ND<10	13
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	220	ND<100	200_	200	480	ND<100	250	150	330

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

NT = Not tested.

ppb = parts per billion.

µg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable

J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

= Concentration exceeds associated criterion.

7

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

	1								
	Surface Water								
	Protection	Volatilizatio	n Criteria for						
Analyte	Criteria (µg/L)	Ground V	Vater (ppb)		Ground V	Vater Samp	le Concentr	ations (ppb)	
-			Industrial/					RV	V-1
		Residential	Commercial	MW-M	MW-N	MW-O	MW-P	(6-	in.)
Sample Collection Date				10-15-02	10-15-02	10-15-02	10-15-02	6-1-01	9-12-01
USEPA Method 8082									
PolychlorinatedBiphenyls (PCBs)	0.5	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear									
Aromatics (PAHs)									
Acenaphthene	NC	NC	NC	1.6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	NC	NC	0.74	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Anthracene	1,100,000	NC	NC	2.4	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[a]anthracene	0.3	NC	NC	3.4	0.70	ND<0.06	ND<0.06	ND<0.06	ND<0.06
Benzo[a]pyrene	0.3	NC	NC	3.9	0.69	ND<0.20	ND<0.20	ND<0.20	ND<0.20
Benzo[b]fluoranthene	0.3	NC	NC	4.3	0.79	ND<0.08	ND<0.08	ND<0.08	ND<0.08
Benzo[g,h,i]perylene	NC	NC	NC	2.2	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	NC	NC	1.8	0.38	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Chrysene	NC	NC	NC	5.3	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dibenz[a,h]anthracene	NC	NC	NC	0.67	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Fluoranthene	3,700	NC	NC	11	1.3	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Fluorene	140,000	NC	NC	1.7	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	NC	NC	NC	2.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Phenanthrene	0.3	NC	NC	6.2	0.81	ND<0.077	ND<0.077	ND<0.077	ND<0.077
Pyrene	110,000	NC	NC	9.3	1.6	ND<1.0	ND<1.0	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile	1								
Organic Compounds (VOCs)									
Bromodichloromethane	NC	NC	NC	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0
Chloroform	14,100	287	710	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	NC	34,600	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	3.0	4.5
1,1-Dichloroethene	96	1	6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Isopropyltoluene	NC	NC	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	88	1,500	3,820	3.1	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	62,000	20,400	50,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.7	ND<1.0
Trichloroethene	2,340	219	540	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0

₩||**1** 7

Comparison of Ground Water Sample Analyte Concentrations to DEP Remediation Standard Regulations Numerical Criteria QE/English Station, New Haven, CT

Analyte	Surface Water Protection Criteria (µg/L)	Volatilizatio	n Criteria for Vater (ppb)		Ground V	Vater Samp	le Concentra	ations (ppb))
		Residential	Industrial/ Commercial	MW-M	MW-N	MW-O	MW-P	RV (6-	V-1 in.)
Sample Collection Date				10-15-02	10-15-02	10-15-02	10-15-02	6-1-01	9-12-01
Total Metals									-
Arsenic	4	NC	NC	ND<4	ND<4	ND<4	ND<4	ND<4	ND<4
Barium	NC	NC	NC	ND<50	210	66	57	ND<50	ND<50
Cadmium	6	NC	NC	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
Copper	48	NC	NC	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40
Lead	13	NC	NC	ND<13	ND<13	ND<13	ND<13	ND<13	ND<13
Nickel	880	NC	NC	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
Selenium	50	NC	NC	ND<10	ND<10	ND<10	ND<10	16	15
Vanadium	NC	NC	NC	ND<50	ND<50	ND<50	250	NT	NT
Zinc	123	NC	NC	ND<10	ND<10	17	ND<10	290	300
Connecticut Extractable Total									
Petroleum Hydrocarbons (CTETPH)	NC	NC	NC	1,000	4,400	ND<100	ND<100	520	360

Notes:

NC = No criterion established.

ND = Not detected above laboratory minimum detection limit.

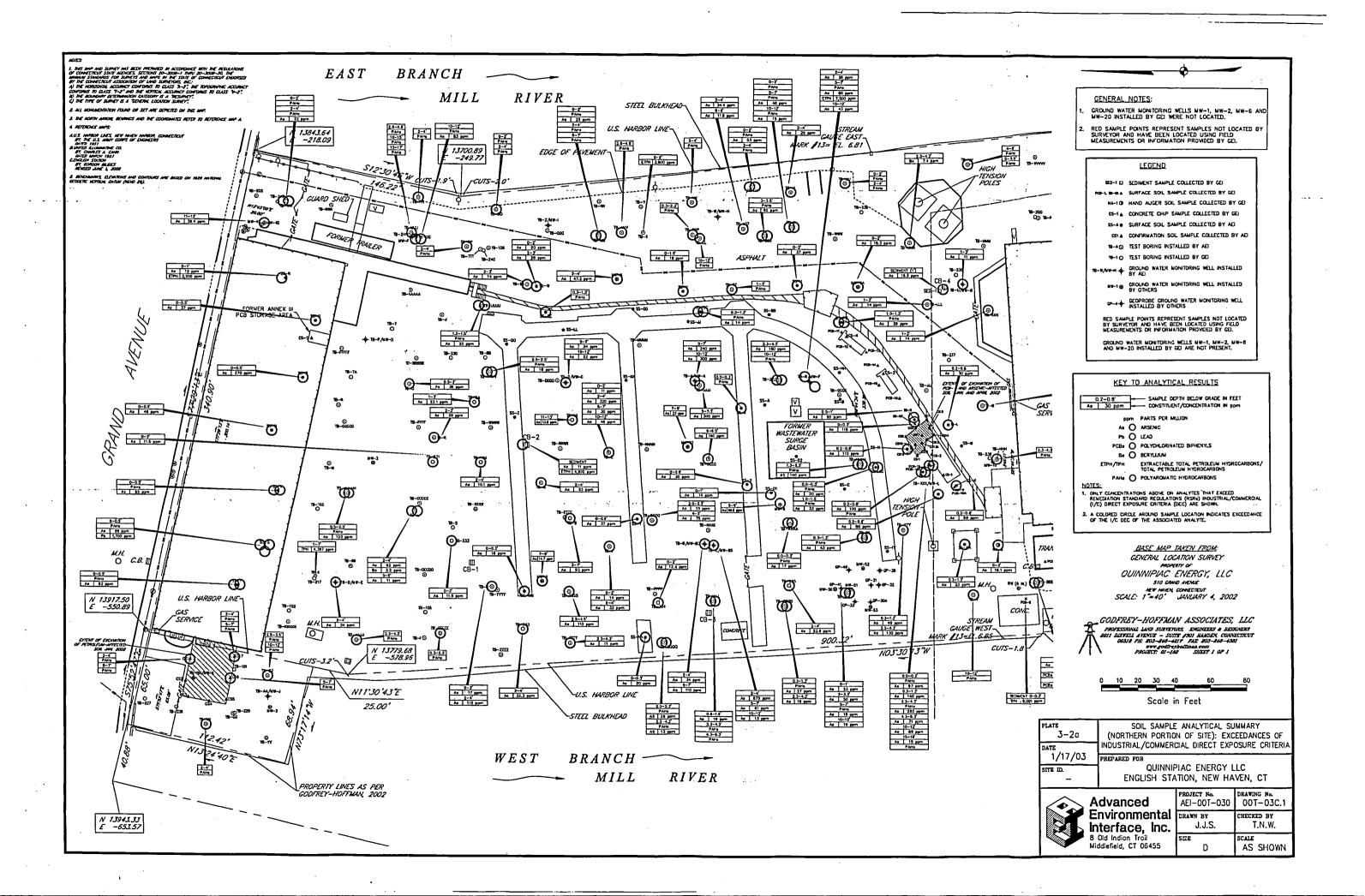
NT = Not tested.

ppb = parts per billion.

µg/L = micrograms per liter (comparable to ppb).

R = Analyte was tested for, but data validation findings indicate that the testing

results are unusable


J = based on QA/QC for that test.

The reported concentration is an estimated quantity due to associated QA

(1) = results found outside of recommended control limits.

Duplicate sample for quality control (QC) purposes.

= Concentration exceeds associated criterion.

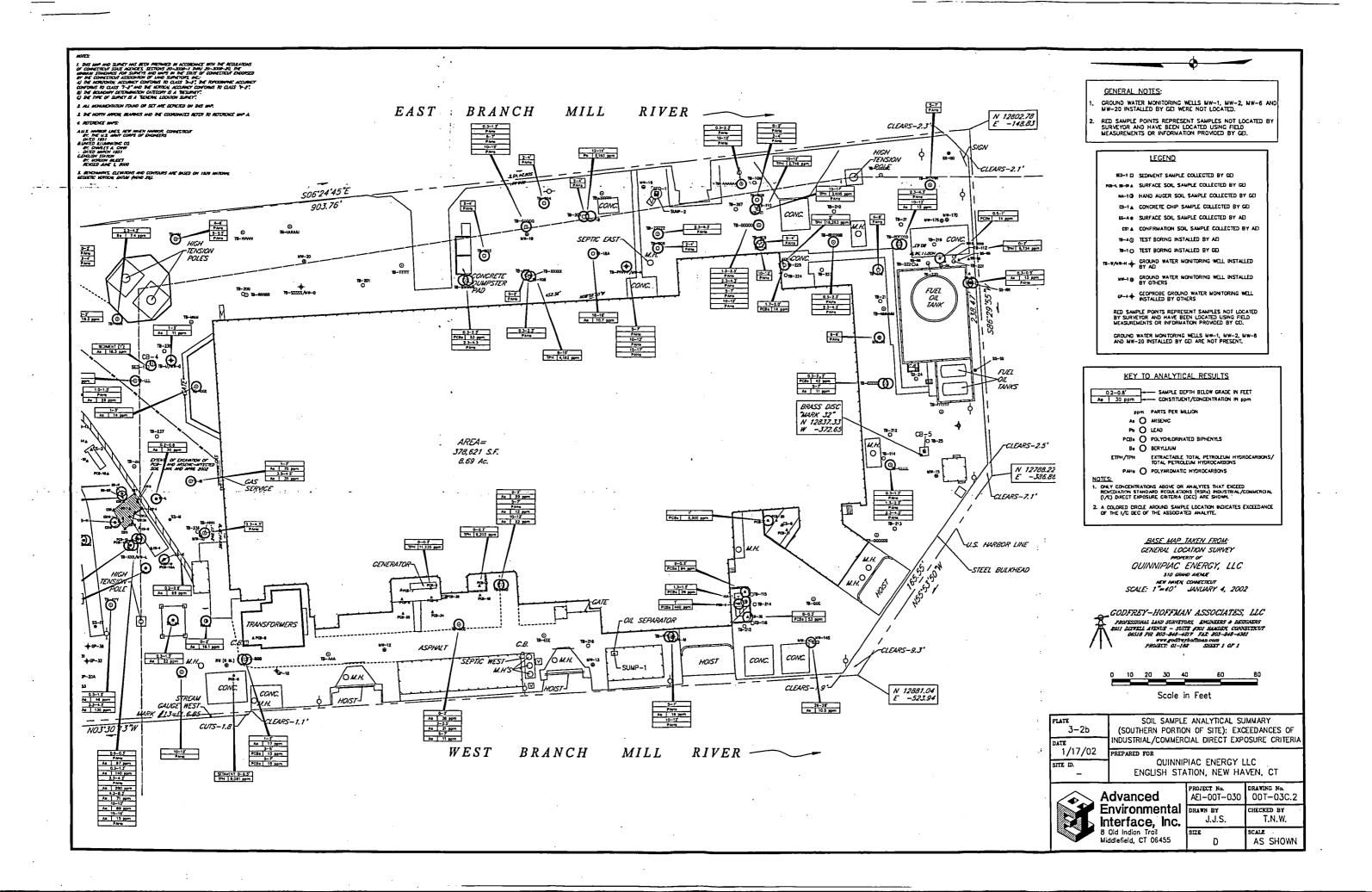


Table D-1

GROUND WATER SAMPLING RESULTS FOR SEVEN STATION B PARCEL WELLS

Analyte	Surface Water Protection Criteria (µg/L)			Ground	Water Sample	Concentrati	ons (ppb)		
			MW-04S			MW-05	<u> </u>	M	V-BS
Sample Collection Date		6-18-98	5-31-01	9-14-01	6-18-98	5-30-01	9-14-01	5-31-01	9-11-01
USEPA Method 8082 PolychlorinatedBiphenyls (PCBs)	0.5	NT	ND<0.50	ND<0.50	NT	ND<0.50	ND<0.50	ND<0.50	ND<0.50
USEPA Method 8270 Polynuclear Aromatics (PAHs)									
Acenaphthene	NC	ND<5.0	ND<1.0	ND<1.0	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	ND<0.30	ND<0.30	NO<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Benzolalanthracene	0.3	ND<0.30	ND<0.06	ND<0.06	ND<0.30	ND<0.06	ND<0.06	ND<0.06	ND<0.06
Benzojajpyrene	0.3	ND<0.30	ND<0.20	ND<0.20	ND<0.30	ND<0.20	ND<0.20	ND<0.20	ND<0.20
Benzo[b]fluoranthene	0.3	ND<0.30	ND<0.08	ND<0.08	ND<0.30	ND<0.08	ND<0.08	ND<0.08	ND<0.08
Benzolg h, ilperylene	NC	ND<20	ND<1.0	ND<1.0	ND<20	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Benzo(k)fluoranthene	0.3	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Chrysene	NC	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Fluoranthene	3,700	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Fluorene	140.000	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Indeno(1,2,3-cd)pyrene	NC	ND<20	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Phenanthrene	0.3	ND<0.07	ND<0.07	ND<0.07	ND<0.07	ND<0.07	ND<0.07	ND<0.07	0.14
Pyrene	110,000	ND<5.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
USEPA Method 8021B/8260 Volatile	Organic								
Compounds (VOCs)						No.40	ND -4 6	ND-40	ND 44 A
Chloroform	14,100	ND<1.0	ND<1.0	ND<1.0	4.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Total Metals					1	n t tar an in Cat	9944. 8 00 		ND<4
Arsenic	.4	ND<50	ND<4	ND<4			[[] 29 [[] []	ND<4	
Barium	NC	ND<500	ND<50	. 81	ND<500	ND<50	ND<50	ND<50	ND<50
Copper	48	NT	7.5%76 3部1	ND<40	NT	ND<40	ND<40	ND<40	ND<40
Lead	13	ND<5	ND<13	ND<13	22		ND<13	ND<13	ND<13
Selenium	50	ND<10	ND<10	ND<10	ND<10	. 14	ND<10	ND<10	ND<10
Zinc	123	NT	120	40	NT	ND<10	ND<10	75	140
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	NT	ND<100	ND<100	NT	ND<100	ND<100	ND<100	320

NC	2	No criterion established.
ND	=	Not detected above laboratory minimum detection limit.
NT	=	Not tested.
ppb	-	parts per billion.
µg/L	-	micrograms per liter (comparable to ppb).
(1)	-	Duplicate sample for quality control (QC) purposes.
	-	Concentration exceeds associated criterion.

Note 1: Other monitoring wells exist on the Station B Parcel; sample results for those are all included in the previous report documenting widespread polluted fill.

Note 2: Other analytes on the 8260 and 8270 scans, and ten other metals, were tested for, but are not included in this table because there were no hits in any of these seven monitoring wells.

Table D-1 (cont)

Analyte	Surface Water Protection Criteria (pg/L)			Ground \	Vater Sample	Concentrati	ons (pob)		
Allalyte	Ottoma (PB:E)		N-C		MW-D		MW-E		/-K
Sample Collection Date		5-29-01	9-11-01	5-29-01	9-11-01	5-29-01	9-11-01	3-14-01	9-11-01
USEPA Method 8082	0.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0 50	ND<0.50	ND<0.50
PolychlorinatedBiphenyls (PCBs)									
USEPA Method 8270 Polynuclear									
Aromatics (PAHs)									
Acenaphthene	NC	ND<1.0	3.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Acenaphthylene	0.3	ND<0.30	0.42	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30
Benzolajanthracene	0.3	ND<0.06	2 P.99	ND<0.08	ND<0.06	ND<0.06	0.28	0.59	0.60
Benzo(a)pyrene	0.3	ND<0.20	. 0.78	ND<0.20	ND<0.20	ND<0.20	ND<0.20	0.48	0.43
Benzo[b]fluoranthene	0.3	ND<0.08	0.92	ND<0.08	ND<0.08	ND<0.08	0.14	0.63	
Benzolg h.ijperylena	NC	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0 ·	ND<1.0	ND<1.0
Benzo[k]fluoranthene	0.3	ND<0.30	0.47	ND<0.30	ND<0.30	ND<0.30	ND<0.30	ND<0.30	0.30
Chrysene	NC	ND<1.0	1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Fluoranthene	3,700	ND<1.0	2.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.1	ND<1.0
Fluorene	140,000	ND<1.0	2.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Indeno[1,2,3-cd]pyrene	NC	ND<0.50	0.53	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Phenanthrene	0.3	0.16	3.2 (? ; €	ND<0.07	ND<0.07	ND<0.07	0.22	0.52	0.16
Pyrene	110,000	ND<1.0	2.1	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.3	ND<1.0
USEPA Method 8021B/8260 Volatile	Organic								
Compounds (VOCs)									
Chloroform	14,100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Total Metals									
Arsenic	4	ND<4	ND44		劉[6][[日日日]		ND<4	ND<4	ND<4
Barlum	NC	ND<50	ND<50	ND<50	ND<50	57	73	72	71
Copper	48	71 71	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40
Lead	13			ND<13	ND<13	ND<13		[219 ALTE	ND<13
Selenium	50	58	ND<10	32	ND<10	21	ND<10	ND<10	ND<10
Zinc	123	220	38	ND<10	13	ND<10	ND<10	45	ND<10
Connecticut Extractable Total Petroleum Hydrocarbons (CTETPH)	NC	ND<100	160	ND<100	140	ND<100	ND<100	250	150

NC	E	No criterion established.		
ND		Not detected above laboratory minimum detection limit.		
NT		Not tested.		
ppb	=	parts per billion.		
µg/L		micrograms per liter (comparable to ppb).		
(1)	•	Duplicate sample for quality control (QC) purposes.		
A 11429 T	-	Concentration exceeds associated criterion.		

Note: Other monitoring wells exist on the Station B Parcet; sample results for those are all included in the previous report documenting widespread polluted fill.

Note 2: Other analytes on the 8260 and 8270 scans, and ten other metals, were tested for, but are not included in this table because there were no hits in any of these seven monitoring wells.

Table 1
PCB Cleanup Specifications for Historical Spills at QE English Station

Federal Regulation Nature of Usage / Access (a)	on Matrix Nature of PCB Matrix Material	Cleanup Options (b)	Numerical PCB Decon Specification (c)	Citation (40 CFR 761)
High occupancy (worker presence	Non-porous	Wash and rinse surface, dispose of waste solution	10 µg/100 cm² on wipe sample	61(a)(4)(ii)
≥840 hr/yr or ≥16.8 hr/wk)	Concrete (or other porous)	Scarify concrete surface, dispose of waste concrete	1 ppm in concrete remaining	61(a)(4)(iii); 61(a)(4)(i)(A)
		Encapsulate with soil/asphalt/concrete (d), with deed restriction	10 ppm in concrete remaining	above + 61(a)(7)+(8)
		Double-wash concrete surface, let dry, paint over, apply ML mark	— (e)	61(a)(4)(iii); 30(p)(1)
	Soil	Remove and dispose, with no further constraints	≤ 1ppm in soil remaining	61(a)(4)(i)(A)
		Remove and dispose, cap remaining soil, with deed restriction	≤ 10 ppm in soil remaining	above + 61(a)(7)+(8)
Low occupancy (worker presence	Non-porous	Wash and rinse surface, dispose of waste solution	100 µg/100 cm² on wipe sample	61(a)(4)(ii)
<840 hr/yr or <16.8 hr/wk)	Concrete (or other porous)	Scarify concrete surface and dispose of waste concrete	1 ppm in concrete remaining	61(a)(4)(iii); 61(a)(4)(i)(A)
		Encapsulate with soil/asphalt/concrete (d), with deed restriction	10 ppm in concrete remaining	above + 61(a)(7)+(8)
		Double-wash concrete surface, let dry, paint over, apply ML mark	(e)	61(a)(4)(iii); 30(p)(1)
	Soil	Remove and dispose, with no further constraints	≤ 25 ppm in soil remaining	61(a)(4)(i)(B)(1)
		Remove and dispose, fence off, apply ML mark	≤ 50 ppm in soil remaining	61(a)(4)(i)(B)(2)
		Remove and dispose, cap remaining soil (d), with deed restriction	≤ 100 ppm in soil remaining	61(a)(4)(i)(B)(3); 61(a)(7)+(8)

CT Regulation Matrix (RSRs) (Applies Only to Soils)

Nature of Usage / Access (f)	Cleanup Options (g)	Decon Specification (h)	Citation (RCSA 22a-133k)
Residential use per RSRs	Excavate and remove soil	1 ppm in soil remaining	2(b)(1); Appendix A
Industrial/commercial use per RSRs in a non-restricted access area	Cap to make soil inaccessible (i), apply ELUR (j)	10 ppm in soil remaining (k)	2(b)(2)(B); Appendix A; EPOC Review, Mar 2003 (k)
industrial/commercial use per RSRs in an other restricted access area	Cap to make soil inaccessible (i), apply ELUR (j)	25 ppm in soil remaining	2(b)(3)(A); Appendix A
Industrial/commercial use per RSRs in an outdoor electrical substation	Cap to make soil inaccessible (i), apply ELUR (j)	25 ppm in soil remaining	2(b)(3)(B); Appendix A
	Cap to make soil inaccessible (i).	50 ppm in soil	2(b)(3)(B); Appendix A

(a) All areas of the English Station site where PCB contamination has been found presently are low occupancy areas (a defined term, meaning that a person is present in the area less than 840 hrs/yr and also present less than 16.8 hrs/wk). Since the Station B Parcel is to be sold (for future industrial use), the federal cleanup specifications for high occupancy areas apply to this portion of the site.

apply ELUR (j), apply ML mark

(b) For the Station B Parcel, concrete surfaces will be scarified down to the 1 ppm level (and confirmed) rather than the other options, whenever practicable, and debris will be removed for appropriate offsite disposal. Soil will be excavated to achieve a 10 ppm level, with a cap and an ELUR. The 10 ppm level is consistent with the PCB direct exposure criteria for industrial/commercial sites under the Connecticut Remediation Standards Regulations (RSRs). The 1 ppm level is consistent with the PCB direct exposure criteria for residential sites under the RSRs. The ELUR will identify (among other types of residual contamination zones) any PCB residual areas requiring a deed restriction under 40 CFR 761.61. An ELUR is the appropriate CT vehicle for deed restrictions (see below); it will be structured and worded to satisfy the federal requirements, including a designation of property usage.

QE English Station: Interim PCB Report for Station B Parcel Sale AEI Project 00T-030e March 31, 2005 Page 16 of 31

Numerical DOD

remaining

Table 1 (continued)

PCB Cleanup Specifications for Historical Spills at QE English Station

- (c) These are the specifications in the PCB rules at 40 CFR 761.61 for cleanup of historical spills; not the rules for cleanup of fresh spills under the EPA policy at 40 CFR 761.125. "In soil remaining" or "in concrete remaining" means the residual PCB content in those media left onsite unremediated.
- (d) A cap comprised of 10 inches of compacted fill, or 6 inches of concrete, or 6 inches of asphalt constitutes satisfactory encapsulation under the federal PCB rules. (The cap required for compliance with the Connecticut RSRs is somewhat different (see below) but satisfies the federal requirement.)
- (e) There is no numerical cleanup criterion, because the underlying presumption is that the specified double-wash/rinse technique will render the surface suitable for painting and that the paint will adhere well enough to prevent any contact exposure with residual PCBs remaining in the concrete. If the concrete staining is known to have occurred from contact with oil containing less than 50 ppm PCBs, then cleanup and surface sealing of this sort is not required.
- (f) The Connecticut RSRs define Just two kinds of uses with respect to direct exposure cleanup criteria: residential use, and commercial/industrial use. The sections of the RSRs that relate to cleanup of PCB-contaminated soils, however, contain provisions that refer (either directly or inferentially) to definitions in the EPA spill cleanup policy at 40 CFR 761.123, as follows:
 - "Residential/commercial area" means areas where people live or reside, including roads and sidewalks to which
 the public has access. The nearest area to English Station that is actually zoned residential or commercial is
 northeast of Grand Ave and Haven St; all the areas closer to the Station are zoned IH or IL (heavy industrial or
 light industrial). However, Grand Avenue itself is a residential/commercial area under this definition because it is
 open to public access; in addition to transient vehicles and pedestrians, there is occasional public fishing off the
 Grand Avenue bridge.
 - "Outdoor electrical substation" means an outdoor, fenced-off restricted access area used for electrical
 transmission/distribution, and more than 100 m from a residential/commercial area. All of the capacitor and
 transformer pads at English Station fit this definition; none are closer than 100 m to a zoned
 residential/commercial area or to Grand Avenue. These areas are delineated on Figure 1.
 - "Other restricted access location" means areas other than substations that are at least 100 m from a residential/commercial area, and are limited by manmade barriers such as fences and walls, or natural barriers. All of English Station is further than 100 m from the nearest zoned residential/commercial area north of Grand Ave and Haven St. Most of English Station (the area south of the approximate center of the coal yard) is further than 100 m from Grand Avenue. The Island is surrounded by water on three sides, with a vertical bulkhead wall, and has security gates at the Grand Avenue access. These areas are delineated on Figure 1.
 - "Nonrestricted access area" means anything not in the above two definitions. At English Station this is the area
 north of an approximate east-west midline through the coal yard, including Station B and the planned parking area
 to the south of Station B. These areas are delineated on Figure 1.
- (g) The cleanup options in the Connecticut RSRs only apply to soils, not to cleanup of concrete or non-porous materials, and not to sediments. Sediments exist in catch basins on the Station B Parcel; generally, these will be removed if >1 ppm; but if not easily accessible may be left in place (up to the 10 ppm criterion) and simply sealed off. There is a general provision in the RSRs for a variance to allow other cleanup options. Such a variance may be applied for, and reviewed and approved by DEP on a case-by-case basis, but there is no particular expectation that a variance outside of the above numerical cleanup standards would be applied for in this case.
- (h) These are the standards for remediation specified in the Connecticut RSRs at RCSA 22a-133k. "In soil remaining" means the residual PCB content in the soils left onsite unremediated.
- (i) Rendering the soil "inaccessible" as defined in the RSRs means installing a cap consisting of four feet of soil, or a cap consisting of two feet of soil including a 3-inch concrete or asphalt layer on top. Alternatively, a building can be built over an area to render it inaccessible.
- (j) The environmental land use restriction (ELUR) specified in the RSRs has a prescriptive form and content developed by DEP explicitly for site remediation purposes; in this situation, the appropriate language also will be added to comport with federal requirements.
- (k) The language discrepancy between RCSA 22a-133k-2(b)(2)(B) for PCBs in residential or "non-restricted access" areas, and RCSA 22a-133k-2(b)(2)(A) for contaminants other than PCBs in those same areas was clarified in a DEP workshop presentation to the Environmental Professionals Organization of Connecticut on March 25, 2003, page 13. So long as the soil is rendered "inaccessible" (which includes an environmental land use restriction), the cleanup criterion is 10 ppm.

Table A1.1a Sampling and Analysis Data: Station B Interior—Overhead Crane

Area 1.1: Station B-Overhead Crane

AOC #: 1

PCB Area Description: Overhead crane: motor and non-porous steel surface

Location Reference: Figure A1.1 (Individual sample locations not shown.)

Sample Matrix: Motor oil; hexane wipe of steel surface

Analysis: US EPA Method 8082

Units: Milligrams per kilogram (mg/kg); micrograms per 100 square centimeters (µg/100 sq. cm)

Laboratory Results in: Appendix A

	Characterization Samp			Verification Sample	S	
Sample Point	Sampling Date	Sample Result	Sample	Sampling Date	Sample Result	Cleanup
	(Analysis Date)		Point	(Analysis Date)		Criterion
	MOTOR OIL			MOTOR OIL		MOTOR
NEM (I)	07-18-01 (07-25-01)	6.6 (1)	RS-CS1 (1)	03-21-02 (03-28-02)	ND < 2.0 ⁽¹⁾	OIL 2.0
SEM (I)	07-18-01 (07-25-01)	6.6 (1)	K3-C31	03-21-02 (03-26-02)	ND < 2.0	2.0
11-16-MISC-	07-16-01 (07-23-01)	0.0	ļ	 		2.0
113 (2)	11-18-99 (11-29-99)	4.0 (2)			·	2.0
HEXA	NE WIPE OF STEEL S	URFACE	HEXA	NE WIPE OF STEEL	SURFACE	HEXANE WIPE
CR-CS01	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS02	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS03	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS04	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS05	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS06	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS07	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS08	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS09	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS10	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS11	03-21-02 (03-26-02)	ND < 5.0			_	10.0
CR-CS12	03-21-02 (04-04-02)	ND < 5.0			•	10.0
CR-CS13	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS14	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS15	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS16	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS17	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS18	03-21-02 (04-04-02)	ND < 5.0	CR-CS18B	04-19-02 (04-23-02)	ND < 5.0	10.0
CR-CS19	03-21-02 (03-26-02)	25	CR-CS19B	04-19-02 (04-23-02)	ND < 5.0	10.0
CR-CS20	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS21	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS22	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS23	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS24	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS25	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS26	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS27	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS28	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS29	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS30	03-21-02 (03-26-02)	ND < 5.0	L			10.0

Table A1.1a (continued)

Sampling and Analysis Data: Station B Interior—Overhead Crane

Characterization Samples				Verification Sample	5	
Sample Point	Sampling Date (Analysis Date)	Sample Result	Sample Point	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
HEXAN	E WIPE OF STEEL SU	RFACE	HEXAN	E WIPE OF STEEL !	SURFACE	HEXANE WIPE
CR-CS31	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS32	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS33	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS34	03-21-02 (04-04-02)	ND < 5.0			,	10.0
CR-CS35	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS36	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS37	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS38	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS39	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS40	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS41	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS42	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS43	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS44	03-21-02 (03-26-02)	ND < 5.0				10.0
CR-CS45	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS46	03-21-02 (04-04-02)	ND < 5.0				10.0
CR-CS47	03-21-02 (03-26-02)	ND < 5.0				10.0
Field Blank I	03-21-02 (03-26-02)	ND < 5.0				NA
Field Blank 2	03-21-02 (04-12-02)	ND < 5.0				NA
Field Blank 3	03-21-02 (04-12-02)	ND < 5.0				NA

Notes for Table A1.1a:

Bold indicates that detected concentration exceeds associated cleanup criterion.

^{(1) =} Sample of oil from a motor on the crane. Result reported as milligrams per kilogram (mg/kg), wet weight. (2) = Result reported by GEI Consultants, Inc., who did not indicate that the result is reported as wet weight.

NA = Not applicable.

ND = Not detected.

<= Less than minimum detection limit.

Table A1.1b Sampling and Analysis Data: Station B Interior—Mezzanine and First Floor

Area 1.1: Station B-Mezzanine and first floor

AOC #: 1

PCB Area Description: Mezzanine and first floor, excluding Annex III

Location Reference: Figure A1.1 (AEI Sample Points only)

Sample Matrix: Concrete; wood

US EPA Method 8082

Units: Milligrams per kilogram (mg/kg), dry weight

Laboratory Results In: Appendix A

Characterization Samples

Sample Point	Depth	Sampling Date	Sample Result	Claarur
Sample I olit	-		Sample Result	Cleanup
	(feet)	(Analysis Date)		Criterion
	FIRST FLOC	R: CONCRETE FLOOR		CONCRETE
11-16-MISC-121 (1)	NS	11-19-1999 (12-01-1999)	ND < 1.0	1.0
1CO-01	½ inch	06-16-2004 (06-22-2004)	ND < 0.50	1.0
1CO-02	1/2 inch	06-16-2004 (06-22-2004)	0.57	1.0
1CO-03	½ inch	06-16-2004 (06-22-2004)	ND < 0.50	1.0
1CO-04	½ inch	06-16-2004 (06-22-2004)	0.98	1.0
1CO-05	½ inch	06-16-2004 (06-22-2004)	ND < 0.50	1.0
1CO-05D	½ inch	06-16-2004 (06-22-2004)	ND < 0.50	1.0
1CO-06	½ inch	06-16-2004 (06-22-2004)	0.52	1.0
1CO-07	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50	1.0
1CO-08	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50	1.0
1CO-09	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50	1.0
1CO-10	½ inch	06-16-2004 (06-22-2004)	ND < 0.50	1.0
1CO-11	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50	1.0
	FIRST FL	OOR: WOOD CHIPS		WOOD
11-16-MISC-123 ⁽¹⁾	NS	11-19-1999 (12-01-1999)	ND < 1.0	1.0
	MEZZAN	INE: WOOD CHIPS		WOOD
11-16-MISC-124 (1)	NS	11-19-1999 (12-01-1999)	ND < 1.0	1.0
11-16-MISC-125 (1)	NS	11-19-1999 (12-01-1999)	ND < 1.0	1.0

Notes for Table A1.1b:

(1) = Result reported by GEI Consultants, Inc., who did not indicate that the results are reported as dry weight.

ND = Not Detected.

NS = Not Specified.

<= Less than minimum detection limit.

Table A1.2 Sampling and Analysis Data: Station B Interior—Annex III Facility

Area 1.2: Station B-Annex III

AOC#: I PCB Area Description: Annex III: porous concrete floor and containment berm Location Reference: Figures A1.1, A1.2 (AEI Sample Points only.) Sample Matrix: Concrete US EPA Method 8082 Analysis: Milligrams per kilogram (mg/kg), dry weight Units: Laboratory Results in: Appendix A

Point

Characterization Samples Sampling Date Sample Result (Analysis Date)

Sample Point ANNEX III CONCRETE FLOOR 1CO-14 06-16-04 (06-22-04) ND < 0.50 07-18-01 (07-20-01) ND < 0.50 A-1 07-18-01 (07-20-01) ND < 0.50 A-2 ND < 0.50 07-18-01 (07-20-01) A-3 ND < 0.50 07-18-01 (07-20-01) A-4 17.4 07-18-01 (07-20-01) B-1 07-18-01 (07-20-01) 45 B-2 07-18-01 (07-20-01) B-3 2.4 ND < 0.50 07-18-01 (07-20-01) B-4 1CO-13 06-16-04 (06-22-04) ND < 0.50 06-16-04 (06-22-04) ND < 0.50 1CO-15 07-18-01 (07-20-01) 1.3 C-1 C-2 07-18-01 (07-20-01) 1.5 0.98 07-18-01 (07-20-01) C-3 07-18-01 (07-20-01) ND < 0.50 C-4 07-18-01 (07-20-01) 0.94 D-1 0.77 07-18-01 (07-20-01) D-2 07-18-01 (07-20-01) ND < 0.50 D-3 07-18-01 (07-20-01) ND < 0.50 D-4 0.69 07-18-01 (07-20-01) E-1 07-18-01 (07-20-01) 0.98 E-2

07-18-01 (07-20-01)

07-18-01 (07-20-01)

E-3

E-4

0.51

ND < 1.0 (3)

1st and 2ad Verification Samples (1) Sampling Date Sample Result Sample

(Analysis Date)

Point	NEX III CONCRETE F	NOO I
Al	MEX III CONCRETE I	LUUK
		-
•		
J-1	05-09-02 (05-14-02)	ND < 0.50
I-1	05-09-02 (05-14-02)	0.50
K-1.5	08-26-02 (08-29-02)	ND < 0.50
J-2	05-09-02 (05-14-02)	ND < 0.50
I-2	05-09-02 (05-14-02)	1.6
K-2.5	08-26-02 (08-29-02)	1.4
J-3	05-09-02 (05-14-02)	ND < 0.50
I-3	05-09-02 (05-14-02)	1.1
1-3a (2)	05-09-02 (05-14-02)	0.65
K-3.5	08-26-02 (08-29-02)	ND < 0.50
K-3.5 dup	08-26-02 (08-29-02)	ND < 0.50
J-4	05-09-02 (05-14-02)	ND < 0.50
1-4	05-09-02 (05-14-02)	ND < 0.50
H-1	05-09-02 (05-14-02)	ND < 0.50
L-1.5	08-26-02 (08-29-02)	ND < 0.50
H-2	05-09-02 (05-14-02)	ND < 0.50
L-2.5	08-26-02 (08-29-02)	ND < 0.50
H-3	05-09-02 (05-14-02)	ND < 0.50
L-3.5	08-26-02 (08-29-02)	ND < 0.50
13.3	00 20 02 (00 27 02)	112 1333
		· · · · · · · · · · · · · · · · · · ·
		

1.0 1.0

Cleanup

Criterion

CONCRETE

Table A1.2 (continued)

Sampling and Analysis Data: Station B Interior—Annex III Facility

	Characterization Samples			t and 2"d Verification Sa	mples ⁽¹⁾	
Sample Point	Sampling Date (Analysis Date)	Sample Result	Sample Point	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
AN	NEX III CONCRETE F	LOOR	A	NNEX III CONCRETE	FLOOR	CONCRETE
1CO-16	06-16-04 (06-22-04)	ND < 0.50				1.0
SE-I	07-18-01 (07-20-01)	0.80				1.0
1CO-12	06-16-04 (06-22-04)	ND < 0.50				1.0
F-2	07-18-01 (07-20-01)	ND < 0.50				1.0
F-3	07-18-01 (07-20-01)	ND < 1.0 (3)				1.0
F-4	07-18-01 (07-20-01)	ND < 1.0 (3)				1.0
SF-1	07-18-01 (07-20-01)	ND < 1.0 (3)				1.0
SF-3	07-18-01 (07-20-01)	ND < 1.0 (3)				1.0
G-2	07-18-01 (07-20-01)	ND < 1.0 (3)				1.0
G-3	07-18-01 (07-20-01)	ND < 1.0 (3)				1.0
			Field blank	05-09-02 (05-13-02)	ND < 0.50 ⁽⁴⁾	NA
·			Equip. Blank	08-26-02 (08-29-02)	ND < 10 ⁽⁴⁾	NA
1CO-EB01	06-16-04 (06-21-04)	ND < 12 ⁽⁴⁾				NA
CS-5 ⁽⁵⁾	06-11-98 (06-23-98)	15				1.0
11-16-MISC- 114 ⁽⁵⁾	11-18-99 (11-29-99)	ND < 1.0				1.0
11-16-MISC- 115 ⁽⁵⁾	11-18-99 (11-29-99)	ND < 1.0				1.0
11-16-MISC- 116 ⁽⁵⁾	11-18-99 (11-29-99)	ND < 1.0				1.0

Notes for Table A1.2:

- (1) = Sample locations selected using a 5-foot grid.
 (2) = Duplicate sample.
 (3) = Minimum detection limit (MDL) affected by matrix interference.
 (4) = Water matrix. Units are micrograms per liter (µg/L).
 (5) = Result reported by GEL Consultants line with a file of the consultant line.
- (5) = Result reported by GEI Consultants, Inc., who did not indicate that the results are reported as dry weight.
- ND = Not Detected.
- <= Less than minimum detection limit.

Bold indicates that detected concentration exceeds associated cleanup criterion.

Depth = ½ inch for all AEI samples. Depth not specified for GEI samples.

Table A1.3 Sampling and Analysis Data: Station B Interior-Basement

Area 1.3: Station B-Basement

AOC#:	1
PCB Area Description:	Basement: concrete pads and former earthen floor
Location Reference:	Figure A1.3 (AEI Sample Points only)
Sample Matrix:	Concrete; soil
Analysis:	US EPA Method 8082
Units:	Milligrams per kilogram (mg/kg), dry weight
Laboratory Results in:	Appendix A

Characterization Samples

Sample Point	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
		CONCRETE		CONCRETE
11-16-MISC-117 (1)	NS	11-18-1999 (11-29-1999)	ND < 1.0	1.0
11-16-MISC-118 (I)	NS	11-18-1999 (11-29-1999)	ND < 1.0	1.0
11-16-MISC-119 (1)	NS	11-18-1999 (11-29-1999)	ND < 1.0	1.0
11-16-MISC-120 (1)	NS	11-18-1999 (11-29-1999)	1.0	1.0
11-16-MISC-122 (1)	NS	11-19-1999 (12-01-1999)	ND < 1.0	1.0
		SOIL		SOIL
SS-N	0.0-1.0	05-02-2001 (05-18-2001)	ND < 0.50	10.0
SS-O	0.0-0.5	05-02-2001 (05-04-2001)	ND < 0.50	10.0
SS-P	0.0-0.5	05-02-2001 (05-04-2001)	ND < 0.50	10.0
SS-Q	0.0-0.5	05-02-2001 (05-04-2001)	ND < 0.50	10.0
SS-R	0.0-0.5	05-02-2001 (05-18-2001)	ND < 0.50	10.0
SS-S	0.0-0.5	05-02-2001 (05-04-2001)	ND < 0.50	10.0
SS-T	0.0-0.5	05-02-2001 (05-18-2001)	ND < 0.50	10.0

Notes for Table A1.3:

(1) = Result reported by GEI Consultants, Inc., who did not indicate that the results are reported as dry weight.

ND = Not Detected. NS = Not Specified.

< = Less than minimum detection limit.

Table A2.1 Sampling and Analysis Data: Station B Yard Areas—Elevated Tracks

Area 2.1: Former Coal Yard

AOC #: 12W PCB Area Description: Elevated railroad tracks and foundations Location Reference: Figure 6 Sample Matrix: Soil US EPA Method 8082 Analysis: Milligrams per kilogram (mg/kg), dry weight Units: Laboratory Results in: Appendix A

Characterization Samples Sample Result Cleanup Sampling Date Depth (feet) Sample Criterion (Analysis Date) Point SOIL SOIL 11-08-2004 ND < 0.50 10.0 0.0-0.25 (11-13-2004) 2HA-139 11-08-2004 ND < 0.50 10.0 2HA-139 0.25-1.25 (11-13-2004) 11-08-2004 ND < 0.50 10.0 0.0-0.25 (11-13-2004)2HA-140 11-08-2004 ND < 0.50 10.0 2HA-140 0.25-1.25 (11-13-2004)04-03-2002 10.0 (04-06-2002) ND < 0.50 SS-II 0.0-0.3 04-03-2002 10.0 0.0-0.3 (04-06-2002) ND < 0.50 SS-JJ 04-03-2002 SS-KK (1) (04-06-2002) 0.83 10.0 0.0-0.3 04-03-2002 ND < 0.50 10.0 SS-LL 0.0-0.3 (04-06-2002) 04-03-2002 (04-06-2002) ND < 0.50 10.0 SS-MM 0.0-0.3 04-03-2002 ND < 0.50 10.0 0.0-0.3 (04-06-2002) SS-NN 04-02-2002 10.0 ND < 0.50 0.0-0.3 (04-11-2002) **SS-00** 05-14-2001 ND < 0.50 10.0 SS-X 0.0-0.6 (05-22-2001) 05-14-2001 10.0 0.0-0.6 (05-22-2001) ND < 0.50 SS-Y 05-14-2001 ND < 0.50 10.0 (05-22-2001) 0.0-0.6 SS-Z

Notes for Table A2.1:

ND = Not Detected.

^{(1) =} Sample also tested for leachable PCBs using the Synthetic Precipitation Leachate Procedure (SPLP). SPLP PCBs were not detected.

< = Less than minimum detection limit.

Table A2.2 Sampling and Analysis Data: Station B Yard Areas—Former Coal Yard

Area 2.2: Former Coal Yard

AOC#:	12N
PCB Area Description:	Paved and unpaved areas south and west of Station B
Location Reference:	
Sample Matrix:	Asphalt; concrete; soil; catch basin sediment
	US EPA Method 8082
Units:	Milligrams per kilogram (mg/kg), dry weight
Laboratory Results in:	Appendix A

		acterization Samples			
Sample Point	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion	
		ASPHALT (1)		ASPHALT	
2HA-241	0.0-0.3	12-16-2004 (12-28-2004)	ND < 0.50	1.0	
2HA-242	0.0-0.3	12-16-2004 (12-28-2004)	ND < 0.50	1.0	
2TB-207	0.0-0.3	11-18-2004 (12-03-2004)	ND < 0.50	1.0	
TB-CCCC	0.0-0.3	04-03-2002 (04-06-2002)	ND < 0.50	1.0	
TB-DDDD	0.0-0.3	04-03-2002 (04-06-2002)	ND < 0.50	1.0	
TB-EEEE	0.0-0.3	04-04-2002 (04-08-2002)	ND < 0.50	1.0	
ТВ-ЈЈЈЈ	0.0-0.3	04-04-2002 (04-08-2002)	ND < 0.50	1.0	
TB-KKKK	0.0-0.3	04-04-2002 (04-09-2002)	ND < 0.50	1.0	
TB-MMMM	0.0-0.3	04-04-2002 (04-09-2002)	ND < 0.50	1.0	
TB-NNNN	0.0-0.3	04-04-2002 (04-09-2002)	ND < 0.50	1.0	
TB-0000	0.0-0.3	04-05-2002 (04-11-2002)	ND < 0.50	1.0	
TB-PPPP	0.0-0.3	04-05-2002 (04-11-2002)	ND < 0.50	1.0	
TB-RRRR	0.0-0.3	04-05-2002 (04-11-2002)	ND < 0.50	1.0	
TB-SSSS	0.0-0.3	04-05-2002 (04-11-2002)	ND < 0.50	1.0	
	CONCRETE				
2CO-129	½ inch	11-30-2004 (12-07-2004)	ND < 0.50	1.0	
2CO-130	1/2 inch	11-30-2004 (12-07-2004)	ND < 0.50	1.0	
2CO-131	1/2 inch	11-30-2004 (12-07-2004)	ND < 0.50	1.0	
2CO-177	1/2 inch	12-16-2004 (12-28-2004)	ND < 0.50	1.0	
2CO-504	1/2 inch	11-30-2004 (12-07-2004)	ND < 0.50	1.0	
		SEDIMENT		SEDIMENT	
CB-2	0.0-0.3	05-10-2001 (05-15-2001)	3.8	1.0	
CB-3	0.0-0.3	05-10-2001 (05-15-2001)	ND < 0.50	1.0	
•		SOIL		SOIL	
2HA-241	0.3-0.6	12-16-2004 (12-28-2004)	ND < 0.50	10.0	
2HA-242	0.3-0.5	12-16-2004 (12-28-2004)	ND < 0.50	10.0	
2TB-206 (3)	0.0-0.3	11-18-2004 (12-03-2004)	3.0	10.0	
2TB-206	0.3-2.3	11-18-2004 (12-03-2004)	ND < 0.50	10.0	
2TB-206 (3)	4.3-6.3	11-18-2004 (12-03-2004)	1.44	10.0	
2TB-207	0.3-1.3	11-18-2004 (12-03-2004)	ND < 0.50	10.0	
2TB-207	1.3-2.3	11-18-2004 (12-03-2004)	ND < 0.50	10.0	
2TB-207 (3)	2.3–4.3	11-18-2004 (12-03-2004)	0.55	10.0	
2TB-207	4.3-6.3	11-18-2004 (12-03-2004)	ND < 0.50	10.0	
MW-07 (2)	7-9	06-04-1998 (06-12-1998)	ND < 1.0	10.0	
MW-22 (2)	7–9	06-09-1998 (06-19-1998)	ND < 1.0	10.0	

Table A2.2 (continued)
Sampling and Analysis Data: Station B Yard Areas—Former Coal Yard

	Char	acterization Samples				
Sample Point	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion		
	SOIL					
SS-CC	0.0-0.3	04-03-2002 (04-08-2002)	ND < 0.50	SOIL 10,0		
SS-CC	0.3-1.3	04-03-2002 (04-08-2002)	ND < 0.50	10.0		
SS-DD	0.0-0.3	04-03-2002 (04-08-2002)	ND < 0.50	10.0		
SS-DD	0.3-1.3	04-03-2002 (04-18-2002)	ND < 0.50	10.0		
SS-EE	0.0-0.3	04-03-2002 (04-08-2002)	ND < 0.50	10.0		
SS-EE	0.3-1.3	04-03-2002 (04-08-2002)	ND < 0.50	10.0		
TB-09 (2)	3-7	06-04-1998 (06-12-1998)	ND < 1.0	10.0		
TB-10 (2)	11-13	06-04-1998 (06-12-1998)	ND < 1.0	10.0		
TB-C	2–4	05-10-2001 (05-15-2001)	ND < 0.50	10.0		
TB-CCCC	2.5-2.8	04-03-2002 (04-06-2002)	ND < 0.50	10.0		
TB-CCCC	2.8-3.8	04-03-2002 (04-06-2002)	ND < 0.50	10.0		
TB-CCCC	4.5-6.0	04-03-2002 (04-06-2002)	ND < 0.50	10.0		
TB-CCCC	10-12	04-03-2002 (04-06-2002)	ND < 0.50	10.0		
TB-D	2-4	05-11-2001 (05-18-2001)	ND < 0.50	10.0		
TB-DDDD	1.3-1.6	04-03-2002 (04-06-2002)	ND < 0.50	10.0		
TB-DDDD	1.6-2.6	04-03-2002 (04-06-2002)	ND < 0.50	10.0		
TB-DDDD	3.3-4.3	04-03-2002 (04-06-2002)	ND < 0.50	10.0		
TB-DDDD	15–17	04-03-2002 (04-06-2002)	ND < 0.50	10.0		
TB-EEEE	1.5-1.8	04-04-2002 (04-08-2002)	ND < 0.50	10.0		
TB-EEEE	1.8-2.8	04-04-2002 (04-08-2002)	ND < 0.50	10.0		
TB-EEEE	3.8-5.8	04-04-2002 (04-08-2002)	ND < 0.50	10,0		
TB-EEEE	10-12	04-04-2002 (04-08-2002)	ND < 0.50	10.0		
TB-F	0-2	05-11-2001 (05-18-2001)	ND < 0.50	10.0		
TB-JJJJ	1.5-1.8	04-04-2002 (04-08-2002)	ND < 0.50	10.0		
TB-JJJJ	1.8-2.8	04-04-2002 (04-08-2002)	ND < 0.50	10.0		
TB-JJJJ	3.5-5.0	04-04-2002 (04-08-2002)	ND < 0.50	10.0		
TB-JJJJ	5.0-5.5	04-04-2002 (04-08-2002)	ND < 0.50	10.0		
TB-KKKK	1.0-1.3	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-KKKK	1.3-2.3	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-KKKK	5–6	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-KKKK	5-6 D	04-02-2002 (04-11-2002)	ND < 0.50	10.0		
TB-LLLL	0.0-0.3	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-LLLL	0.3-0.6	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-LLLL	0.6–1.6	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-LLLL_	3.3-4.3	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-LLLL	4.3-6.3	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-MMMM	0.5-0.8	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-MMMM	0.8-1.8	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-MMMM	4.5-6.5	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-NNNN	1.0-1.3	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-NNNN	1.3-2.3	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-NNNN	4-5	04-04-2002 (04-09-2002)	ND < 0.50	10.0		
TB-0000	2.0-2.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0		
TB-0000	4-5	04-05-2002 (04-11-2002)	ND < 0.50	10.0		
TB-PPPP	0.3-0.6	04-05-2002 (04-11-2002)	ND < 0.50	10.0		

Table A2.2 (continued)

Sampling and Analysis Data: Station B Yard Areas—Former Coal Yard

	Chara	acterization Samples		•
Sample Point	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
		SOIL		SOIL
ТВ-РРРР	0.9-1.0	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-PPPP	2.3-4.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-QQQQ	0.0-0.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-QQQQ	0.3-2.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-QQQQ	2.3-4.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-RRRR	1.0-1.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-RRRR	3.3-3.9	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-RRRR	3.9-4.0	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-SSSS	2.2-2.5	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-SSSS	2.5-4.5	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-TTTT	0.0-0.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-TITT	1.0-1.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-TTTT	2.3-4.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0

Notes for Table A2.2:

(1) = Asphalt samples may include some base material (e.g., cobbles or gravel).
(2) = Result reported by GEI Consultants, Inc.
(3) = Sample also tested for leachable PCBs using the Synthetic Precipitation Leachate Procedure (SPLP). SPLP
PCBs were ND < 0.50 micrograms per liter (µg/L).

ND = Not detected.

<= Less than minimum detection limit.

Table A6.1
Sampling and Analysis Data: Station B Yard Areas—South And West Adjacent

Area 6.1: Former Coal Yard and Area Adjacent to Station B

TB-08B (2)

15-17

AOC #: 2, 3, 12N

PCB Area Description: Paved and unpaved areas south and west of Station B

Location Reference: Figure 6

Sample Matrix: Asphalt; concrete; soil; catch basin sediment; hexane wipe of steel surface

US EPA Method 8082

Units: Willigrams per kilogram (mg/kg), dry weight; micrograms per 100 square centimeters (µg/100 sq. cm)

Laboratory Results in: Appendix A

Characterization Samples Sample Point Depth (feet) Sampling Date Sample Result Cleanup Criterion (Analysis Date) ASPHALT ASPHALT (1) 0.0-0.25 03-12-2002 (03-14-2002) ND < 0.50 1.0 AOC2-CS6 ND < 0.50 1.0 0.0-0.3 04-05-2002 (04-10-2002) TB-AAAAA 0.0-0.3 ND < 0.50 1.0 04-05-2002 (04-10-2002) TB-BBBBB ND < 0.50 1.0 0.0-0.3 04-05-2002 (04-10-2002) TB-CCCCC ND < 0.501.0 TB-DDDDD 0.0-0.3 04-05-2002 (04-10-2002) ND < 0.50 1.0 TB-FFFF 0.0-0.3 04-04-2002 (04-08-2002) 0.0-0.3 04-05-2002 (04-10-2002) ND < 0.501.0 **TB-FFFFF** 04-05-2002 (04-10-2002) ND < 0.501.0 TB-GGGGG 0.0 - 0.3ND < 0.50 1.0 ТВ-ННННН 0.0 - 0.304-05-2002 (04-10-2002) ND < 0.50 1.0 TB-IIII 0.0 - 0.304-05-2002 (04-10-2002) 0.0-0.3 04-05-2002 (04-10-2002) ND < 0.50 1.0 TB-JJJJJ TB-KKKKK 0.0 - 0.304-05-2002 (04-10-2002) ND < 0.50 1.0 ND < 0.50 1.0 TB-UUUU 0.0-0.3 04-05-2002 (04-11-2002) ND < 0.50 0.0-0.3 04-05-2002 (04-11-2002) 1.0 TB-WWWW 0.0-0.3 ND < 0.50 1.0 04-05-2002 (04-11-2002) TB-YYYY ND < 0.50 1.0 6AS-001 1/2 inch 08-26-2004 (08-30-2004) 1.0 6AS-001D ND < 0.50 08-26-2004 (08-30-2004) 1/2 inch ND < 12 ** NA EB-06* NΛ 08-26-2004 (08-31-2004) CONCRETE CONCRETE 08-26-2004 (08-30-2004) ND < 0.50 1.0 6CO-065 1/2 inch SOIL SOIL 10.0 ND < 0.50 03-12-2002 (03-14-2002) AOC2-CS2 0-2 10.0 ND < 0.50 03-12-2002 (03-14-2002) AOC2-CS2 2-4 10.0 5-7 ND < 0.5003-12-2002 (03-14-2002) AOC2-CS2 ND < 0.50 10.0 0.25-2.0 03-12-2002 (03-14-2002) AOC2-CS6 ND < 0.50 10.0 2-4 03-12-2002 (03-14-2002) AOC2-CS6 5–7 ND < 0.50 10.0 AOC2-CS6 03-12-2002 (03-14-2002) ND < 1.0 10.0 MW-02 (2) 13-17 06-02-1998 (06-10-1998) 10.0 MW-03 (2) ND < 1.015-17 06-04-1998 (06-12-1998) TB-01 (2) 7-8 06-02-1998 (06-10-1998) ND < 1.0 10.0 TB-05 (2) 4-6 06-04-1998 (06-12-1998) ND < 1.0 10.0 $ND < \overline{1.0}$ TB-06 (2) 10.0 1-7 06-04-1998 (06-12-1998) TB-07 (2) ND < 1.0 10.0 5 06-04-1998 (06-12-1998) ND < 1.0 10.0 TB-07A (2) 7-9 06-04-1998 (06-12-1998) 10.0 TB-08A (2) ND < 1.0 1-3 06-04-1998 (06-12-1998) 10.0 TB-08B (2) 06-04-1998 (06-12-1998) ND < 1.0 9-11

06-04-1998 (06-12-1998)

ND < 1.0

10.0

Table A6.1 (continued)
Sampling and Analysis Data: Station B Yard Areas—South And West Adjacent

	Chara	cterization Samples		
Sample Point	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
		SOIL		SOIL
ТВ-ААЛАЛ	0.5-2.5	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-BBBBB	0.5-2.5	04-05-2002 (04-10-2002)	ND < 0.50	10.0
ТВ-ВВВВВ	2.5-4.5	04-05-2002 (04-10-2002)	ND < 0.50	10.0
ТВ-ВВВВВ	4.5-5.5	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-CCCCC	2–4	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-CCCCC	4-5	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-DDDDD	0.5-0.8	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-EEEEE	0.0-0.3	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-EEEEE	0.3-2.3	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-EEEEE	2.3-4.3	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-FFFF	0.5-0.8	04-04-2002 (04-08-2002)	ND < 0.50	10.0
TB-FFFF	2.5-3.5	04-04-2002 (04-08-2002)	ND < 0.50	10.0
TB-FFFF	3.5-4.5	04-04-2002 (04-08-2002)	ND < 0.50	10.0
TB-FFFFF	0.5-0.8	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-GGGGG	0.5-1.2	04-05-2002 (04-10-2002)	ND < 0.50	10.0
тв-нинин	0.5-2.5	04-05-2002 (04-10-2002)	ND < 0.50	10.0
тв-ннннн	2.5-4.5	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-I	2–4	05-14-2001 (05-18-2001)	ND < 0.50	10.0
TB-J	2–4	05-14-2001 (05-18-2001)	ND < 0.50	10.0
TB-JJJJJ	0.3-2.3	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-JJJJJ	2.3-4.3	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-KKKKK	1-2	04-05-2002 (04-10-2002)	ND < 0.50	10.0
ТВ-ККККК	4–5	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-L	2-4	05-14-2001 (05-18-2001)	ND < 0.50	10.0
TB-UUUU	1.2-1.5	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-UUUU	5-7	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-VVVV	0.0-0.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-VVVV	0.5-2.5	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-VVVV	2.5-4.5	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-WWWW	2.2-2.5	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-WWWW	2.5-4.5	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-XXXX	0.0-0.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-XXXX	2.3-4.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-XXXX	4.3-6.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-YYYY	2.0-2.3	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-YYYY	2.5-3.0	04-05-2002 (04-11-2002)	ND < 0.50	10.0
TB-YYYY	3–5	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-YYYY	5–7	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-ZZZZ	0.0-0.3	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-ZZZZ	0.3-2.3	04-05-2002 (04-10-2002)	ND < 0.50	10.0
TB-ZZZZ	2.3-4.3	04-05-2002 (04-10-2002)	ND < 0.50	10.0

Table A6.1 (continued)

Sampling and Analysis Data: Station B Yard Areas—South And West Adjacent

	Char	acterization Samples		
Sample Point	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
	CATC	H BASIN SEDIMENT		SEDIMENT
CB-1	0.00.8	05-10-2001 (05-15-2001)	ND < 0.50	1.0
	HEXANE W	TPE OF STEEL SURFACE		HEXANE WIPE
6HX-007	NA	08-26-2004 (09-01-2004)	ND < 10	10.0
6HX-007D	NA	08-26-2004 (09-01-2004)	ND < 10	10.0
Field Blank 2	NA	08-26-2004 (09-01-2004)	ND < 5.0	NΑ

Notes for Table A6.1:

- (1) = Asphalt samples may include some base material (e.g., cobbles or gravel).
- (2) = Result reported by GEI Consultants, Inc.
- NA = Not applicable. ND = Not detected.
- <= Less than minimum detection limit.
- * = Equipment Blank, matrix water. ** = Detection limit based on sample size supplied for analysis.

Table A6.2 Sampling and Analysis Data: Station B Yard Areas-Mill River East Branch

Area 6.2: Mill River East Branch Area

AOC#:	12E
PCB Area Description:	Mill River East Branch area
Location Reference:	Figure 6
Sample Matrix:	Soil
Analysis:	US EPA Method 8082
Units:	Milligrams per kilogram (mg/kg), dry weight
Laboratory Results in:	Appendix A

Characterization Samples

	Charact	cittation bampies		
Sample Point	Depth (feet)	Sampling Date (Analysis Date)	Sample Result	Cleanup Criterion
		SOIL		SOIL
MW-04D (1)	36-40	06-10-1998 (06-18-1998)	ND < 1.0	10.0
MW-05 (1)	2–4	05-26-1998 (06-07-1998)	ND < 1.0	10.0

Notes for Table A6.2:
(1) = Result reported by GE1 Consultants, Inc.
ND = Not Detected.

<= Less than minimum detection limit.

Table 1
SUMMARY OF PROCEDURES FOR PCB SAMPLING AND ANALYSIS

Sample Matrix	Sample Type	PCB Area(s)	Procedure ^(1, 2)
Concrete	Cores (drilling	1.1,1.2, 2.2,	EPA's "Draft Standard Operating
	dust)	6.1	Procedure for Sampling Concrete in the
			Field", December 30, 1997.
Ground Water	Low Flow	2.2, 6.1, 6.2	AEI's Standard Operating Procedure
			(SOP) "Low Stress/Low Flow Ground
			Water Sampling", SOP-002.
Motor Oil	Grab	1.1	Oil was collected from motor reservoirs
			using suction bulbs and placed directly
			into sample containers. Samples were
			handled in general accordance with
			standard methods as shown in AEI SOP-
			002.
Sediment	Polyethylene scoop	2.2, 6.1	AEI's SOP "Sediment Sampling", SOP-
Soil (test boring)	Split-spoon	2.2, 6.1, 6.2	AEI's SOP "Soil Sampling with a Split-
	sampler		spoon Sampler", SOP-004.
Soil (surface)	Hand auger	1.3, 2.1	Undisturbed surface samples were
·			collected using a hand auger or
			dedicated scoop. Samples were handled
			in general accordance with AEI SOP-
			003.
Steel (non-porous)	Hexane Wipe	1.1, 6.1	EPA's SOP for "Chip, Wipe, and Sweep
			Sampling", No. 2011, November 16,
			1994.
Wood	Chips	1.1	Wood sampling was done by others; the
			procedure used is not available.

Notes:

(1) = Sampling was performed in general accordance with the procedures shown herein. The procedures cited above are in Appendix A.

(2) = Samples were laboratory-tested for polychlorinated biphenyls (PCBs) using USEPA Method 8082. The laboratory SOP for this procedure is also in Appendix A.

Table A1.1a

SAMPLING AND ANALYSIS DATA: STATION B INTERIOR - OVERHEAD CRANE

Area 1.1: Station B-Overhead Crane

AOC#:	1
PCB Area Description:	Overhead crane: motor and non-porous steel surface
Location Reference:	Figure A1.1 (Individual sample locations not shown.)
Sample Matrix:	Motor oil; hexane wipe of steel surface
Analysis:	US EPA Method 8082
Units:	Milligrams per kilogram (mg/kg); micrograms per 100 square centimeters (µg/100 sq. cm)
Laboratory Results in:	Appendix B

Laboratory Results in: | Appendix B Verification Samples Characterization Samples Sample Sampling Date Sample Result Sample Result Sample Point Sampling Date (Analysis Date) (Analysis Date) Point MOTOR OIL MOTOR OIL ND < 2.0 (1) RS-CS1 (1) 6.6 (1) 03-21-02 (03-28-02) NEM (1) 07-18-01 (07-25-01) 6.6 ⁽¹⁾ SEM (1) 07-18-01 (07-25-01) 11-16-MISC-113 (2) 4.0 (2) 11-18-99 (11-29-99) HEXANE WIPE OF STEEL SURFACE **HEXANE WIPE OF STEEL SURFACE** ND < 5.0 03-21-02 (04-04-02) CR-CS01 ND < 5.0 03-21-02 (04-04-02) CR-CS02 ND < 5.0 CR-CS03 03-21-02 (03-26-02) 03-21-02 (04-04-02) ND < 5.0 CR-CS04 ND < 5.0 03-21-02 (03-26-02) CR-CS05 ND < 5.0 CR-CS06 03-21-02 (03-26-02) ND < 5.0 03-21-02 (04-04-02) CR-CS07 ND < 5.0 03-21-02 (04-04-02) CR-CS08 03-21-02 (04-04-02) ND < 5.0 CR-CS09 03-21-02 (04-04-02) ND < 5.0 CR-CS10 ND < 5.0 CR-CS11 03-21-02 (03-26-02) ND < 5.0 03-21-02 (04-04-02) **CR-CS12** 03-21-02 (04-04-02) ND < 5.0 CR-CS13 ND < 5.0 CR-CS14 03-21-02 (04-04-02) ND < 5.0 03-21-02 (04-04-02) CR-CS15 ND < 5.0 CR-CS16 03-21-02 (03-26-02) ND < 5.0 CR-CS17 03-21-02 (04-04-02) ND < 5.0 04-19-02 (04-23-02) CR-CS18B ND < 5.0 CR-CS18 03-21-02 (04-04-02) ND < 5.0 CR-CS19B 04-19-02 (04-23-02) 25 CR-CS19 03-21-02 (03-26-02) 03-21-02 (04-04-02) ND < 5.0 CR-CS20 03-21-02 (04-04-02) ND < 5.0 CR-CS21 ND < 5.0 CR-CS22 03-21-02 (03-26-02) ND < 5.0 03-21-02 (04-04-02) CR-CS23 ND < 5.0 03-21-02 (03-26-02) CR-CS24 ND < 5.0 CR-CS25 03-21-02 (03-26-02) ND < 5.0 03-21-02 (04-04-02) CR-CS26 ND < 5.0 CR-CS27 03-21-02 (03-26-02) ND < 5.0 CR-CS28 03-21-02 (04-04-02) ND < 5.0 CR-CS29 03-21-02 (04-04-02)

Table A1.1a (cont)

Area 1.1: Station B-Overhead Crane

AOC#: PCB Area Description: Overhead crane: motor and non-porous steel surface Location Reference: Figure A1.1 (Individual sample locations not shown.) Sample Matrix: Hexane wipe of steel surface Analysis: US EPA Method 8082 Units: Micrograms per 100 square centimeters (µg/100 sq. cm) Laboratory Results in: Appendix B

	Characterization Samples		Verification Samples		
Sample Point	Sampling Date (Analysis Date)	Sample Result	Sample Point	Sampling Date (Analysis Date)	Sample Result
HEX	ANE WIPE OF STEEL S	URFACE	HEX	ANE WIPE OF STEEL	SURFACE
CR-CS30	03-21-02 (03-26-02)	ND < 5.0			
CR-CS31	03-21-02 (03-26-02)	ND < 5.0			
CR-CS32	03-21-02 (04-04-02)	ND < 5.0			
CR-CS33	03-21-02 (03-26-02)	ND < 5.0			
CR-C534	03-21-02 (04-04-02)	ND < 5.0			
CR-CS35	03-21-02 (04-04-02)	ND < 5.0			
CR-CS36	03-21-02 (04-04-02)	ND < 5.0			
CR-CS37	03-21-02 (03-26-02)	ND < 5.0			
CR-CS38	03-21-02 (04-04-02)	ND < 5.0			
CR-CS39	03-21-02 (03-26-02)	ND < 5.0			
CR-CS40	03-21-02 (04-04-02)	ND < 5.0			
CR-CS41	03-21-02 (03-26-02)	ND < 5.0			
CR-CS42	03-21-02 (04-04-02)	ND < 5.0			
CR-CS43	03-21-02 (03-26-02)	ND < 5.0			
CR-CS44	03-21-02 (03-26-02)	ND < 5.0			
CR-CS45	03-21-02 (04-04-02)	ND < 5.0			
CR-CS46	03-21-02 (04-04-02)	ND < 5.0			
CR-CS47	03-21-02 (03-26-02)	ND < 5.0			
Field Blank 1	03-21-02 (03-26-02)	ND < 5.0		<u></u>	_
Field Blank 2	03-21-02 (04-12-02)	ND < 5.0		ļ	_
Field Blank 3	03-21-02 (04-12-02)	ND < 5.0			1

Notes for Table A1.1a:

Bold indicates that detected concentration exceeds associated cleanup criterion.

^{(1) =} Sample of oil from a motor on the crane. Result reported as milligrams per kilogram (mg/kg), wet weight.
(2) = Result reported by GEI Consultants, Inc., who did not indicate that the result is reported as wet weight.

NA = Not applicable.

ND = Not detected.

< = Less than minimum detection limit.

Table A1.1b

SAMPLING AND ANALYSIS DATA: STATION B INTERIOR - MEZZANINE AND FIRST FLOOR

Area 1.1: Station B-Mezzanine and first floor

AOC #: 1

PCB Area Description: Mezzanine and first floor, excluding Annex III

Location Reference: Figure A1.1 (AEI Sample Points only)

Concrete; wood

Analysis: US EPA Method 8082

Units: Milligrams per kilogram (mg/kg), dry weight

Laboratory Results In: Appendix B

Characterization Samples					
Sample Point	Depth	Sampling Date	Sample Result		
·	(feet)	(Analysis Date)			
F	IRST FLC	OR: CONCRETE FLOOR			
11-16-MISC-121 (1)	NS	11-19-1999 (12-01-1999)	ND < 1.0		
1CO-01	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50		
1CO-02	1/2 inch	06-16-2004 (06-22-2004)	0.57		
1CO-03	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50		
1CO-04	1/2 inch	06-16-2004 (06-22-2004)	0.98		
1CO-05	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50		
1CO-05D	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50		
1CO-06	1/2 inch	06-16-2004 (06-22-2004)	0.52		
1CO-07	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50		
1CO-08	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50		
1CO-09	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50		
1CO-10	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50		
1CO-11	1/2 inch	06-16-2004 (06-22-2004)	ND < 0.50		
FIRST FLOOR: WOOD CHIPS					
11-16-MISC-123 (1)	NS	11-19-1999 (12-01-1999)	ND < 1.0		
MEZZANINE: WOOD CHIPS					
11-16-MISC-124 (1)	NS	11-19-1999 (12-01-1999)	ND < 1.0		
11-16-MISC-125 (1)	NS	11-19-1999 (12-01-1999)	ND < 1.0		

Notes for Table A1.1b:

(1) = Result reported by GEI Consultants, Inc., who did not indicate that the results are reported as dry weight.

ND = Not Detected.

NS = Not Specified.

< = Less than minimum detection limit.

Table A1.2

SAMPLING AND ANALYSIS DATA: STATION B INTERIOR - ANNEX III FACILITY

Area 1.2: Station B-Annex III

AOC #: 1
PCB Area Description: Annex III: porous concrete floor and containment berm
Location Reference: Figures A1.1, A1.2 (AEI Sample Points only.)
Concrete Analysis: US EPA Method 8082
Units: Milligrams per kilogram (mg/kg), dry weight
Laboratory Results In: Appendix B

Characterization Samples

1" and 2" Verification Samples	ניו
--------------------------------	-----

Characterization Samples			1" and 2" Verification Samples "		
Sample Point	Sampling Date (Analysis Date)	Sample Result	Sample Point	Sampling Date (Analysis Date)	Sample Result
ANNEX III CONCRETE FLOOR				ANNEX III CONCRETE FLOOR	
1CO-14	06-16-04 (06-22-04)	ND < 0.50			
A-1	07-18-01 (07-20-01)	ND < 0.50			
A-2	07-18-01 (07-20-01)	ND < 0.50			
A-3	07-18-01 (07-20-01)	ND < 0.50			
A-4	07-18-01 (07-20-01)	ND < 0.50			
B-1	07-18-01 (07-20-01)	17.4	J-1	05-09-02 (05-13-02)	ND < 0.50
			1-1	05-09-02 (05-13-02)	0.50
			K-1.5	08-26-02 (08-29-02)	ND < 0.50
B-2	07-18-01 (07-20-01)	45	J-2	05-09-02 (05-13-02)	ND < 0.50
			I-2	05-09-02 (05-13-02)	1.6
			K-2.5	08-26-02 (08-29-02)	1.4
B-3	07-18-01 (07-20-01)	2.4	J-3	05-09-02 (05-13-02)	ND < 0.50
			1-3	05-09-02 (05-13-02)	1.1
			I-3a (2)	05-09-02 (05-13-02)	0.65
			K-3.5	08-26-02 (08-29-02)	ND < 0.50
			K-3.5 dup	08-26-02 (08-29-02)	ND < 0.50
B-4	07-18-01 (07-20-01)	ND < 0.50	J-4	05-09-02 (05-13-02)	ND < 0.50
			1-4	05-09-02 (05-13-02)	ND < 0.50
1CO-13	06-16-04 (06-22-04)	ND < 0.50			
1CO-15	06-16-04 (06-22-04)	ND < 0.50	<u> </u>		
C-1	07-18-01 (07-20-01)	1.3	H-1	05-09-02 (05-13-02)	ND < 0.50
			L-1.5	08-26-02 (08-29-02)	ND < 0.50
C-2	07-18-01 (07-20-01)	1.5	H-2	05-09-02 (05-13-02)	ND < 0.50
			L-2.5	08-26-02 (08-29-02)	ND < 0.50
C-3	07-18-01 (07-20-01)	0.98	H-3	05-09-02 (05-13-02)	ND < 0.50
			L-3.5	08-26-02 (08-29-02)	ND < 0.50
C-4	07-18-01 (07-20-01)	ND < 0.50			
D-1	07-18-01 (07-20-01)	0.94			
D-2	07-18-01 (07-20-01)	0.77			
D-3	07-18-01 (07-20-01)	ND < 0.50			
D-4	07-18-01 (07-20-01)	ND < 0.50			
E-1	07-18-01 (07-20-01)	0.69			
E-2	07-18-01 (07-20-01)	0.98			
E-3	07-18-01 (07-20-01)	0.51			<u></u>

Table A1.2 (cont)

Area 1.2: Station B-Annex III

AOC #:

PCB Area Description:
Location Reference:
Sample Matrix:
Analysis:
Units:
Laboratory Results In:

Ancex III: porous concrete floor and containment berm
Figures A1.1, A1.2 (AEI Sample Points only)

Concrete
US EPA Method 8082
Milligrams per kilogram (mg/kg), dry weight
Appendix B

Characterization Samples Sample Result Sample Point Sampling Date (Analysis Date) ANNEX III CONCRETE FLOOR $ND < 1.0^{(3)}$ 07-18-01 (07-20-01) E-4 ND < 0.50 1CO-16 06-16-04 (06-22-04) 0.80 SE-1 07-18-01 (07-20-01) ND < 0.50 1CO-12 06-16-04 (06-22-04) ND < 0.50 F-2 07-18-01 (07-20-01) ND < 1.0 (3) F-3 07-18-01 (07-20-01) ND < 1.0 (3) 07-18-01 (07-20-01) F-4 07-18-01 (07-20-01) ND < 1.0 (3) SF-1 ND < 1.0 (3) SF-3 07-18-01 (07-20-01) ND < 1.0 (3) 07-18-01 (07-20-01) G-2 ND < 1.0 (3) 07-18-01 (07-20-01) G-3 ND < 12 (4) 06-16-04 (06-21-04) 1CO-EB01 15 CS-5 (6) 06-11-98 (06-23-98) 11-16-MISC-114 (5) 11-18-99 (11-29-99) ND < 1.0 11-16-MISC-115 (5) ND < 1.0 11-18-99 (11-29-99)

Sample Point	Sampling Date (Analysis Date)	Sample Result			
	ANNEX III CONCRETE FLOOR				
		ļ			
		ļ			
		1 17 - 2 52 (4)			
Field blank	05-09-02 (05-13-02)	ND < 0.50 ⁽⁴⁾			
Equip. Blank	08-26-02 (08-29-02)	ND < 10 ⁽⁴⁾			
		<u> </u>			

1st and 2nd Verification Samples (1)

Notes for Table A1.2:

11-16-MISC-116 (5)

- (1) = Sample locations selected using a 5-foot grid.
- (2) = Duplicate sample.
- (3) = Minimum detection limit (MDL) affected by matrix interference.

11-18-99 (11-29-99)

- (4) = Water matrix. Units are micrograms per liter (µg/L).
- (5) = Result reported by GEI Consultants, Inc., who did not indicate that the results are reported as dry weight.

ND < 1.0

- ND = Not Detected.
- < = Less than minimum detection limit.
- Bold indicates that detected concentration exceeds associated cleanup criterion.
- Depth = 1/2 inch for all AEI samples. Depth not specified for GEI samples.