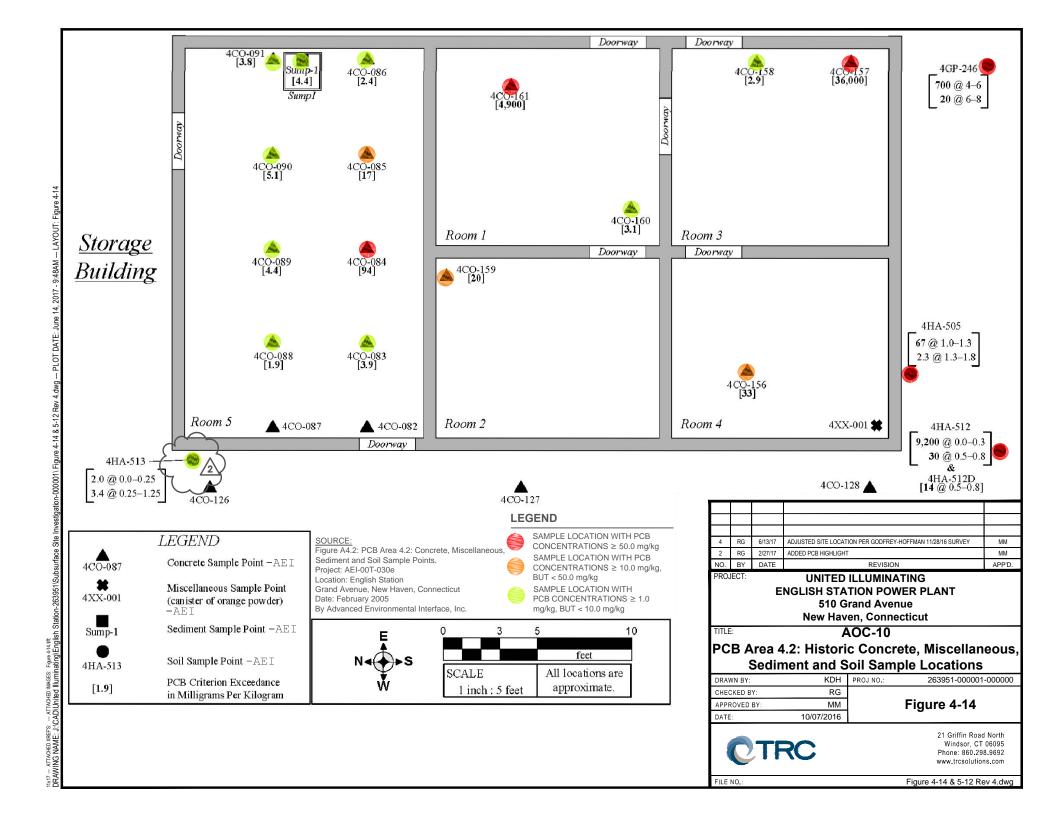

FILE NO

Figure 4-13B Rev 4.dwg

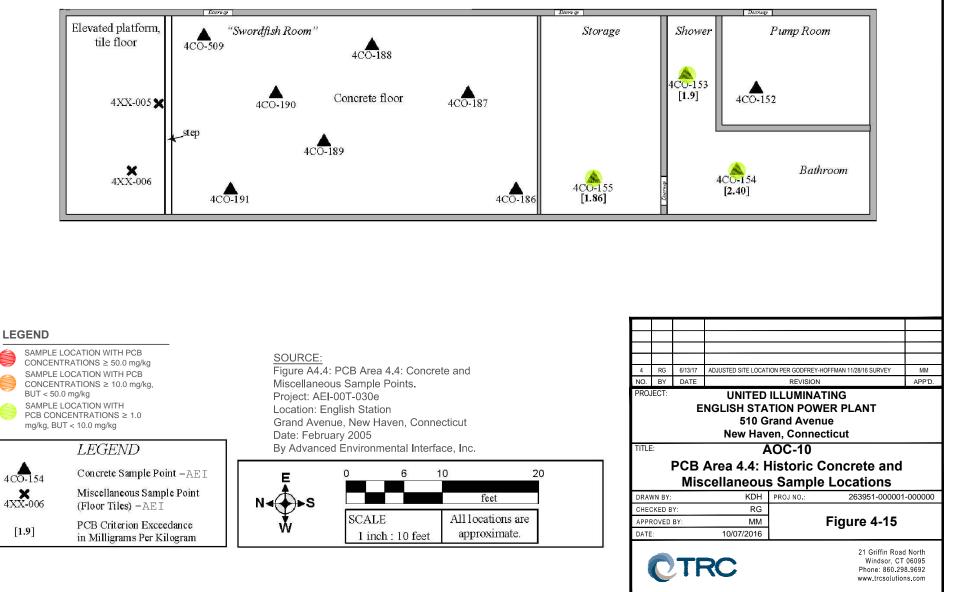
MM

APP'D.

Concrete Pad P13A

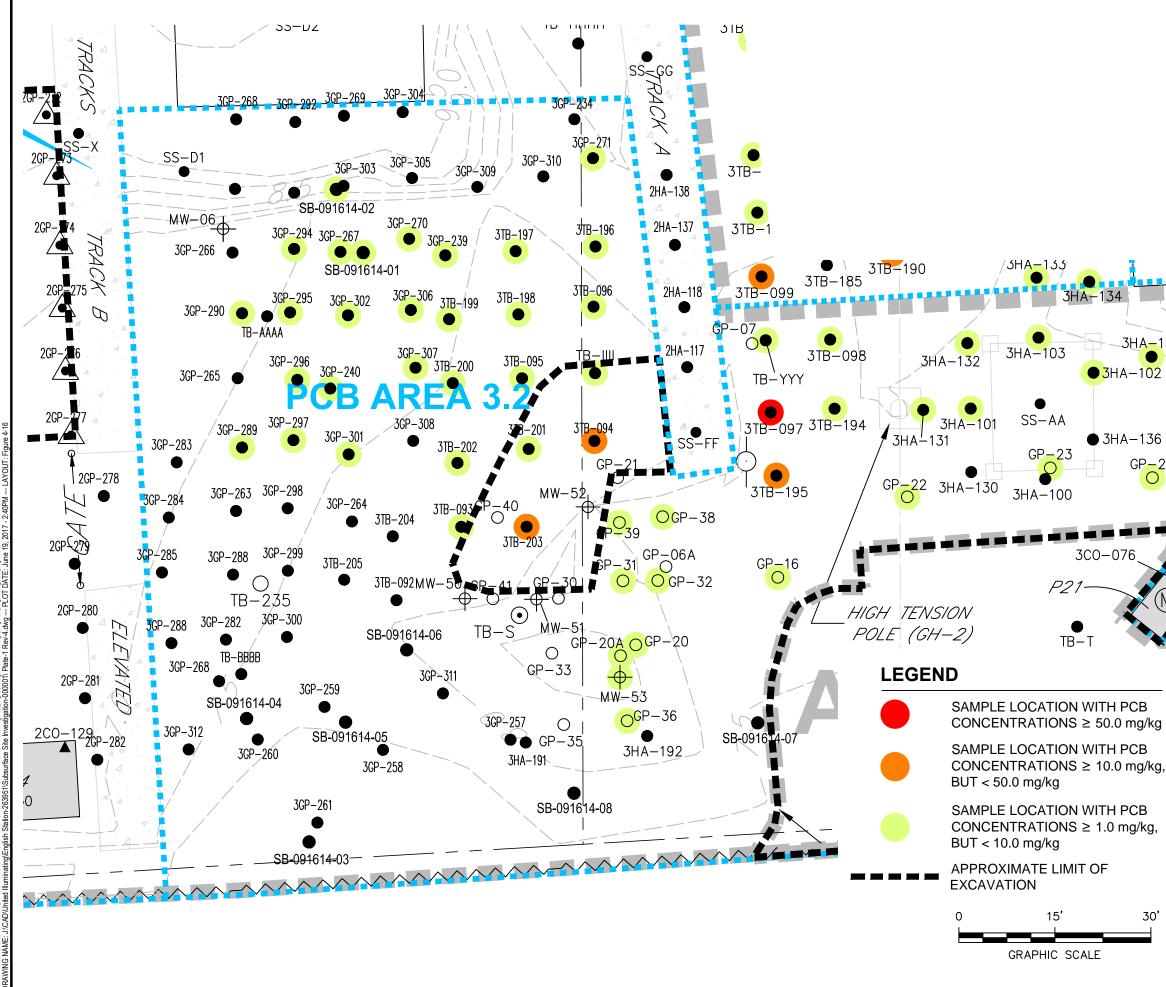

LEGEND

BUT < 50.0 mg/kg


4CO-135

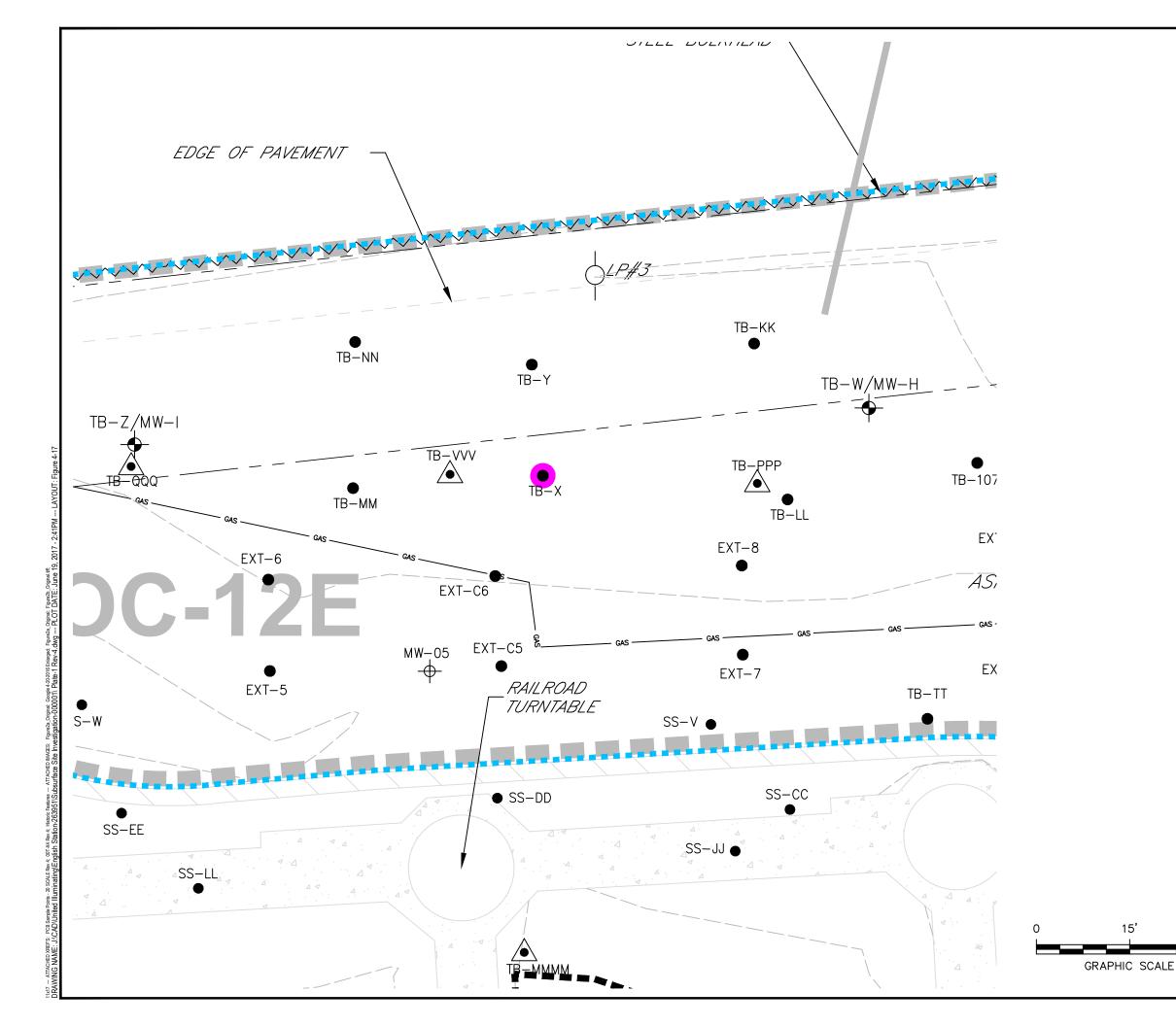
[1.6]

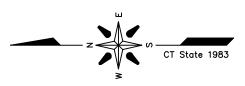
Figure 4-13C Rev 4.dwg



Assembly Hall

FILE NO.

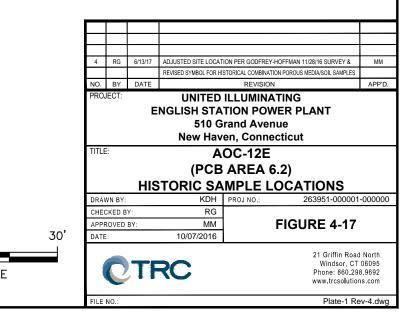

Figure 4-15 & 5-13 Rev 4.dwg

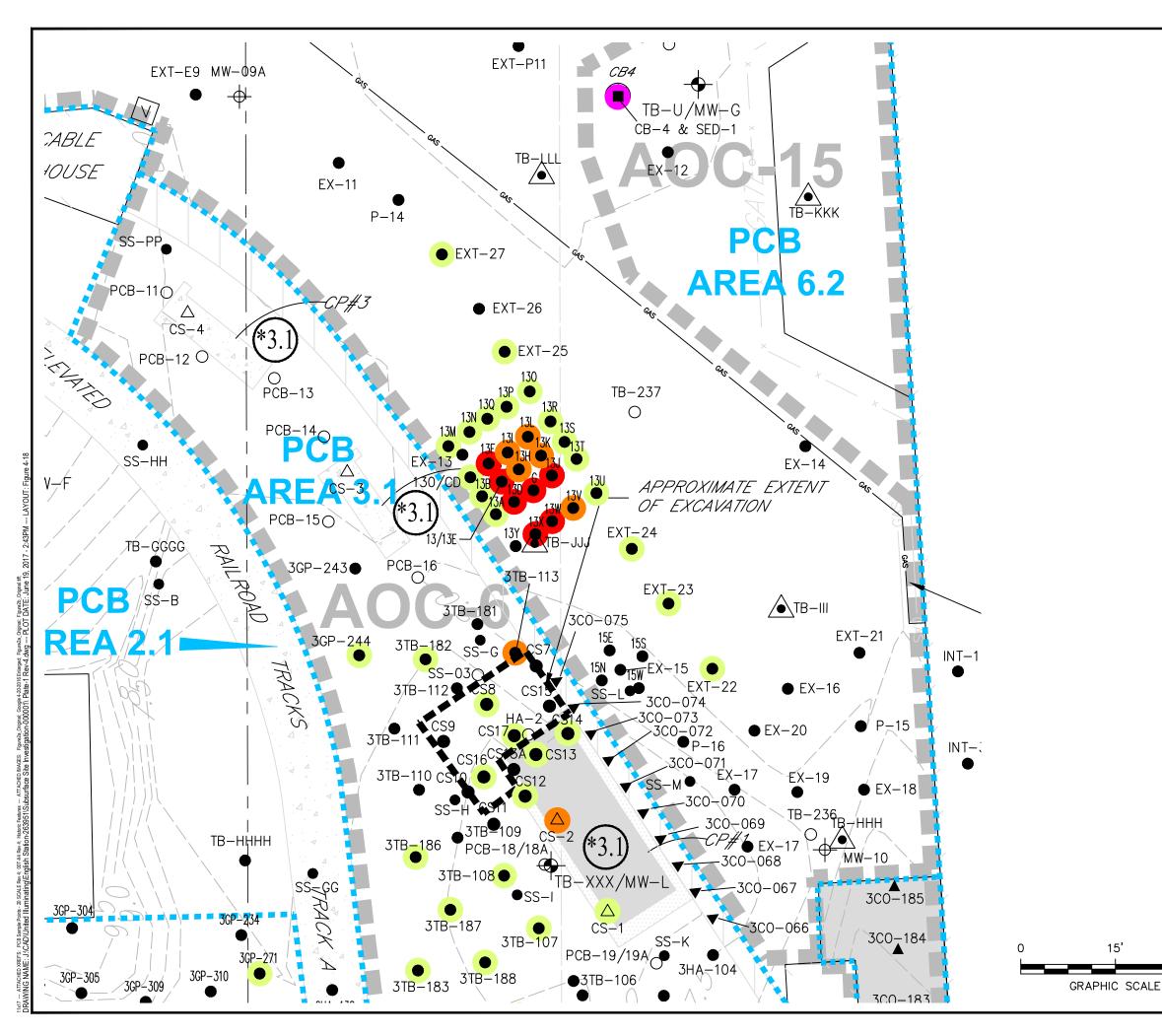


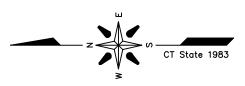
CT State 1983 3CO-182 3AS-04 3HA-135 HA-33AS-04 Ο GP-24 CGP-15 O GP = 013HA-11 NOTE: SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION. D SITE LOCATION PER GODFREY-HOFFMAN 11/28/16 SURVEY (REVISED SYMBOL FOR HISTORICAL COMBINATION POROUS MEDIA/SOIL SAMPL NO. BY DATE UNITED ILLUMINATING ROJEC **ENGLISH STATION POWER PLANT** 510 Grand Avenue New Haven, Connecticut AOC-12 TITI F (PCB AREA 3.2) HISTORIC SAMPLE LOCATIONS DRAWN BY: KDH PROJ NO.: 263951-000001-000000

30'

CHECKED BY: RG PPROVED BY: MM FIGURE 4-16 10/07/2016 DATE 21 Griffin Road North Windsor, CT 06095 **C**TRC Phone: 860.298.9692 www.trcsolutions.com Plate-1 Rev-4.dwg


SAMPLE LOCATION WITH PCB CONCENTRATIONS \geq 50.0 mg/kg

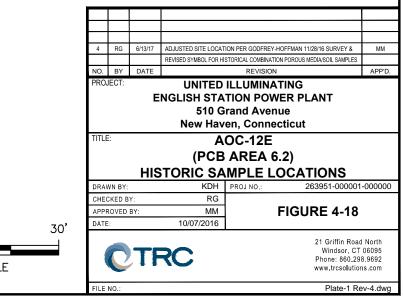

SAMPLE LOCATION WITH PCB CONCENTRATIONS \geq 10.0 mg/kg, BUT < 50.0 mg/kg

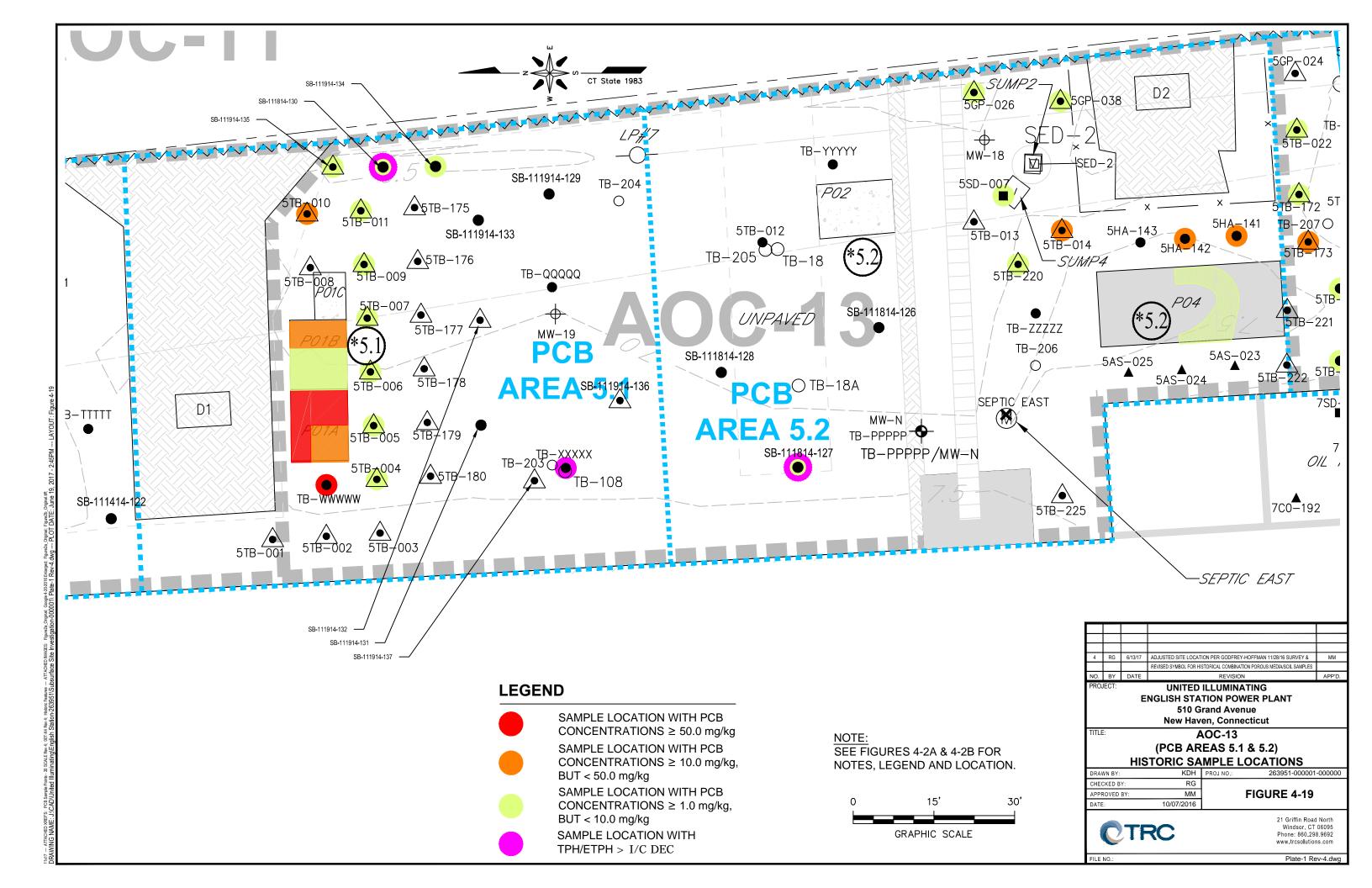

SAMPLE LOCATION WITH PCB CONCENTRATIONS \geq 1.0 mg/kg, BUT < 10.0 mg/kg

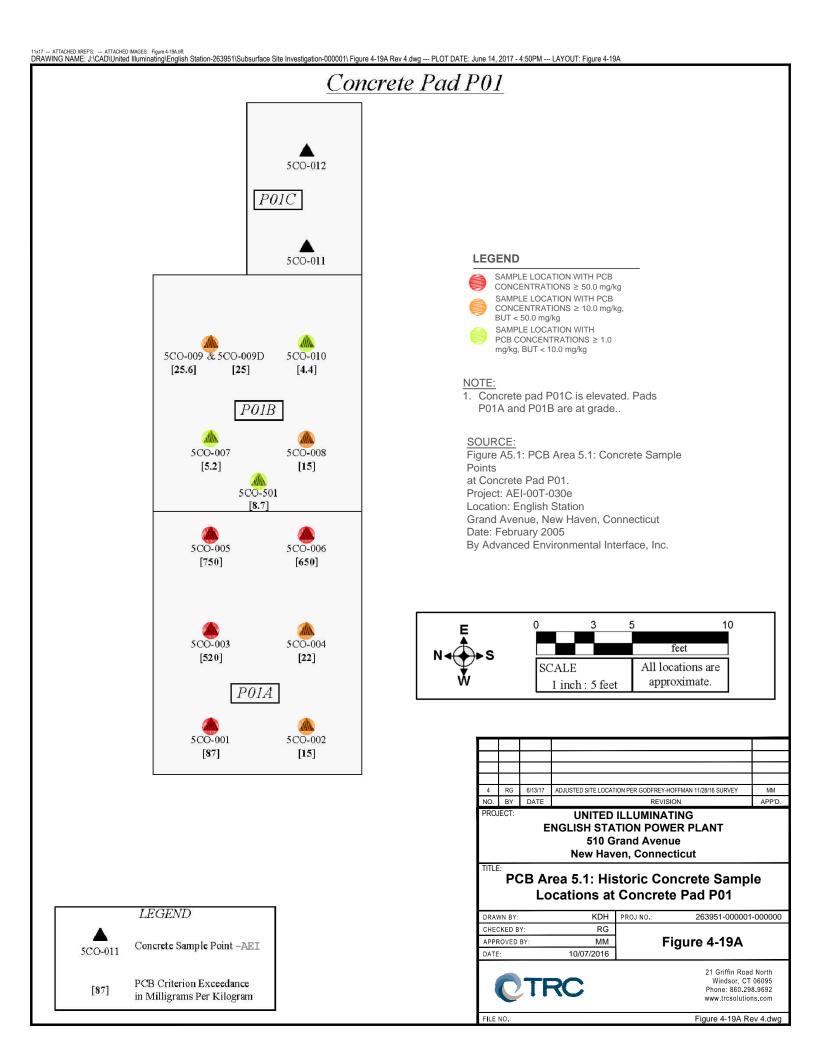
SAMPLE LOCATION WITH TPH/ETPH > I/C DEC

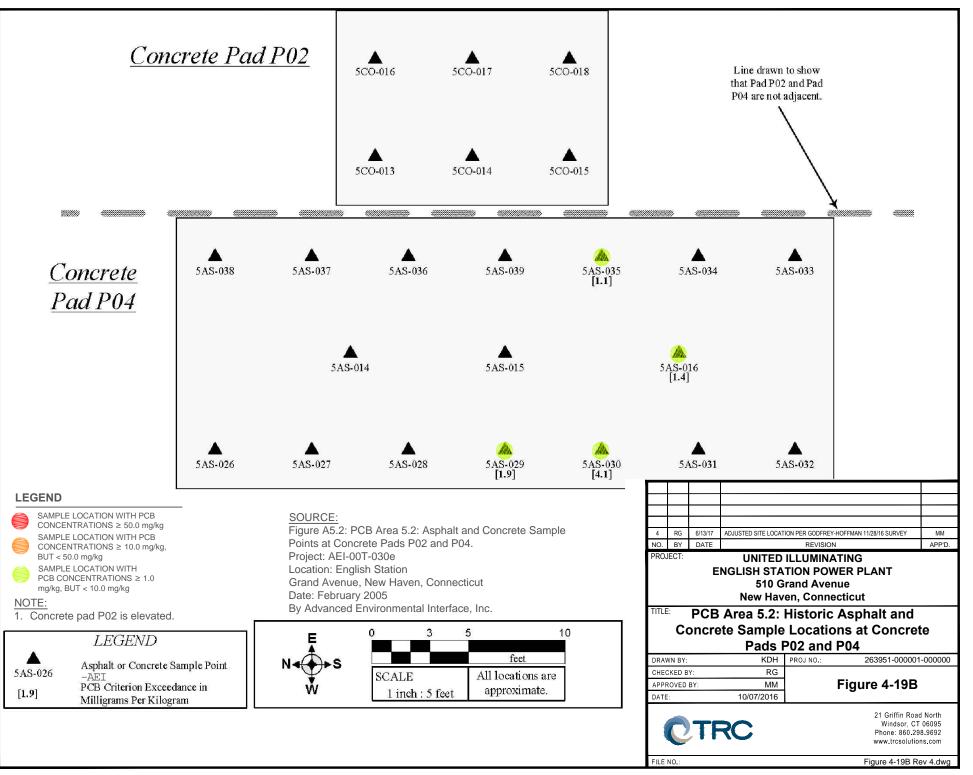
NOTE: SEE FIGURES 4.2A & 4.2B FOR NOTES, LEGEND AND LOCATION.

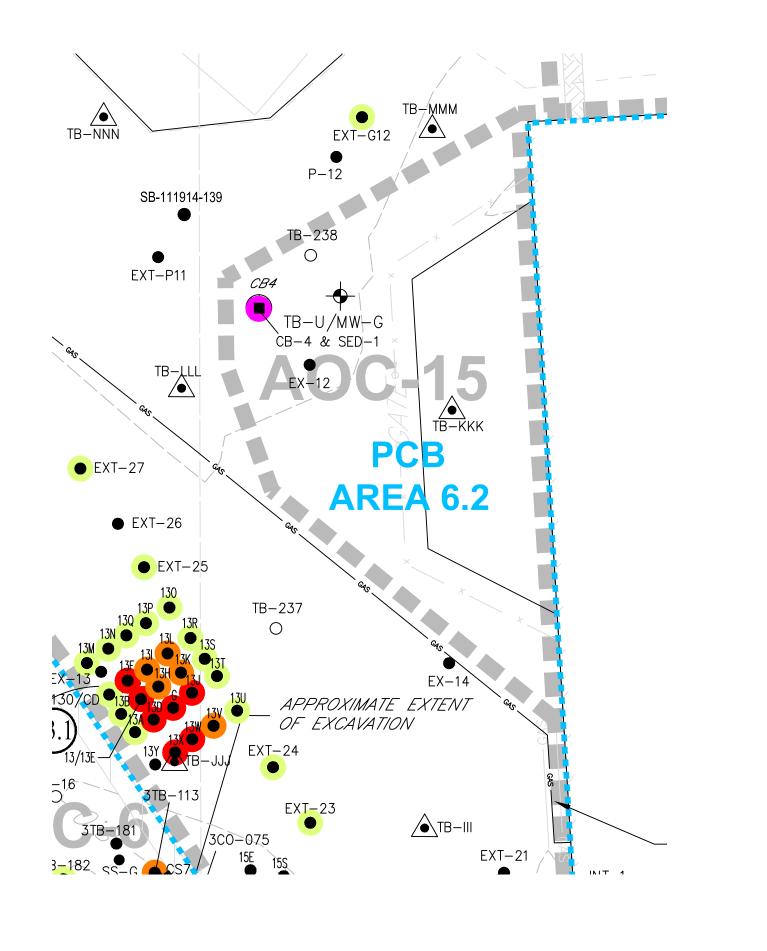
SAMPLE LOCATION WITH PCB CONCENTRATIONS \geq 50.0 mg/kg

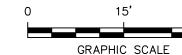

SAMPLE LOCATION WITH PCB CONCENTRATIONS \geq 10.0 mg/kg, BUT < 50.0 mg/kg

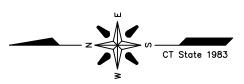

SAMPLE LOCATION WITH PCB CONCENTRATIONS \geq 1.0 mg/kg, BUT < 10.0 mg/kg

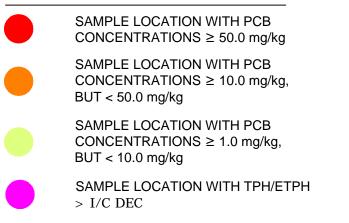

SAMPLE LOCATION WITH TPH/ETPH > I/C DEC

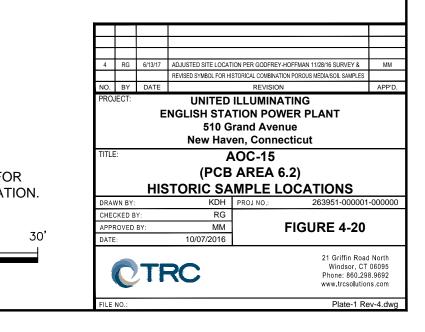

APPROXIMATE LIMIT OF EXCAVATION

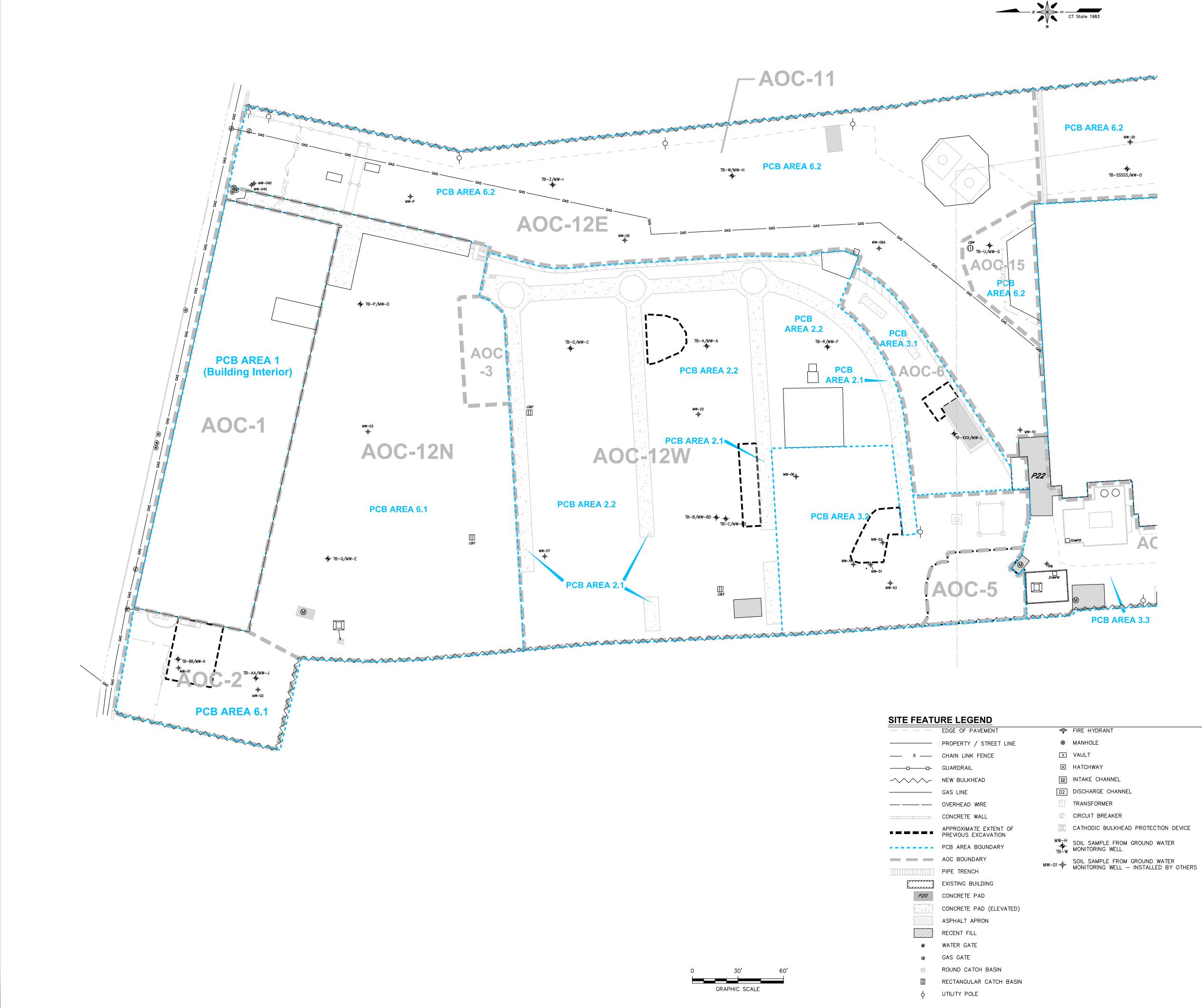

NOTE: SEE FIGURES 4.2A & 4.2B FOR NOTES, LEGEND AND LOCATION.








NOTE: SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION.



LEGEND

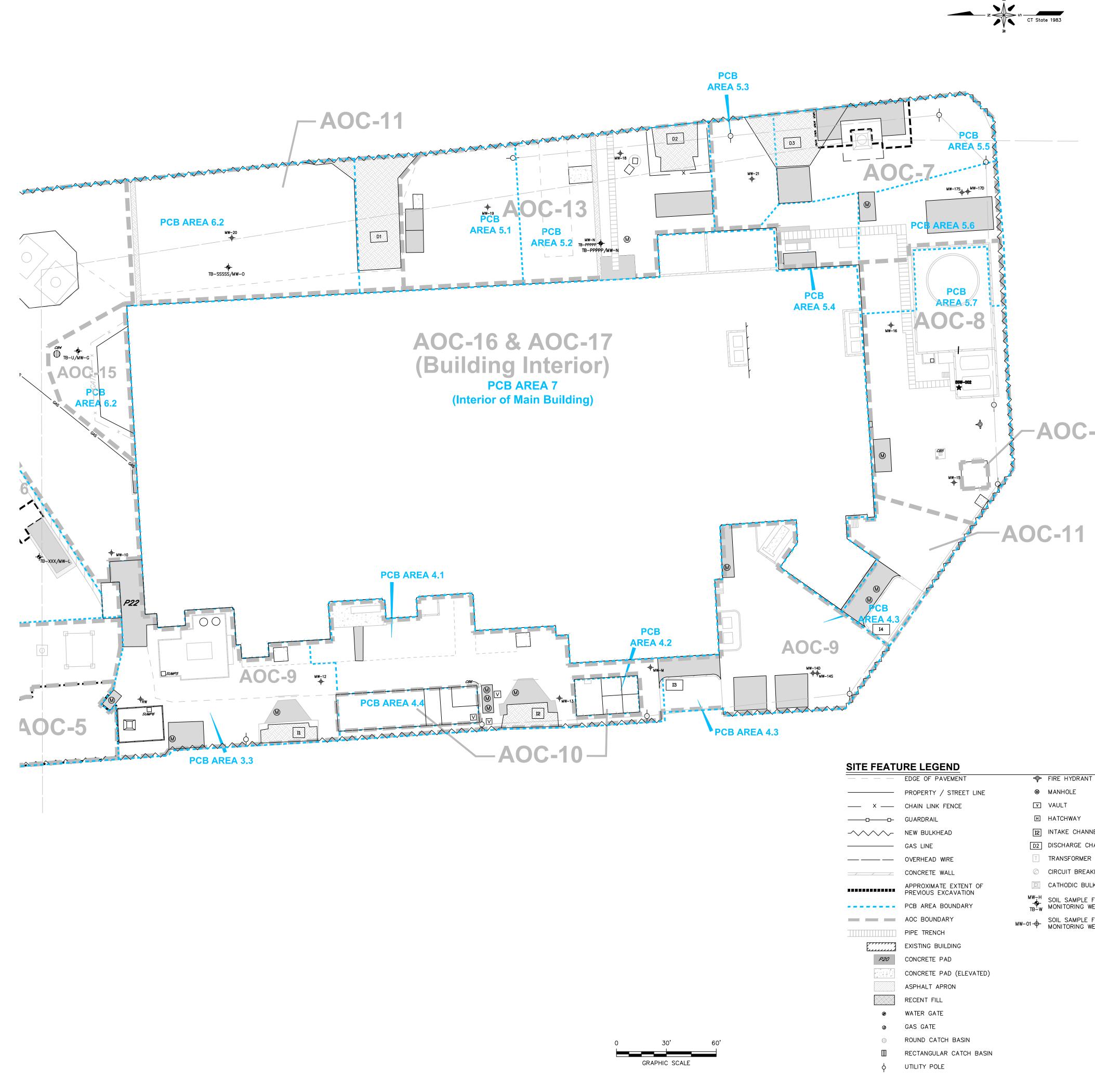
			v	
		PROPERTY / STREET LINE	6	М
	×	CHAIN LINK FENCE	V	V
	O	GUARDRAIL	н	H.
	-~~~~	NEW BULKHEAD	12	IN
		GAS LINE	D2	DI
		OVERHEAD WIRE	Τ	Τł
		CONCRETE WALL	\bigcirc	C
		APPROXIMATE EXTENT OF PREVIOUS EXCAVATION		C.
		PCB AREA BOUNDARY	М₩–Н - Ф - ТВ-W	S(M
		AOC BOUNDARY	мw–01 - ф-	
		PIPE TRENCH	¥	М
		EXISTING BUILDING		
	P20	CONCRETE PAD		
		CONCRETE PAD (ELEVATED)		
		ASPHALT APRON		
		RECENT FILL		
	Ø	WATER GATE		
	Ø	GAS GATE		
30' 60'	0	ROUND CATCH BASIN		
	Ш	RECTANGULAR CATCH BASIN		
GRAPHIC SCALE	¢	UTILITY POLE		

General Notes for Figures 4.2A and 4.2B

- [1] Several base maps were used for site features and Sample Point locations. These contain some discrepancies that have not been resolved. Locations are approximate.
- [2] Not all structural details have been shown within buildings and enclosures.
- [3] Most Sample Point locations were field-located and have not been surveyed. Not all Sample Points
- are mapped.
- [4] Godfrey-Hoffman Associates, LLC supplied a General Location Survey base map: Project 01-182; January 4, 2002 with revisions to June 21, 2002; scale 1 inch = 40 feet.
- [5] These Figures are not intended for construction purposes.

PCB Investigation Areas

- PCB Area 1: Station B Interior Area 1.1 Mezzanine and First Floor, except Annex III Area 1.2 Former Annex III
- Area 1.3 Basement PCB Area 2: Former Coal Yard
- Area 2.1 Elevated Railroad Tracks and Foundations Area 2.2 Remainder of Former Coal Yard
- PCB Area 3: Electrical Infrastructure and Excavation Area 3.1 Former Capacitor Area
- Area 3.2 United Illuminating Remediation Area Area 3.3 Transformer and Capacitor Area
- PCB Area 4: Southwest Corner Area 4.1 Former Transformer Area
- Area 4.2 Storage and Shop Building Interior Area 4.3 Transformer and Former Capacitor Area
- Area 4.4 Assembly Hall Interior PCB Area 5: Southeast Corner
- Area 5.1 Former Dumpster Area Area 5.2 Former Wastewater Treatment Area
- Area 5.3 Oil Pump House Area
- Area 5.4 Former Waste Oil Tank Area Area 5.5 Tower GH-4 Area
- Area 5.6 Former Storage Building Area Area 5.7 Fuel Oil Tank Area
- PCB Area 6: Balance of Site, Except English Station
- Area 6.1 Former Station B Area Area 6.2 Mill River East Branch Area
- PCB Area 7: English Station Interior


- CATHODIC BULKHEAD PROTECTION DEVICE

<u>SOURCE:</u> MAP TITLED "FIGURE 3N, MASS ANALYSIS PCB SAMPLE POINT LOCATIONS-NORTH, PREPARED FOR QUINNIPIAC ENERGY, LLC., ENGLISH STATION, 510 GRAND AVENUE, NEW HAVEN, CT." DATED: 3/1/10, SCALE: 1"=20', BY ADVANCED ENVIRONMENTAL INTERFACE, INC.

4	RG	6/13/17	ADJUSTED SITE LOCATI	ON PER GODFREY-HO	FFMAN 11/28/16 SURVEY	MM
1	RG	1/9/17	FIGURE ADDED TO SO	COPE OF STUDY		MM
NO.	BY	DATE		REVISION		APP'D
TITLE		ISTOF		RING WELL		3
TITLE	H	ISTOF		_	LOCATIONS	
DRAW	H		- PA	RCEL A		
DRAW	И вү:		- РА кон	PROJ. NO.:		
DRAW	N BY: KED BY: OVED BY		- PA KDH RG	PROJ. NO.:	263951-0000	

FILE NO.:

Plate-1 Rev-4.dwg

General Notes for Figures 4.21A and 4.21B

[1] Several base maps were used for site features and Sample Point locations. These contain some

discrepancies that have not been resolved. Locations are approximate.

[2] Not all structural details have been shown within buildings and enclosures.

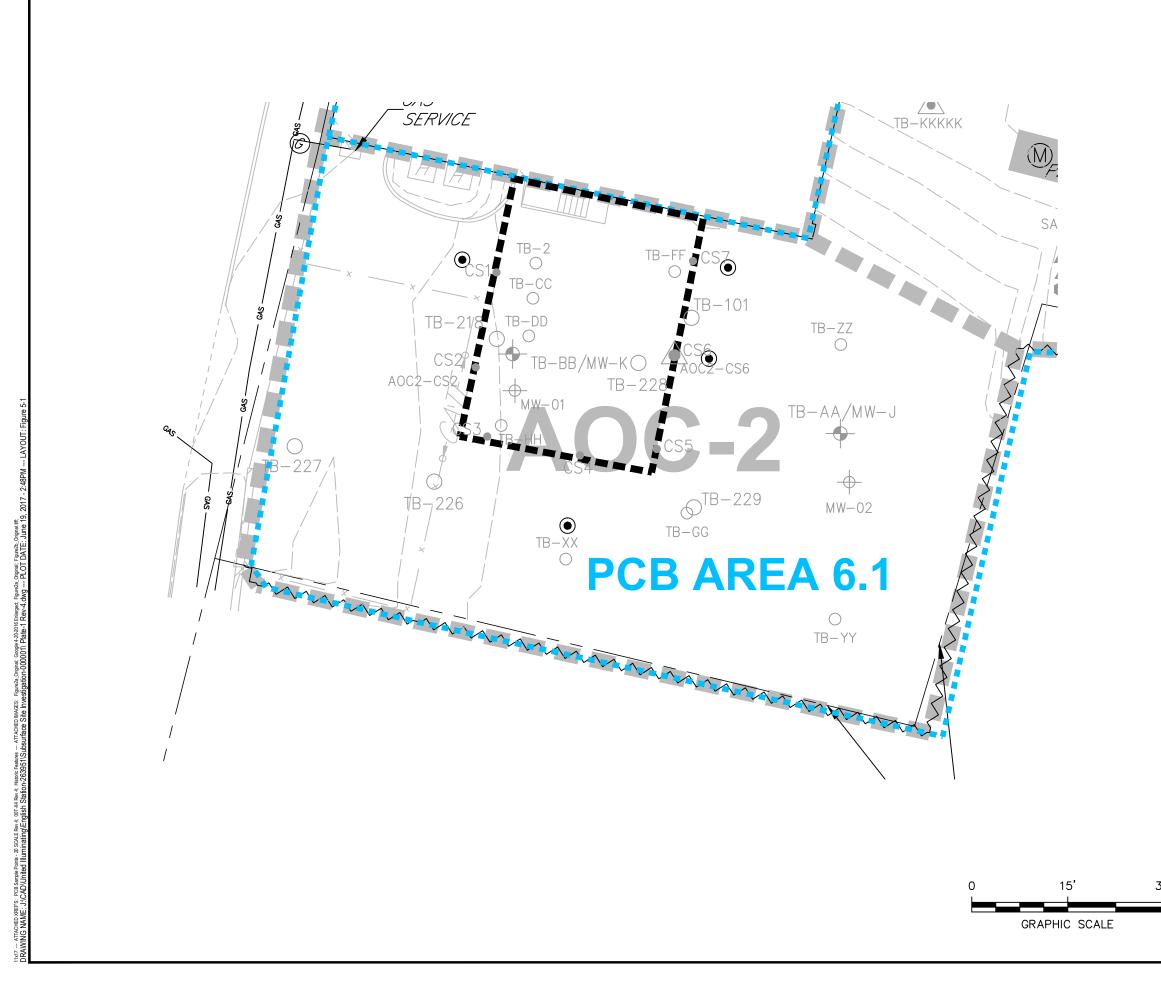
- [3] Most Sample Point locations were field-located and have not been surveyed. Not all Sample Points are mapped.
- [4] Godfrey-Hoffman Associates, LLC supplied a General Location Survey base map: Project 01-182; January 4, 2002 with revisions to June 21, 2002; scale 1 inch = 40 feet.
- [5] These Figures are not intended for construction purposes.

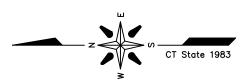
PCB Investigation Areas

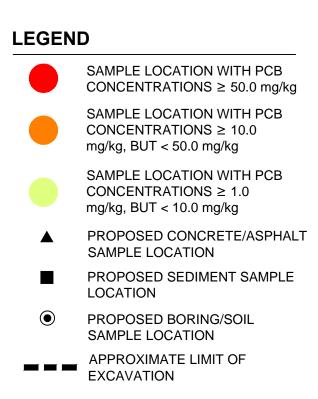
- PCB Area 1: Station B Interior Area 1.1 Mezzanine and First Floor, except Annex III
- Area 1.2 Former Annex III Area 1.3 Basement
- PCB Area 2: Former Coal Yard
- Area 2.1 Elevated Railroad Tracks and Foundations Area 2.2 Remainder of Former Coal Yard
- PCB Area 3: Electrical Infrastructure and Excavation
- Area 3.1 Former Capacitor Area Area 3.2 United Illuminating Remediation Area
- Area 3.3 Transformer and Capacitor Area
- PCB Area 4: Southwest Corner Area 4.1 Former Transformer Area
- Area 4.2 Storage and Shop Building Interior Area 4.3 Transformer and Former Capacitor Area
- Area 4.4 Assembly Hall Interior PCB Area 5: Southeast Corner
- Area 5.1 Former Dumpster Area
- Area 5.2 Former Wastewater Treatment Area Area 5.3 Oil Pump House Area
- Area 5.4 Former Waste Oil Tank Area Area 5.5 Tower GH-4 Area
- Area 5.6 Former Storage Building Area Area 5.7 Fuel Oil Tank Area
- PCB Area 6: Balance of Site, Except English Station
- Area 6.1 Former Station B Area Area 6.2 Mill River East Branch Area PCB Area 7: English Station Interior

-AOC-10

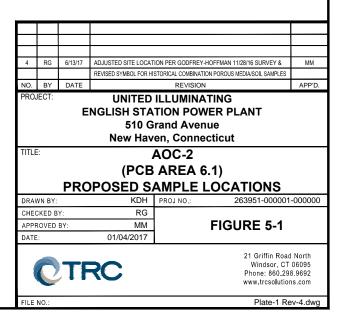
-AOC-11

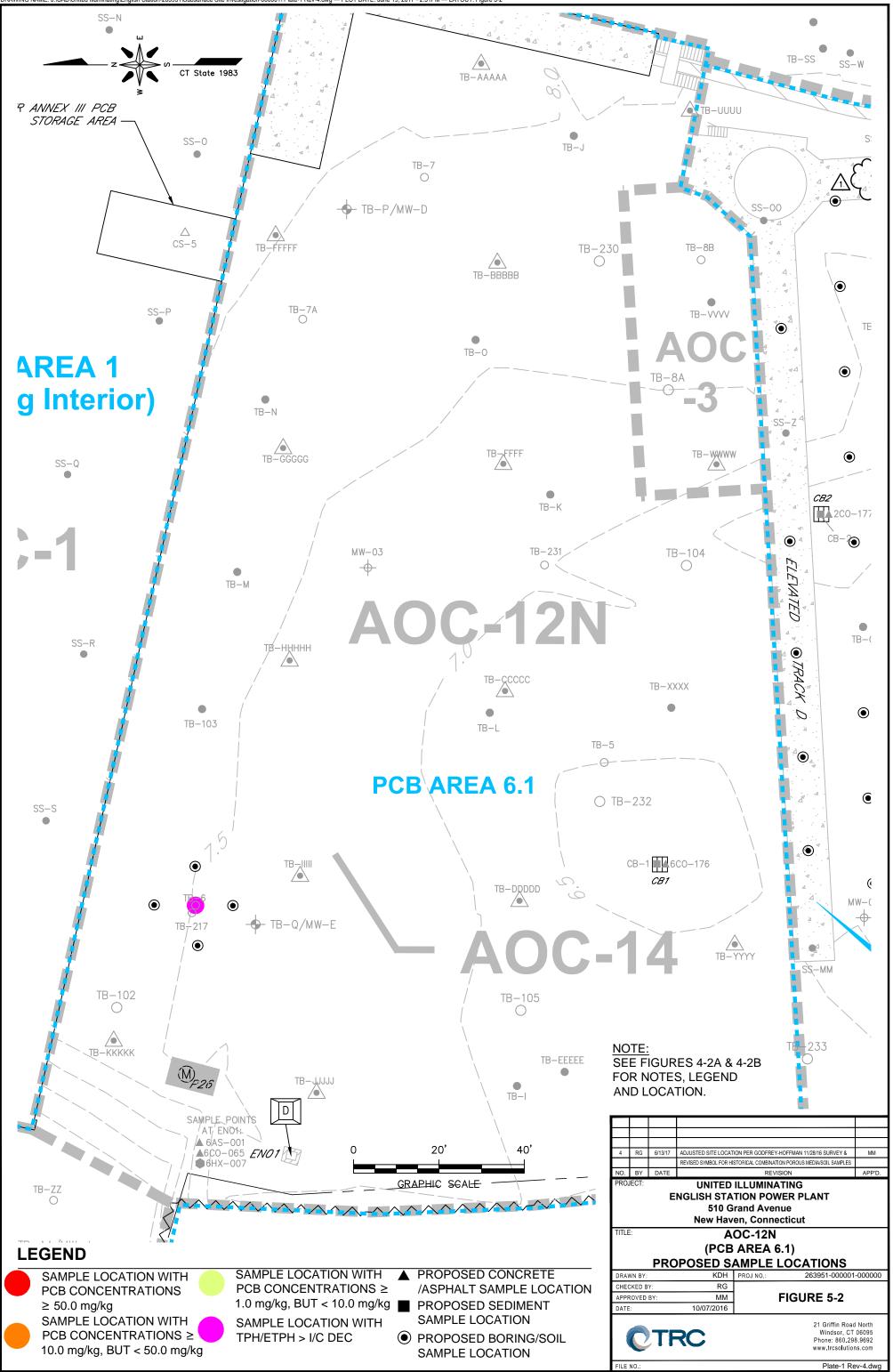

VAULT HATCHWAY 12 INTAKE CHANNEL D2 DISCHARGE CHANNEL T TRANSFORMER CIRCUIT BREAKER CATHODIC BULKHEAD PROTECTION DEVICE MW-H SOIL SAMPLE FROM GROUND WATER TB-W MONITORING WELL MW-01 + SOIL SAMPLE FROM GROUND WATER MONITORING WELL - INSTALLED BY OTHERS

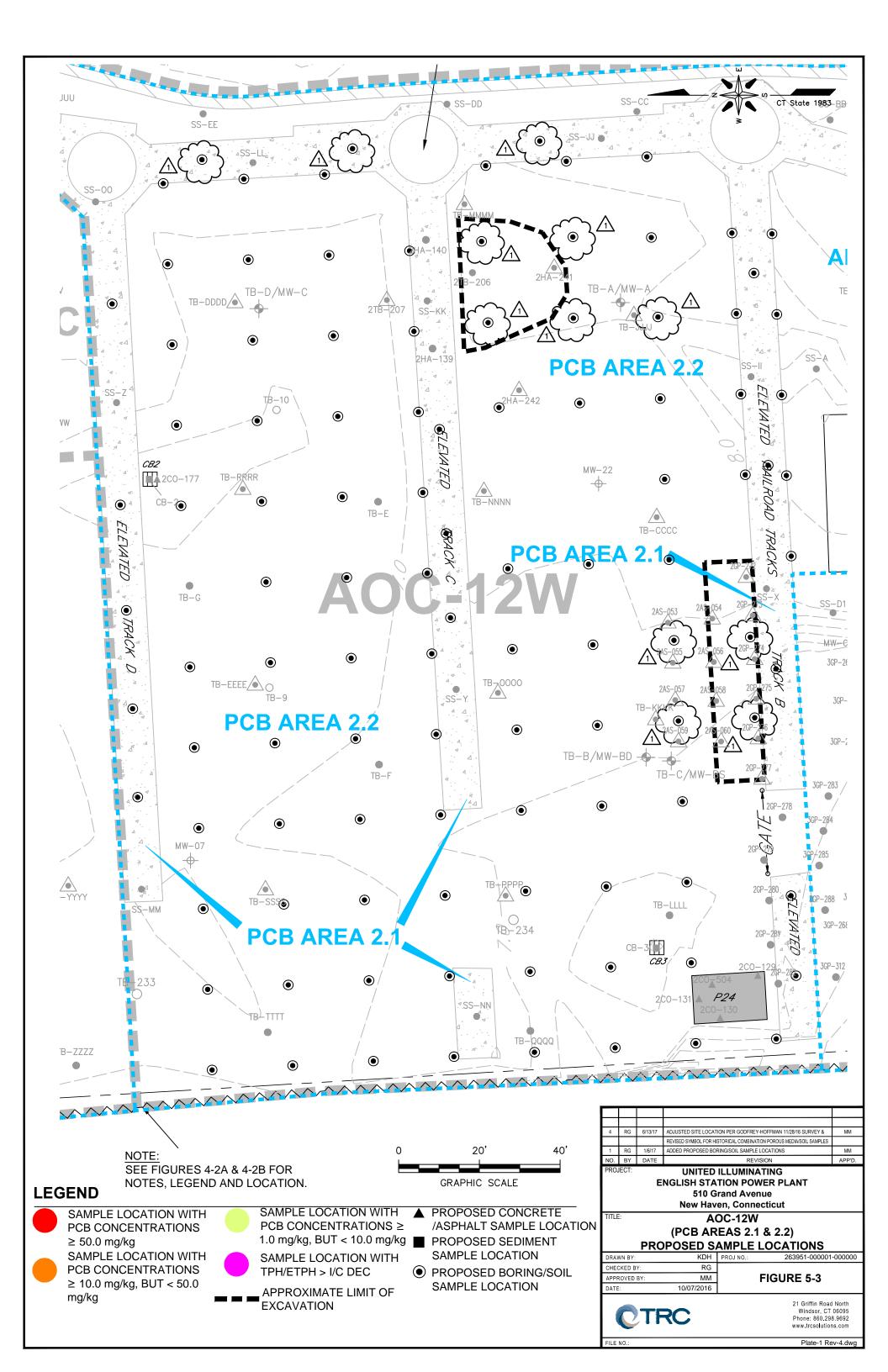

SOURCE: MAP TITLED "FIGURE 3S, MASS ANALYSIS PCB SAMPLE POINT LOCATIONS-SOUTH, PREPARED FOR QUINNIPIAC ENERGY, LLC., ENGLISH STATION, 510 GRAND AVENUE, NEW HAVEN, CT." DATED: 3/1/10, SCALE: 1"=20', BY ADVANCED ENVIRONMENTAL INTERFACE, INC.

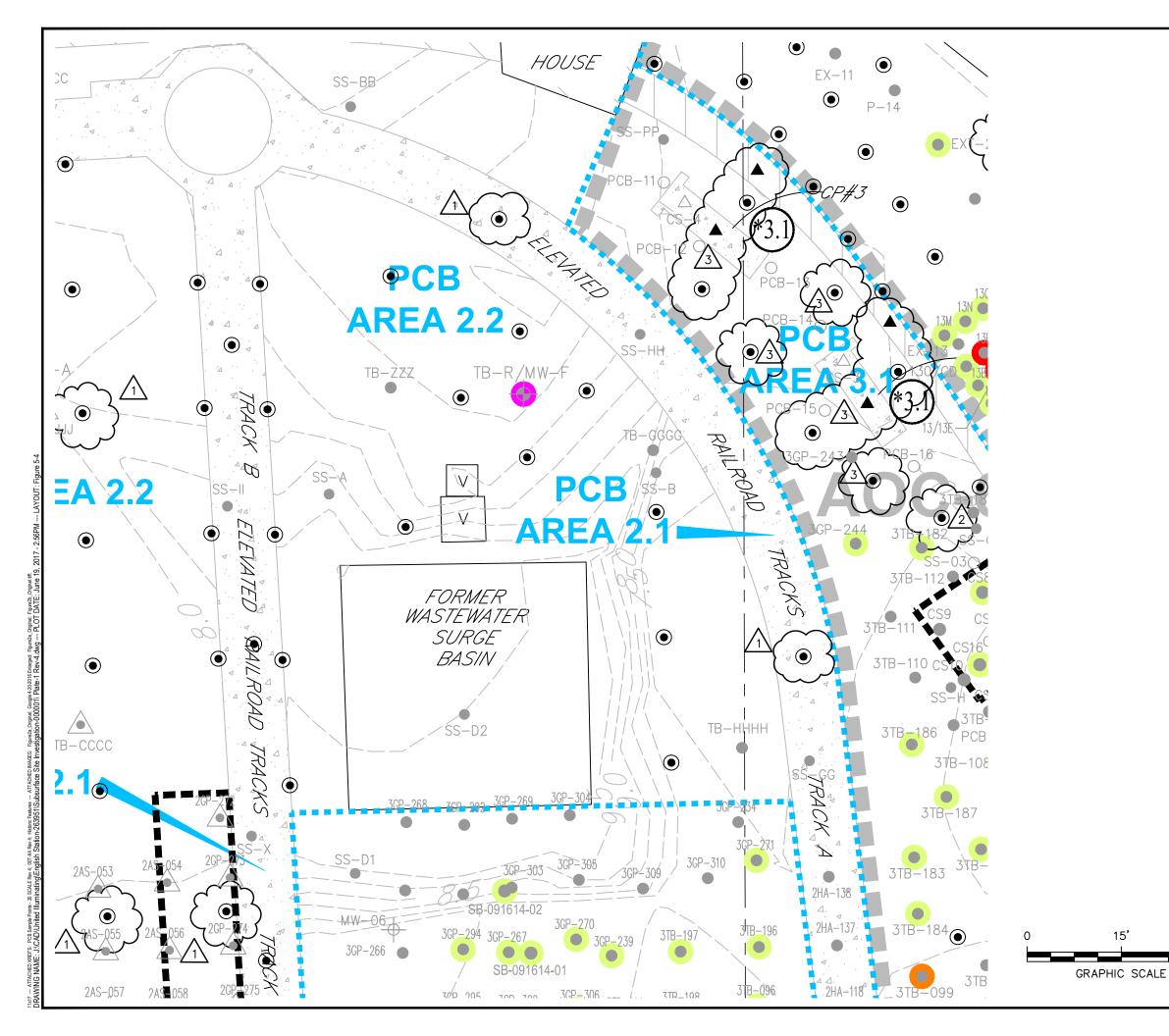

4	RG	3/13/17	ADJUSTED SITE LOCATION	DJUSTED SITE LOCATION PER GODFREY-HOFFMAN 11/28/16 SURVEY							
1	RG	1/9/17	FIGURE ADDED TO SC	COPE OF STUDY	MM						
NO.	BY	DATE		REVISION	APP'D.						
	PROJECT: UNITED ILLUMINATING ENGLISH STATION POWER PLANT 510 Grand Avenue New Haven, Connecticut										
TITLE	HISTORIC MONITORING WELL LOCATIONS - PARCEL B										
	_		- FA								
DRAW	'N BY:		- PA KDH	PROJ. NO.: 263951-0000	01-000000						
	'N BY: KED BY:				01-000000						
CHEC			KDH		01-000000						
CHEC	KED BY: OVED BY		KDH RG	PROJ. NO.: 263951-0000	01-000000						

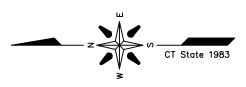
FILE NO .:


Plate-1 Rev-4.dwg

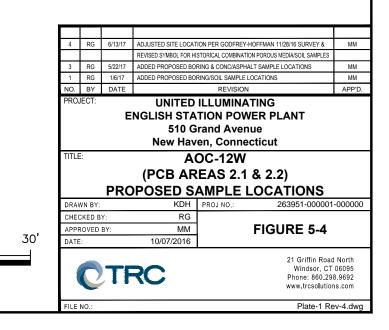


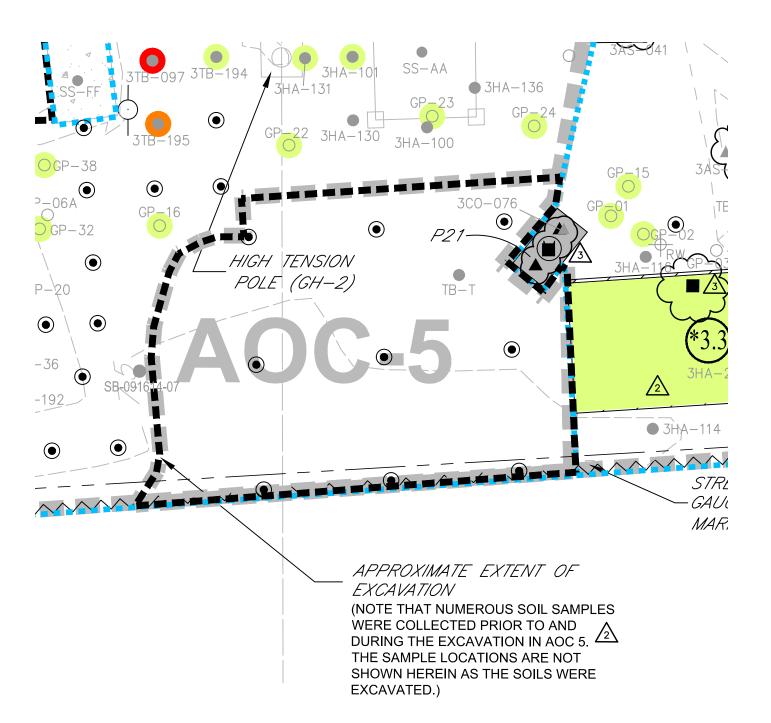

NOTE: SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION.

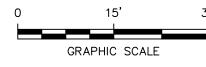


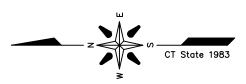

30'

11x17 - ATTACHED XREFS: PCB Sample Points - 20 SCALE Rev 4; 00T-X4 Rev 4; Historic Features - ATTACHED IMAGES: Figure2a_Original; Google 4-20-2016 Entarged; Figure2a_Original; Figure2b_Original; figure2b








	SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 50.0 mg/kg
	SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 10.0 mg/kg, BUT < 50.0 mg/kg
	SAMPLE LOCATION WITH PCB CONCENTRATIONS \geq 1.0 mg/kg, BUT < 10.0 mg/kg
	SAMPLE LOCATION WITH TPH/ETPH > I/C DEC
	PROPOSED CONCRETE/ASPHALT SAMPLE LOCATION
	PROPOSED SEDIMENT SAMPLE
۲	PROPOSED BORING/SOIL SAMPLE LOCATION
	APPROXIMATE LIMIT OF EXCAVATION
	<u>NOTE:</u> SEE FIGURES 4-2A & 4-2B FOR

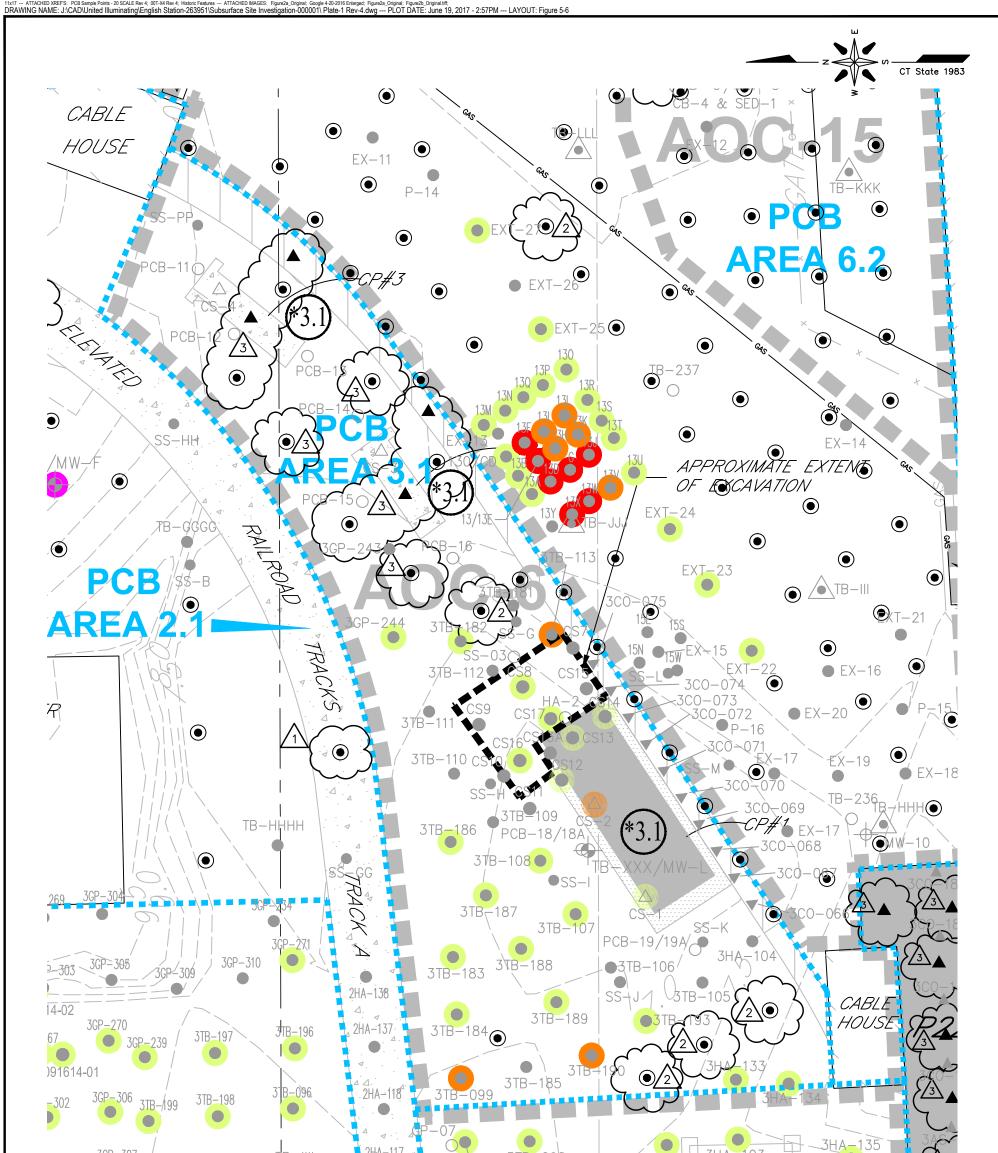
SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION.

CONCENTRATIONS ≥ 10.0 mg/kg, BUT < 50.0 mg/kg

SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 1.0 mg/kg, BUT < 10.0 mg/kg

PROPOSED CONCRETE/ASPHALT SAMPLE LOCATION

PROPOSED SEDIMENT SAMPLE

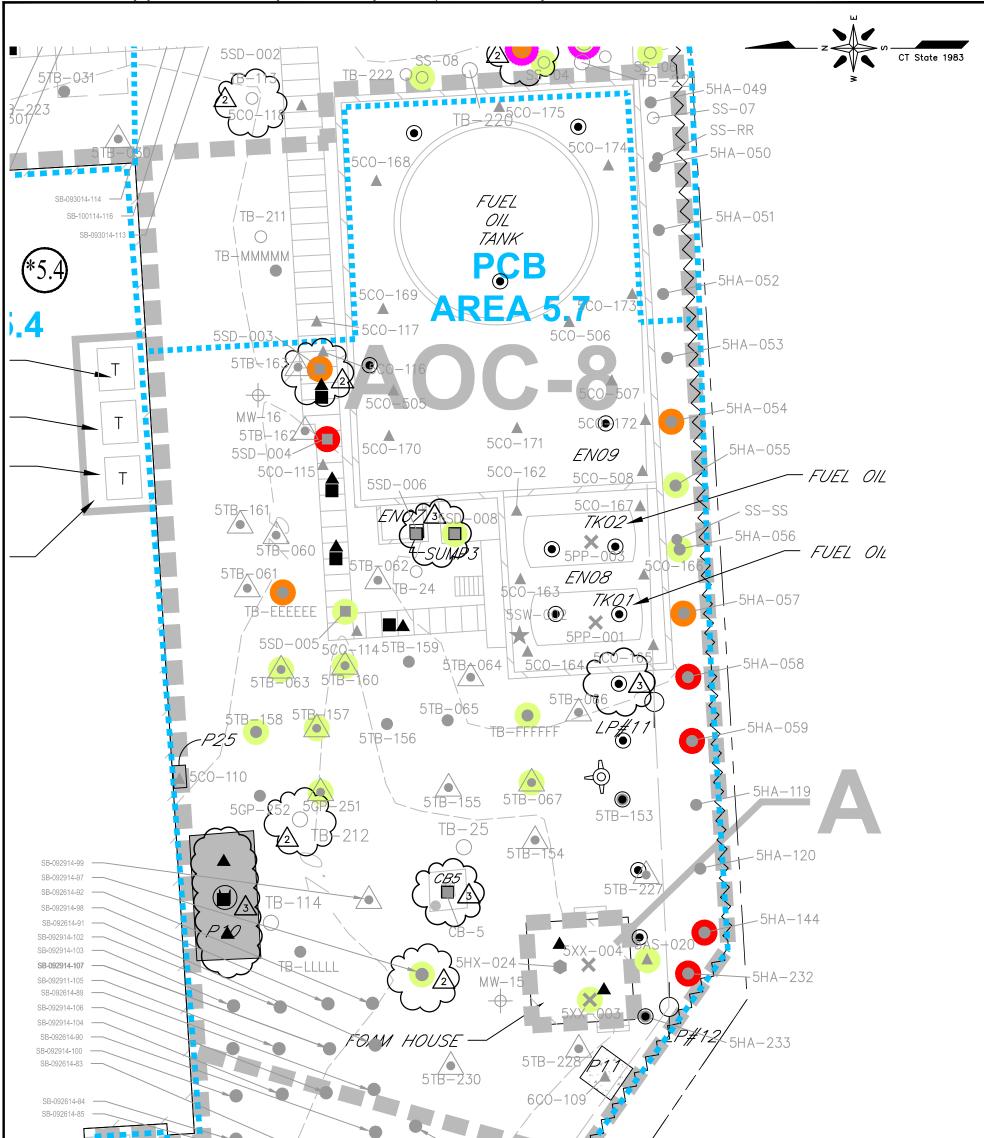

 PROPOSED BORING/SOIL SAMPLE LOCATION

APPROXIMATE LIMIT OF EXCAVATION

NOTE: SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION.

4	RG	6/13/17	ADJUSTED SITE LOCAT	ION PER GODFREY-H	OFFMAN 11/28/16 SURVEY	MM				
3	RG	5/22/17	ADDED PROPOSED BO	RING & CONC/ASPHAL	T SAMPLE LOCATIONS	MM				
2	RG	2/27/17	ADDED BUILDING I.D. A	ND NOTE		MM				
NO.	BY	DATE		REVISION		APP'D.				
	ENGLISH STATION POWER PLANT 510 Grand Avenue New Haven, Connecticut									
TITLI	=:	PRC	-	AOC-5 AMPLE L	OCATIONS					
DRA	WN BY:		KDH	PROJ NO.:	263951-00000 ²	1-000000				
CHE	CKED B	Y:	RG							
APP	ROVED	BY:	MM		FIGURE 5-5					
DATE			10/07/2016							
(TF	RC		21 Griffin Roa Windsor, CT Phone: 860.29 www.trcsolutio	06095 08.9692 ns.com				
FILE	FILE NO.: Plate-1 Rev-4.dwg									

30'



3GP-307 24A-117 3HA-103 3TB-098 3HA-132 3TB-095 - 🍋 **3TB**<u>-200</u> ● 3HA-102 TB-YYY NOTE: SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION. 6/13/17 ADJUSTED SITE LOCATION PER GODFREY-HOFFMAN 11/28/16 SURVEY & MM REVISED SYMBOL FOR HISTORICAL COMBINATION POROUS MEDIA/SOIL SAMPLES LEGEND 3 RG 5/22/17 ADDED PROPOSED BORING & CONC/ASPHALT SAMPLE LOCATIONS MM 2 RG 2/27/17 ADDED PROPOSED BORING LOCATIONS MM 1 RG 1/6/17 ADDED PROPOSED BORING LOCATIONS MM PROPOSED CONCRETE/ASPHALT SAMPLE LOCATION WITH PCB NO. BY DATE REVISION APP'D SAMPLE LOCATION CONCENTRATIONS ≥ 50.0 mg/kg PROJECT UNITED ILLUMINATING ENGLISH STATION POWER PLANT PROPOSED SEDIMENT SAMPLE SAMPLE LOCATION WITH PCB 510 Grand Avenue LOCATION New Haven, Connecticut CONCENTRATIONS ≥ 10.0 mg/kg, BUT < 50.0 mg/kgTITLE: AOC-6 **PROPOSED BORING/SOIL** \odot (PCB AREA 3.1) SAMPLE LOCATION WITH PCB SAMPLE LOCATION **PROPOSED SAMPLE LOCATIONS** CONCENTRATIONS ≥ 1.0 KDH PROJ NO. 263951-000001-000000 DRAWN BY: mg/kg, BUT < 10.0 mg/kgCHECKED BY: RG APPROVED BY MM FIGURE 5-6 APPROXIMATE LIMIT OF 15' 30' 10/07/2016 0 DATE: EXCAVATION 21 Griffin Road North Windsor, CT 06095 Phone: 860.298.9692 www.trcsolutions.com **CTRC** GRAPHIC SCALE Plate-1 Rev-4.dwg

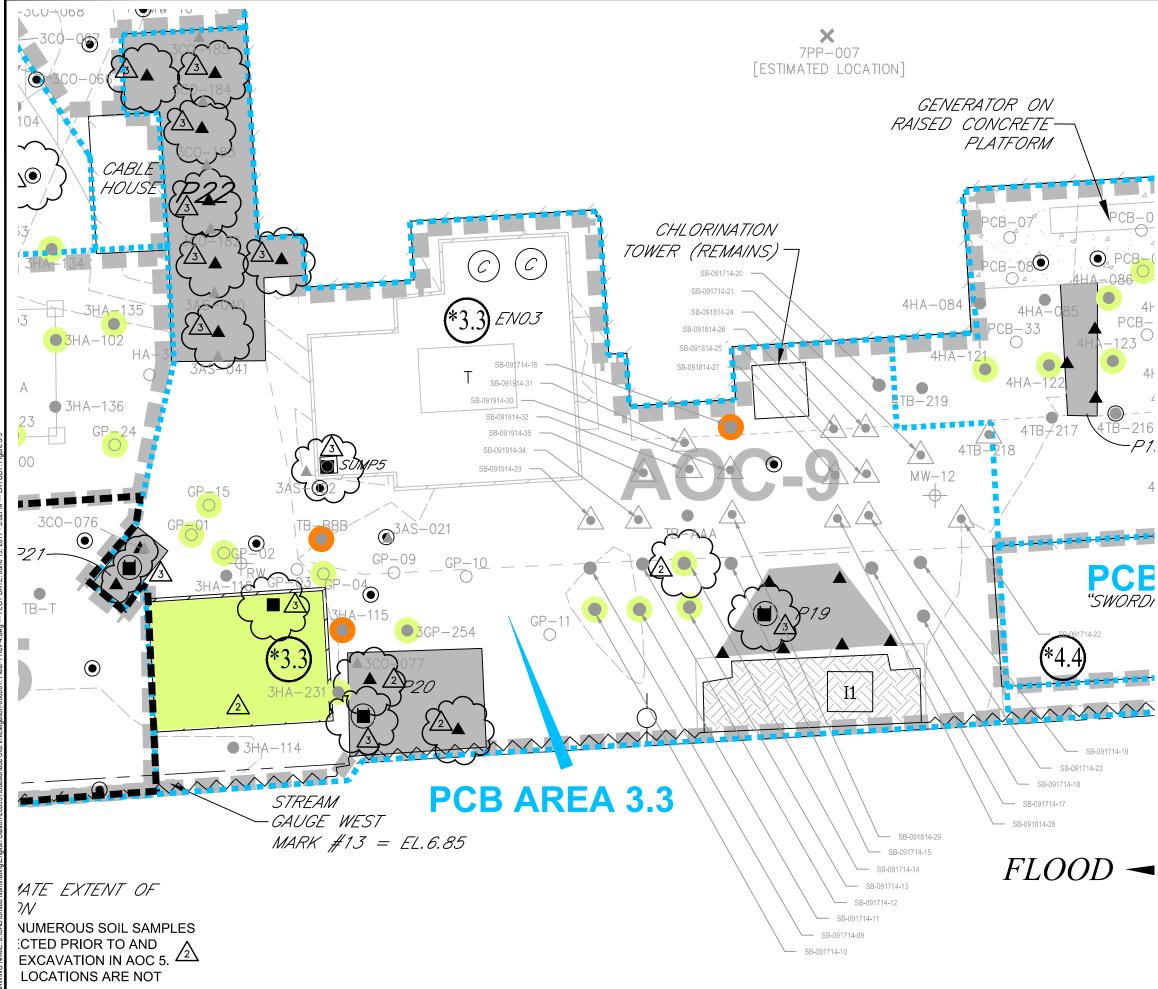
240

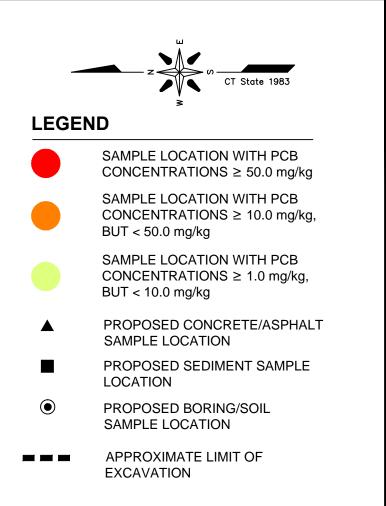
2


NOTE:

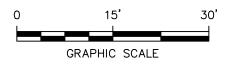
LOCATION.

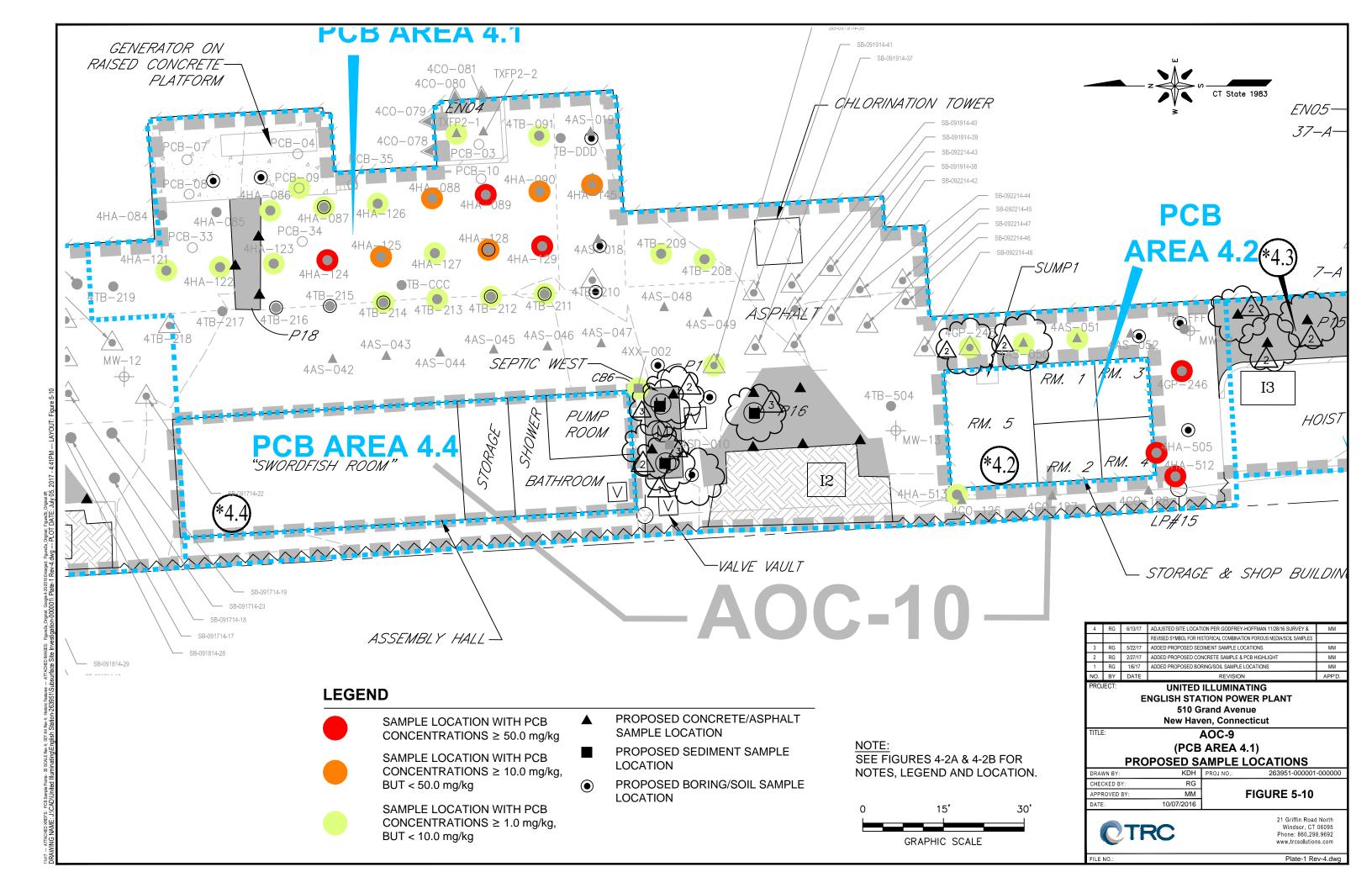
LEGEND

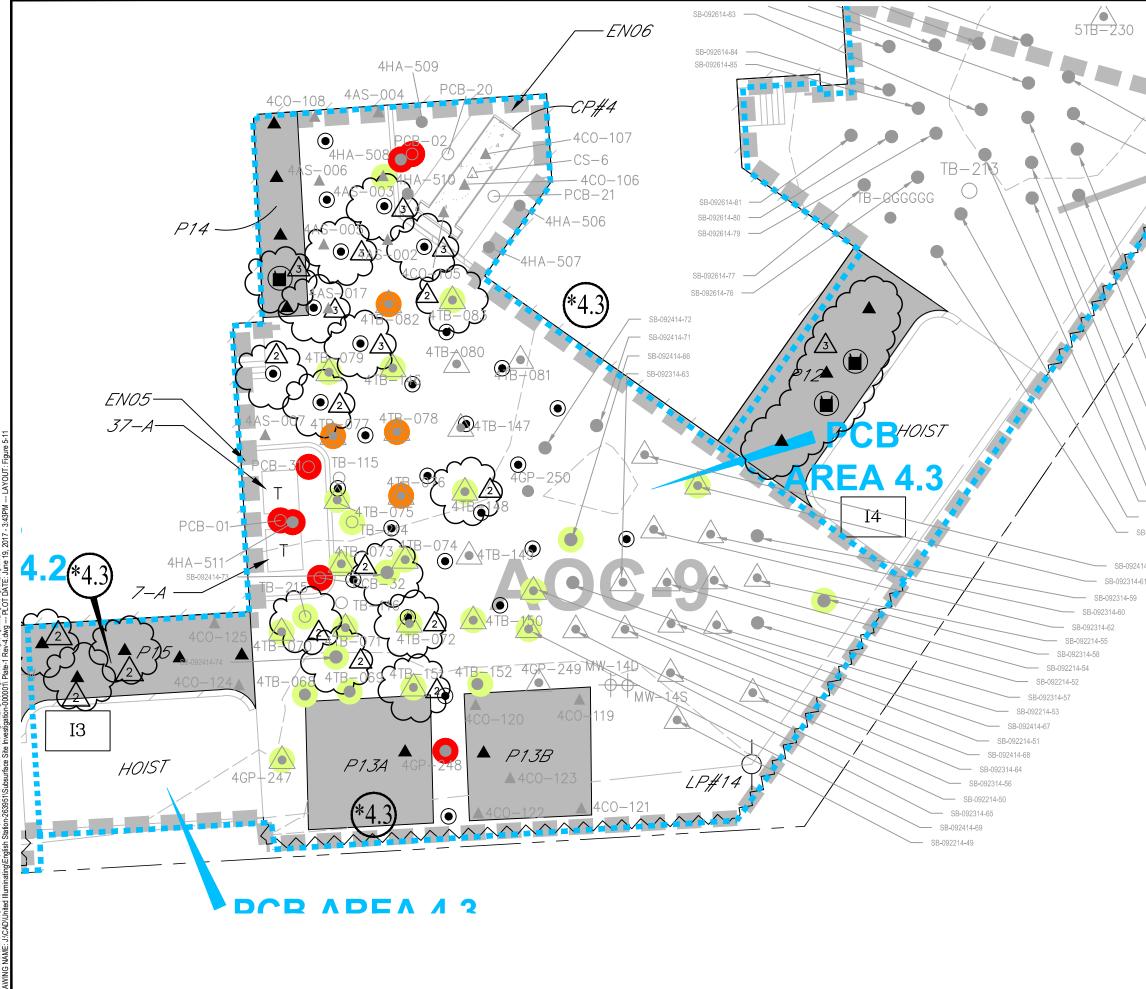

- SAMPLE LOCATION WITH PCB CONCENTRATIONS \geq 50.0 mg/kg
- SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 10.0 mg/kg, BUT < 50.0 mg/kg
- SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 1.0 mg/kg, BUT < 10.0 mg/kg
- SAMPLE LOCATION WITH TPH/ETPH > I/C DEC
- ▲ PROPOSED CONCRETE/ASPHALT SAMPLE LOCATION
 - PROPOSED SEDIMENT SAMPLE LOCATION
- PROPOSED BORING/SOIL SAMPLE LOCATION
- APPROXIMATE LIMIT OF EXCAVATION

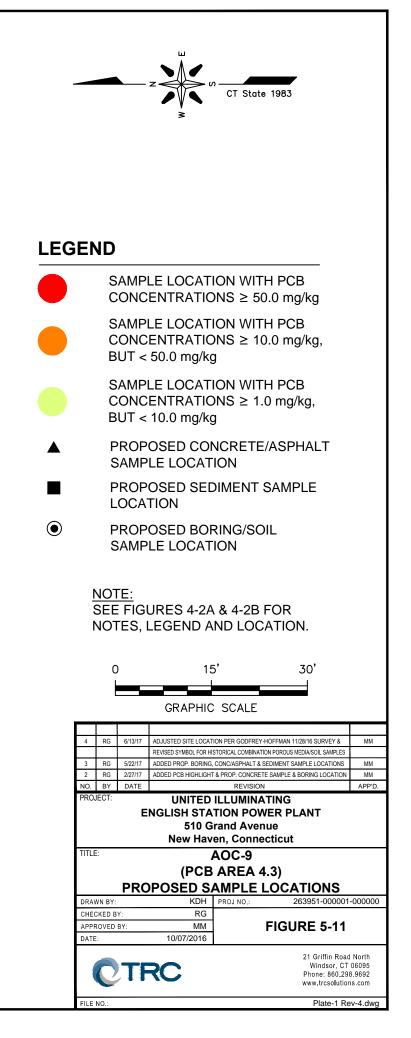

SEE FIGURES 4-2A & 4-2B

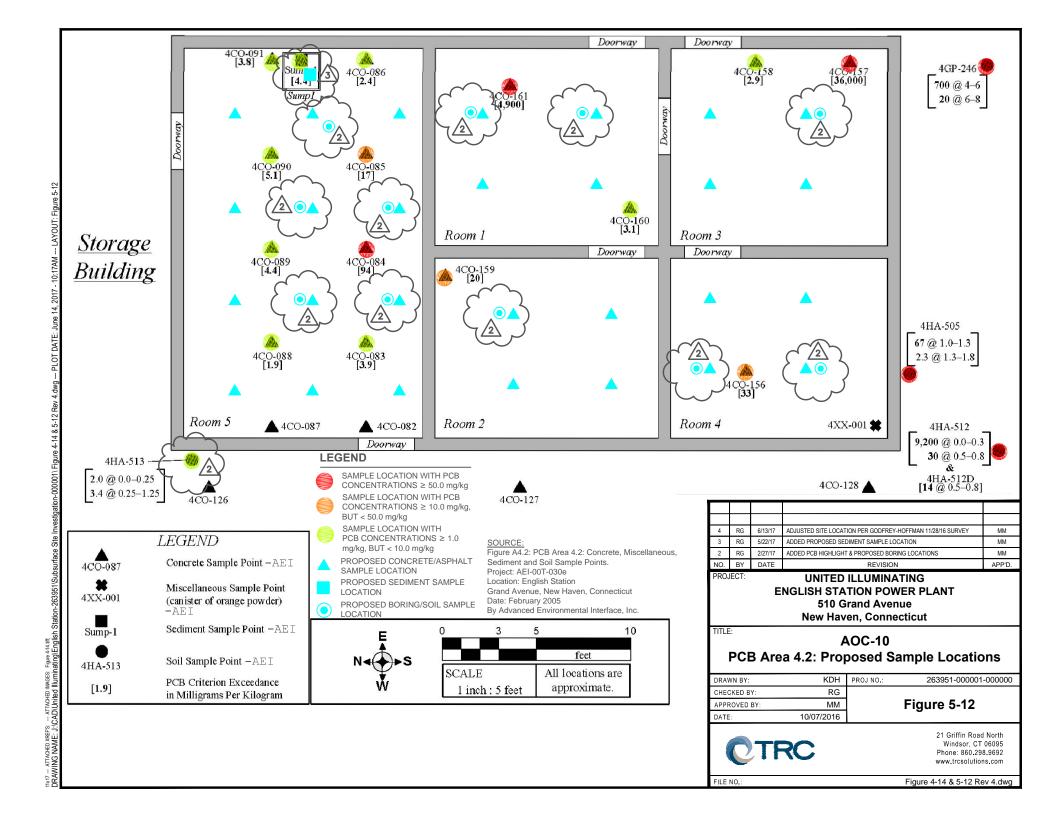
FOR NOTES, LEGEND AND


4	RG	6/13/17	ADJUSTED SITE LOCAT	ION PER GODFREY	HOFFMAN 11/28/16 SURVEY &	MM
			REVISED SYMBOL FOR H	STORICAL COMBINAT	ON POROUS MEDIA/SOIL SAMPLES	
3	RG	SEDIMENT SAMPLE LOCATIONS	MM			
2	RG	2/27/17	ADDED PCB HIGHLIGHT	F& MOVED PCB HIG	HLIGHT TO SSD-003 AND	MM
			ADDED SAMPLE TB-212	& RENAMED SAMP	LE TB-213 TO TB-113	
NO.	BY	DATE		REVI	SION	APP'D
		E		TION POV rand Aver en, Conne	nue	
TITLE	2:	PRC	(PCB	AOC-8 AREA 5 AMPLE	5.7) LOCATIONS	
DRAV	NN BY:		KDH	PROJ NO.:	263951-000001	-000000
CHE	CKED B	Y:	RG			
APPF	ROVED	BY:	MM		FIGURE 5-8	
DATE			10/07/2016			
	C	T	RC		21 Griffin Road Windsor, CT Phone: 860.296 www.trcsolution	06095 3.9692
FILE	NO.:				Plate-1 Re	v-4.dw


CHED XEETS - PCB Sample Peak - 20 SOLE Bark - 10 TX Park - Hebroic Features - ATLACED MAGES. Figured. Original: Geographic Action of PCB - 20 Solid Entergents - 20 Solid Entergent - 20 Solid Solid Entergent - 20 Sol




NOTE: SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION.



	_	_								
4	RG	6/13/17	ADJUSTED SITE LOCAT	ION PER GODFREY	-HOFFMAN 11/28/16 SURVEY &	MM				
REVISED SYMBOL FOR HISTORICAL COMBINATION POROUS MEDIA/SOIL SAMPLES										
3 RG 5/22/17 ADDED PROPOSED CONC/ASPHALT & SEDIMENT SAMPLE LOCATIONS										
2 RG 2/27/17 ADDED FROM GED CONDUCTINET & GEDMILLIN SAMPLEE CONTINUE 2 RG 2/27/17 ADDED PROP. CONC. SAMPLES, BORINGS & PCB HIGHLIGHT										
NO.	BY	DATE		REVISION	1	APP'D.				
	PROJECT: UNITED ILLUMINATING ENGLISH STATION POWER PLANT 510 Grand Avenue New Haven, Connecticut									
TITLE	TITLE: AOC-9 (PCB AREA 3.3) PROPOSED SAMPLE LOCATIONS									
DRAV	NN BY:	1110	KDH	PROJ NO.:	263951-000001	-000000				
CHE	CKED B	Y:	RG							
APPF DATE	ROVED	BY:	MM 10/07/2016		FIGURE 5-9					
	21 Griffin Road North Windsor, CT 06095 Phone: 860.298.9692 www.trcsolutions.com									
FILE	NO.:				Plate-1 Re	v-4.dwg				

Assembly Hall

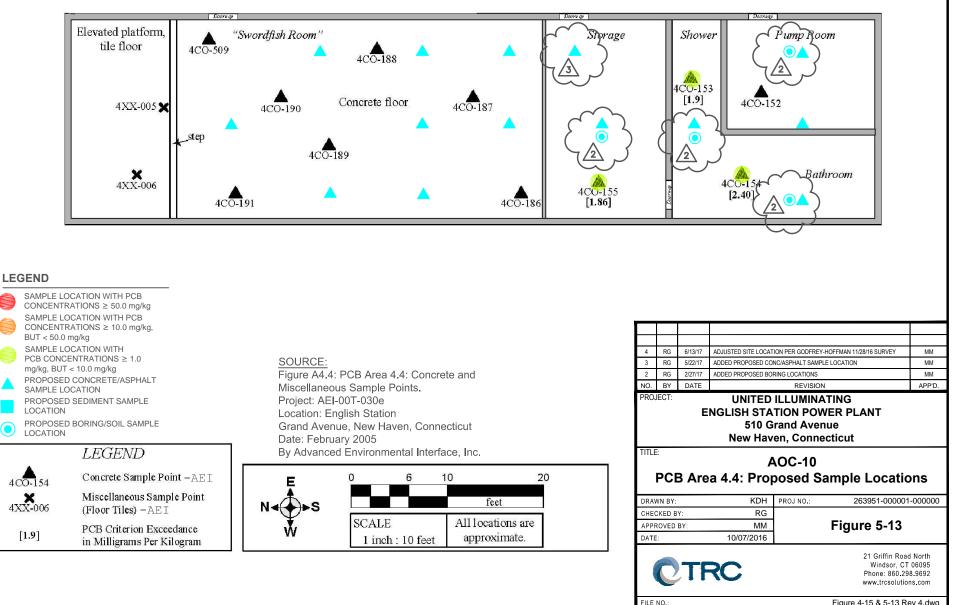
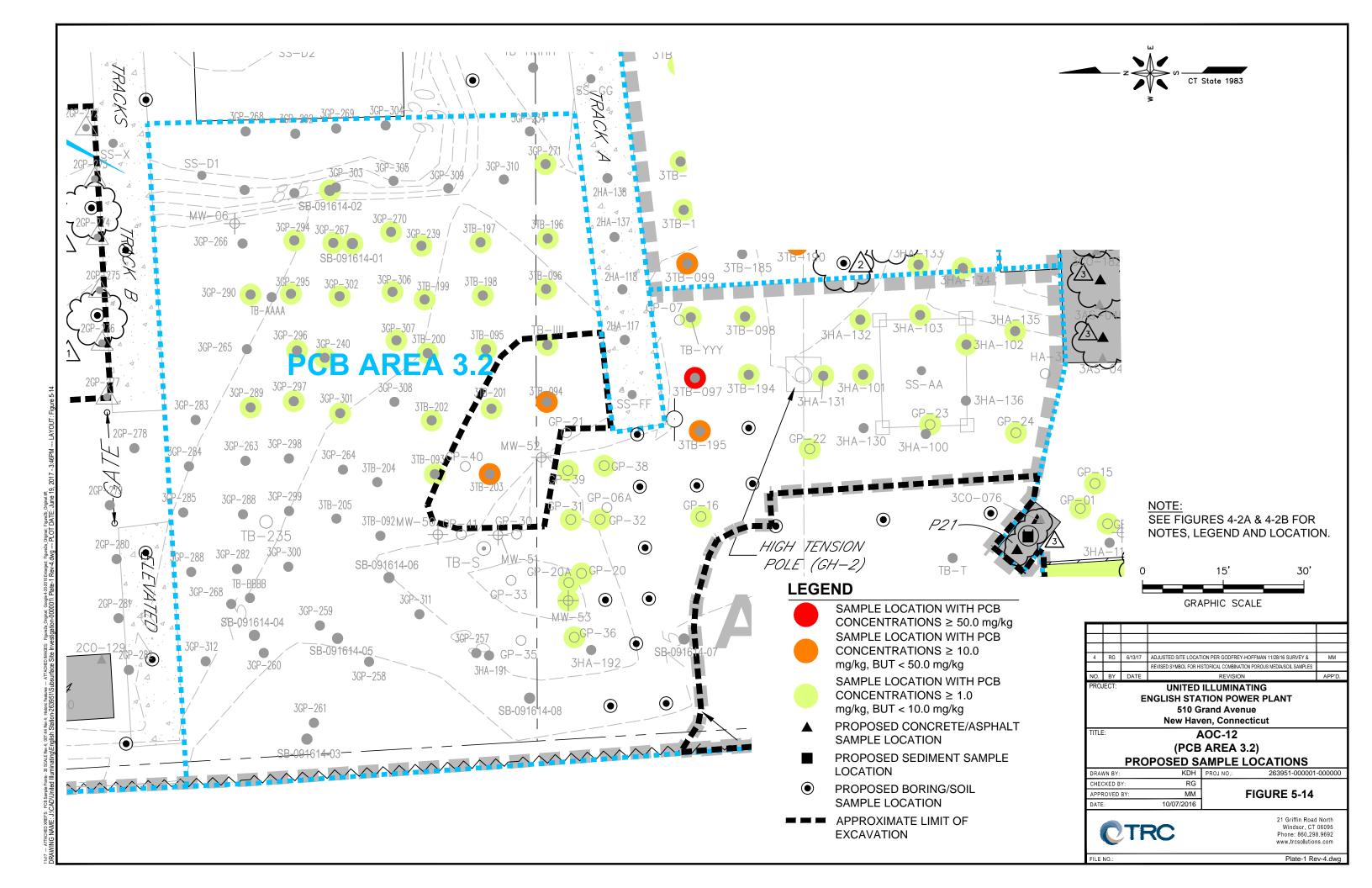
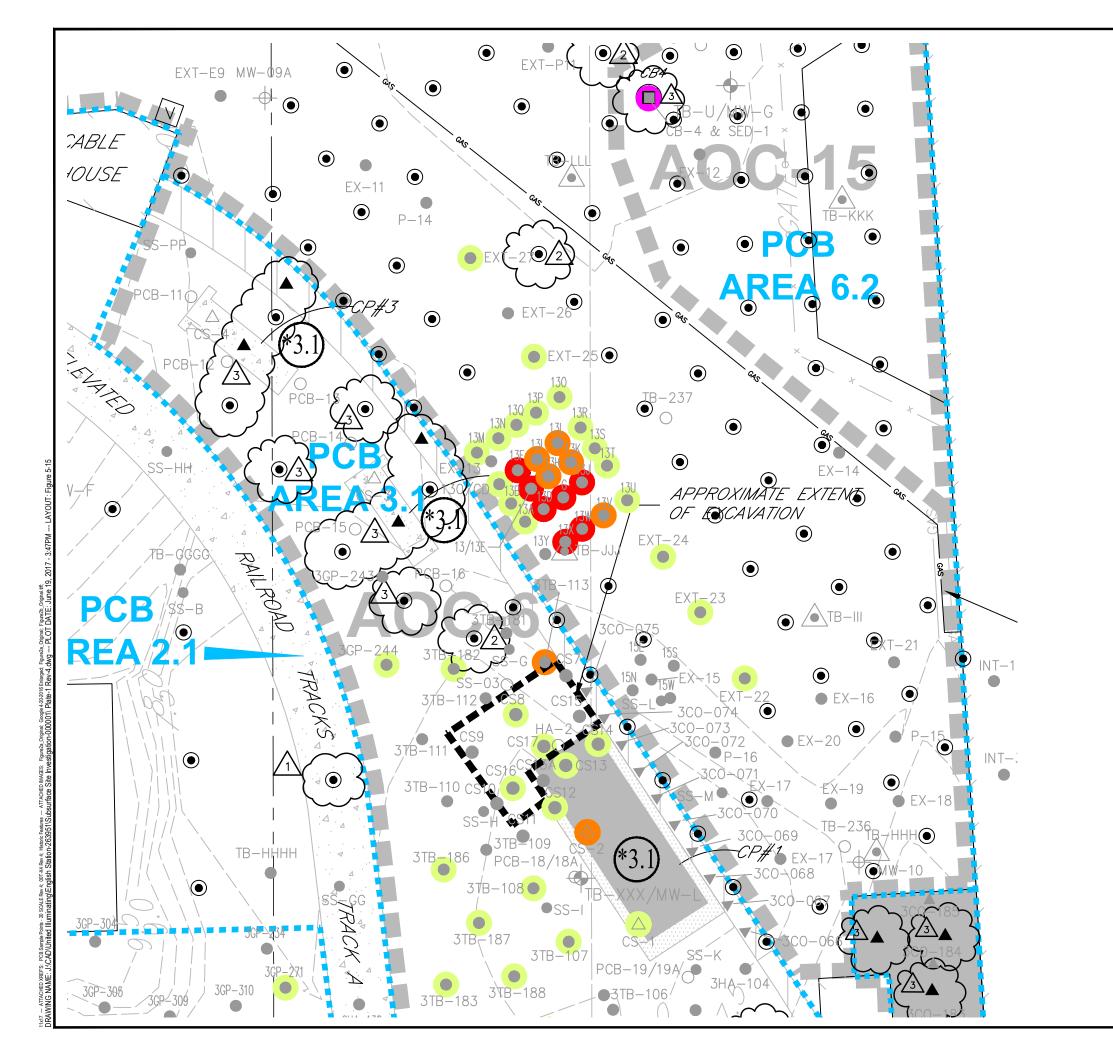
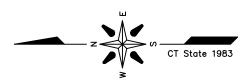
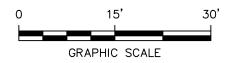
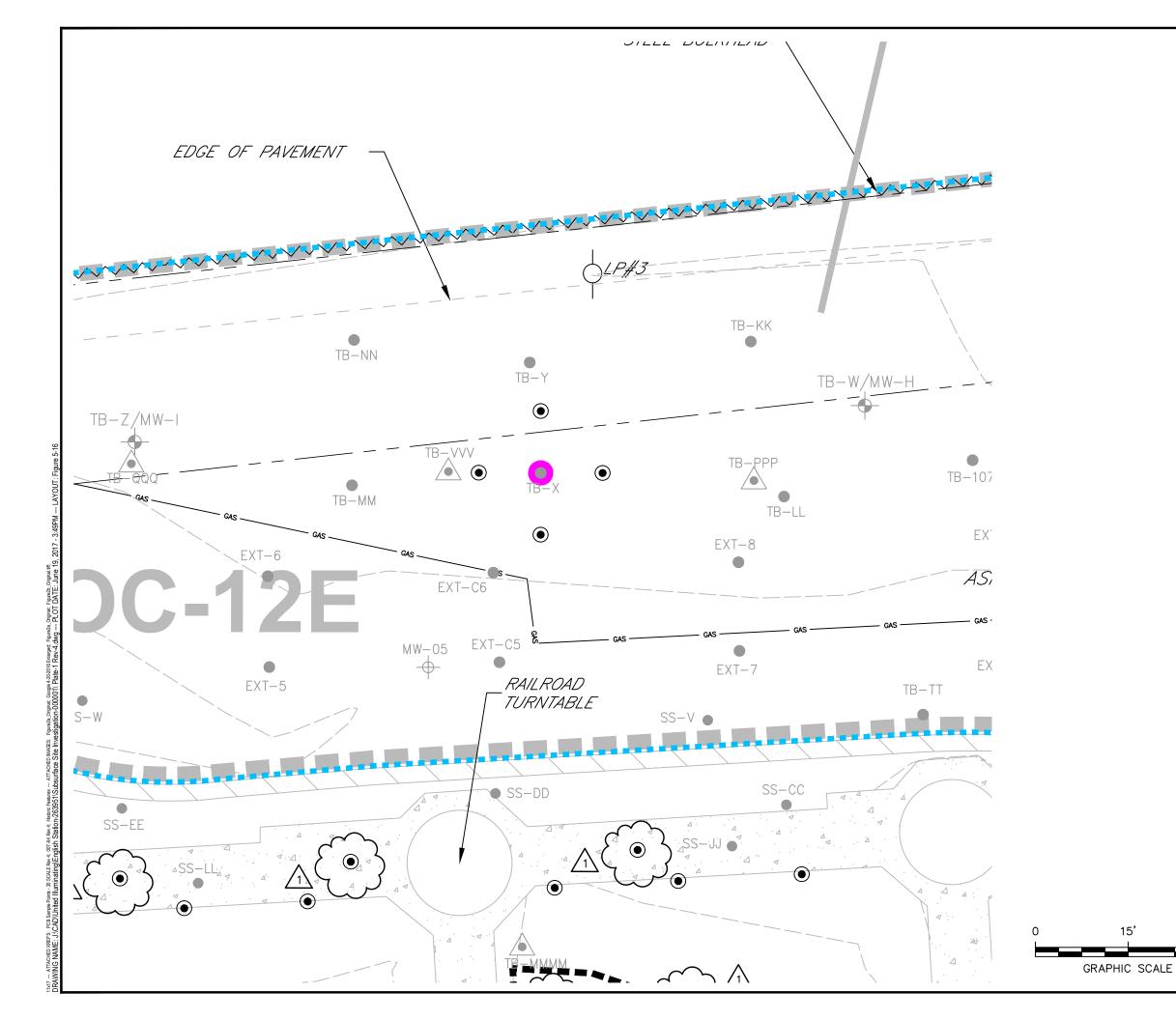
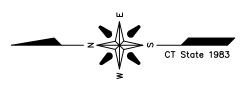





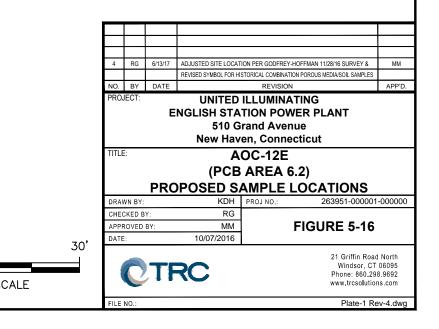
Figure 4-15 & 5-13 Rev 4.dwg

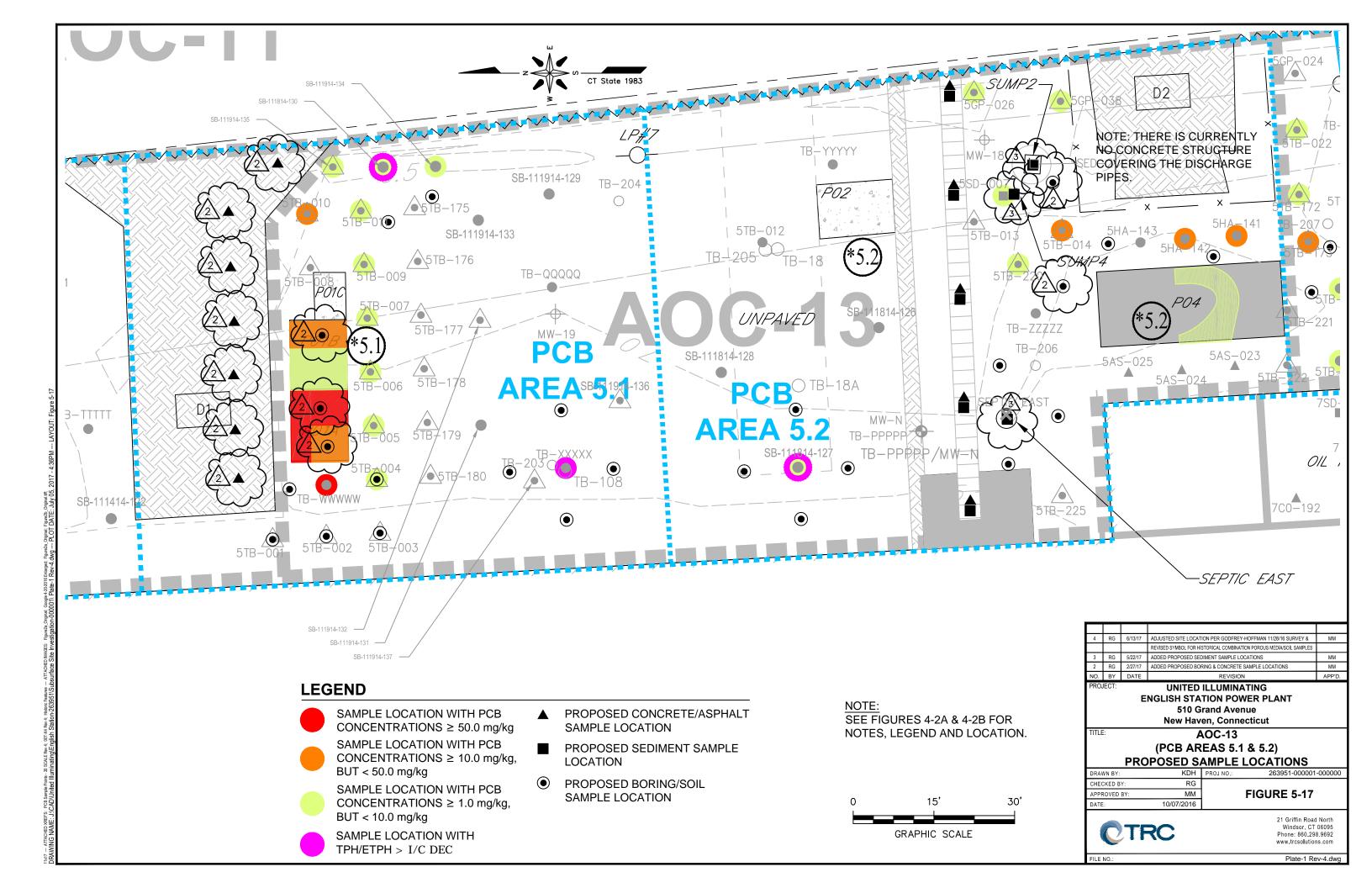


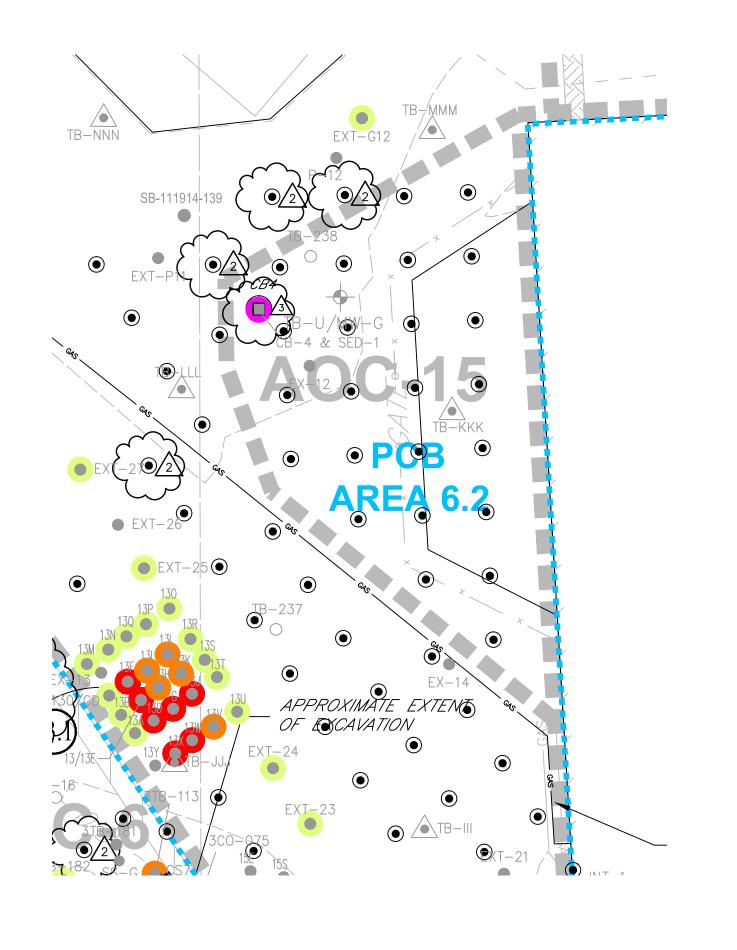



	SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 50.0 mg/kg
	SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 10.0 mg/kg, BUT < 50.0 mg/kg
	SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 1.0 mg/kg, BUT < 10.0 mg/kg
	SAMPLE LOCATION WITH TPH/ETPH > I/C DEC
	PROPOSED CONCRETE/ASPHALT SAMPLE LOCATION
	PROPOSED SEDIMENT SAMPLE
۲	PROPOSED BORING/SOIL SAMPLE LOCATION
	APPROXIMATE LIMIT OF EXCAVATION
	NOTE:

NOTE: SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION.

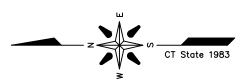

		0/10/17				MM				
4	4 RG 6/13/17 ADJUSTED SITE LOCATION PER GODFREY-HOFFMAN 11/28/16 SURVEY & REVISED SYMBOL FOR HISTORICAL COMBINATION POROUS MEDIA/SOIL SAMPLI									
3 RG 5/22/17 ADDED PROP. BORING, CONC/ASPHALT & SEDIMENT SAMPLE LOCATIONS										
2	RG	2/27/17	ADDED PROPOSED BOI	RING LOCATIONS		MM				
NO.	BY	DATE		REVISION		APP'D.				
PRO	JECT:		UNITED	ILLUMINA	TING					
		F	NGLISH STA	TION POW						
		-		rand Aven						
			New Hav	en, Conne	cticut					
TITLE	:		Α	OC-12E						
			(DCD		2)					
				AREA 6	.2)					
		PRC	POSED SA	AMPLE L	OCATIONS					
DRA	NN BY:		KDH	PROJ NO.:	263951-000001	-000000				
CHE	CKED B	Y:	RG							
APPF	ROVED	BY:	MM		FIGURE 5-15					
DATE			10/07/2016							
	21 Griffin Road North Windsor, CT 06095 Phone: 860.298,9692 www.trcsolutions.com									
FILE	NO.:				Plate-1 Re	ev-4.dwg				

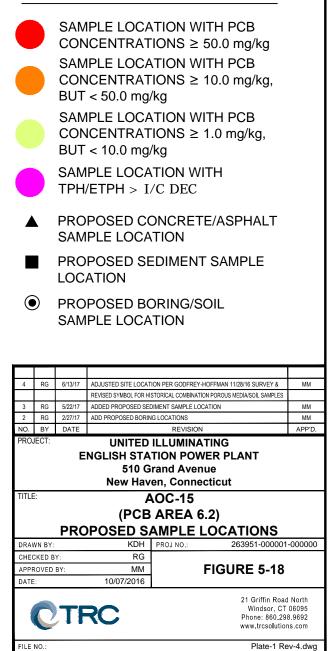




	SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 50.0 mg/kg
	SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 10.0 mg/kg, BUT < 50.0 mg/kg
	SAMPLE LOCATION WITH PCB CONCENTRATIONS ≥ 1.0 mg/kg, BUT < 10.0 mg/kg
	SAMPLE LOCATION WITH TPH/ETPH > I/C DEC
	PROPOSED CONCRETE/ASPHALT SAMPLE LOCATION
	PROPOSED SEDIMENT SAMPLE LOCATION
۲	PROPOSED BORING/SOIL SAMPLE LOCATION

NOTE: SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION.





NOTE: SEE FIGURES 4-2A & 4-2B FOR NOTES, LEGEND AND LOCATION.

LEGEND

30'

TABLES

TABLE 4-1 PRESENTATION OF THE CONCEPTUAL SITE MODEL English Station 510 Grand Avenue New Haven, Connecticut

Area of Concern (AOC)	Description / Operations	COCs (Known or Potential)	PCB Release Area?	Release to Soil, On-Site Sediment, or GW Confirmed?	Release Mechanisms (Known or Potential)	Media Affected or Potentially Affected	Fate and Transport	Notes / Data Gaps
Parcel A AOCs								
AOC-1: Station B Interior	Station B was the original power plant located on Ball Island. It was a coal-fired plant constructed circa 1890 and operations at this plant ceased in the 1920s. Following the cessation of operations, the building was primarily used for storage. By 1939, the southern portion of the Station B building (the boiler house) had been razed.							
AOC-1: Station B Interior (PCB Area 1.1)	Mezzanine and First Floor (Except Annex III). The area of PCB impact to the first floor was previously characterized and partially remediated. Note that as the mezzanine floor did not show any indications of staining, nor was there equipment located on the mezzanine, this has been removed from PCB Area 1.1.	PCBs, ETPH	Yes	No	Primary: Spill(s) directly to the concrete of the first floor thought to be the result of minor leaks over time from the overhead crane; potential existed for tracking but there is no evidence to indicate that it occurred or that it was a primary mechanism.	Concrete	there is no exposure to rainwater or	There are three areas of the floor that were previously scarified that continue to exhibit PCB concentrations greater than 1 mg/kg (including one sample with a PCB concentration of 16,600 mg/kg).
AOC-1: Station B Interior (PCB Area 1.2)	Former Annex III. In the late 1970s (following the promulgation of the initial PCB regulations) an Annex III storage area was created in Station B. This area served as storage for PCB-containing equipment that was destined for disposal.	PCBs, ETPH	Yes	No	Primary: Spill(s) directly to the concrete of the Annex III area and the result of minor leaks over time from the overhead crane; potential existed for tracking but there is no evidence to indicate that it occurred or that it was a primary mechanism.			The area of PCB impact to the floor of Annex III was previously characterized and fully remediated (via scarification) to a concentration of less than 1 mg/kg.
AOC-1: Station B Interior (PCB Area 1.3)	Basement. The basement area of Station B was originally constructed with an earthen floor. Fill materials that underlie the Site are also present beneath the Station B building. There are no known or recorded releases to the basement floor of Station B and previous soil sampling and analysis has indicated that the constituents present are inherent to the fill material that comprises the site. A CTDEEP-approved widespread polluted fill variance both acknowledges the condition of the fill materials and provides for a GB PMC exemption. As part of a remediation effort in 2001 (following the collection of samples to confirm the absence of PCBs), AEI poured a concrete floor atop the dirt floor of the basement to render the underlying soils inaccessible. In 2014, HRP cored through the concrete floor of the basement and collected soil samples for analysis of PCBs and confirmed that they are not present above reporting limits.	ETPH, PAHs, Metals, PCBs	No		Primary: The potential release mechanism for this area (where a dirt floor previously existed) would have been a direct release to the earthen floor and the migration of liquids through cracks or breaches in the first floor.	Soil	Limited to adsorption onto the soil particles as there is no exposure to rainwater or groundwater to further enhance its migration.	There are no data gaps identified in this area.
AOC-2: Station B Former UST Area (overlaps a portion of PCB Area 6.1 - see AOC 12N)	Four gasoline USTs were previously located adjacent to the western side of Station B. Based on information presented in GEI's 1998 Phase I investigation report, there were initially two steel, 2,000-gallon USTs located in this area that were removed in June 1991. Upon removal of these tanks, two fiberglass-reinforced plastic, 1,000-gallon gasoline USTs were installed in the same location. The second set of tanks was subsequently removed in October of 1996.	VOCs, PAHs, ETPH, PCBs	No	Yes		Soil and groundwater	surface would have infiltrated through the asphalt into the underlying soils. Releases directly to the subsurface would be entrapped in the soil pore spaces in the vadose zone. Any product that infiltrated into the subsurface would be subject to migration to	Following the 1996 removal of the tanks from this area, two samples were collected and analyzed for VOCs only. During subsequent investigations, additional soil samples were collected from the vicinity of the former USTs and confirmed the presence of impacts to the soil. Soil was excavated from the area in 2002 and confirmatory soil samples were collected that indicated the presence of ETPH and PAHs. While there are PAHs inherent to the fill material, the presence and magnitude of the PAHs may be linked to this known historic release.

TABLE 4-1 PRESENTATION OF THE CONCEPTUAL SITE MODEL English Station 510 Grand Avenue New Haven, Connecticut New Haven, Connecticut

Area of Concern (AOC)	Description / Operations	COCs (Known or Potential)	PCB Release Area?	Release to Soil, On-Site Sediment, or GW Confirmed?	Release Mechanisms (Known or Potential) or	edia Affected r Potentially Affected	Fate and Transport	Notes / Data Gaps
AOC-3: Former Septic Systems	Information provided in GEI's 1998 Phase I investigation report indicates that a P-5 report generated by the CTDEEP in 1967 references the Site having been served by six septic systems. The septic system associated with Parcel A was historically located along the southeastern side of the former boiler house for Station B (demolished sometime prior to 1938). At least two other septic-type systems are present on Parcel B and are discussed later in this table, under the Parcel B heading.	VOCs, SVOCs, ETPH, PCBs, Metals	No	Potentially	· · · · · · · · · · · · · · · · · · ·		Releases directly to the subsurface would be entrapped in the soil pore spaces in the vadose zone. Any product that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and the fluctuating water table.	Historic reports referenced the presence of up to six septic systems at the English Station site, however, the locations of all six systems/tanks have not been identified. Historic mapping shows the locations of a septic tank (not a modern-day system constructed with leaching fields). This tank was located behind Station B has been investigated through past efforts and as such, no additional work is proposed.
	This portion of the Site is located to the south of the Station B building and includes the footprint of the former Boiler House for Station B that was demolished sometime prior to 1939. After demolition of the Boiler House, the area was used for the storage of coal.	PCBs, ETPH, PAHs and Arsenic	No	Yes	Primary: Direct release to ground surface from coal storage, Aspi dust suppression (spraying of oils); Secondary: Seepage into the surrounding or underlying soils from the surface; Tracking: Tracking of surficial contamination is a potential concern in this area.	undwater		Samples collected as part of the previous investigations revealed the presence of the constituents that relate to the widespread fill, as well as an area of elevated ETPH concentrations in soil adjacent to the cooling water discharge tunnel. PCBs were not determined to be an issue in the soils in this area, however, additional work will be proposed to evaluate tracking as well as to define the identified ETPH impact to soil.
AOC-12W: Elevated Railroad Tracks and Foundations (PCB Area 2.1)	Coal storage began at the Site as early as the late 1880s and Station B operated as a coal-fired power plant from the 1890s until 1903. English Station burned coal from the early 1900s to the mid-1950s to early 1960s.	PCBs, ETPH, PAHs and Arsenic	Yes	Yes		oundwater	Releases directly or indirectly to the subsurface may be entrapped in the soil pore spaces in the vadose zone. Any product that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and the fluctuating water table.	This area was investigated previously by others and there have been minimal impacts identified. Despite the previous findings, however, additional work is proposed in order to evaluate any impact that tracking may have had on the area.
AOC-12W: Former Coal Storage Area (PCB Area 2.2)	Coal storage began at the Site as early as the late 1880s and Station B operated as a coal-fired power plant from the 1890s until 1903. English Station burned coal from the early 1900s to the mid-1950s to early 1960s.	PCBs, ETPH, PAHs and Arsenic	Yes	Yes	Primary: Direct release to ground surface from coal storage, Aspi dust suppression (spraying of oils); Secondary: Seepage into the surrounding or underlying soils from the surface; Tracking: Tracking of surficial contamination is a potential issue in this area.	undwater	Releases directly or indirectly to the subsurface may be entrapped in the soil pore spaces in the vadose zone. Any product that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and the fluctuating water table.	This area has been investigated by others during previous investigations and further, there have been soil remediation efforts undertaken to address the identified impacts. Despite the investigation and cleanup work conducted to date, additional sampling is proposed for this area to evaluate the area in general, as well as tracking issues.
AOC-14: Former Cooling Water Discharge Tunnel	Historical drawings obtained from UI indicate that a former cooling water discharge tunnel associated with Station B runs from the south side of Station B through the former coal yard and to an unidentified discharge point at a location along the eastern side of the Site. The tunnel is approximately 3 feet tall and 4 feet wide, and is buried approximately 1 foot below grade (AEI, 2002). The tunnel is reportedly sealed off at both ends and no longer discharges to the Mill River. Previous investigations by AEI noted that at least two catch basins, identified as CB-1 and CB-2, located within the former coal yard, tie into this tunnel.	PCBs, ETPH, PAHs	Yes	Yes	I I I I I I I I I I I I I I I I I I I		Impacts resulting from potential infiltration through the concrete of the discharge tunnel or to cracks, seams or joints in the tunnel to the subsurface may be entrapped in the soil pore spaces in the vadose zone. Impacts that may have infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and the fluctuating water table.	Sediment from the accessible length of the tunnel requires additional sampling in order to fill the primary data gap in this area. Concrete samples also need to be investigated to determine if contact with potentially impacted sediments has resulted in impacts to the concrete.

Area of Concern (AOC)	Description / Operations	COCs (Known or Potential)	PCB Release Area?	Release to Soil, On-Site Sediment, or GW Confirmed?	Release Mechanisms (Known or Potential)	Media Affected or Potentially Affected	Fate and Transport
	ng those that cover both Parcels - AOCs 4, 11 and 18						
AOC-3: Former Septic Systems	Information provided in GEI's 1998 Phase I investigation report indicates that a P-5 report generated by the CTDEEP in 1967 references the Site having been served by six septic systems, however, the locations of all six systems/tanks have not been identified. Historic mapping shows the locations of two septic structures (not modern-day systems constructed with leaching fields); one located on the western side of the Site which has not been specifically targeted historically for investigation and one manhole along the eastern side of the Site labelled as "Septic East". The vicinity of the tank located on the far western side of the site, "Septic West", has been partially investigated in that a sludge sample from the tank was previously collected and analyzed for PCBs.	VOCs, SVOCs, ETPH, PCBs, Metals	No	Potentially	Primary: Direct dumping of material to septic structures or manholes; Carrying of surficial contaminant by stormwaters into manholes or structures; Secondary: A release from a buried septic structure, associated piping, or fittings directly to the subsurface.	Soil, groundwater, sediment (within structures), and concrete/asphalt	Releases directly to the subsurface would entrapped in the soil pore spaces in the vadose zone. Any product that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and fluctuating wa table.
AOC-4: Past Spills	There have been numerous spills reported for the Site from 1975 through present. Many of the spill reports referenced releases to the Mill River, while the remainder of the spill report generally do not reference the specific locations on the Site where releases occurred. Of note is that this Site was developed in the late 1800s and progressively through the 1950s and it was operational into the early 1990s. Much of its operating history occurred before there were environmental regulations and the means to report releases.	VOCs, SVOCs, ETPH, PCBs, Metals	Yes	Yes	Primary: Spills or releases directly to the ground surface (e.g., soil, asphalt, concrete); Secondary: Infiltration through the ground surface (including cracks, seams and other breaches in media other than soil) and into the soil below.	Asphalt, concrete, soil, sediment and groundwater	Releases directly to the subsurface would entrapped in the soil pore spaces in the vadose zone. Any product that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and the fluctuating water table.
AOC-5: Bulkhead PCB Remediation Area (PCB Area 3.2)	This former soil remediation area is located along the western side of the Site (just to the north of English Station). The remediation effort was conducted in 1998 in response to a 1997 report of oil-impacted soil from the site that was falling into the Mill River through a collapsed portion of the metal bulkhead that surrounds the island.	PCBs, ETPH, PAHs	Yes	Yes	Primary: The exact release mechanism is unknown, however, it is most likely two-fold. First, there was dust suppression conducted in areas where coal was handled; therefore, direct application of oils to the ground surface likely occurred. Also, based on the reported presence of NAPL, a leakage from a subsurface source may have occurred; Secondary: The potential for tracking exists due to activities conducted at the site between completion of the remediation and the present; Tracking: Tracking of surficial contamination across this area is a concern as surface contamination has been identified in the vicinity.	Soil and groundwater	Releases directly or indirectly to the subsurface were entrapped in the soil pore spaces in the vadose zone. Any product th infiltrated into the subsurface would have been subject to migration to the groundwa through the infiltration of rainwater and th fluctuating water table.
AOC-6: Capacitor Release / Outdoor Capacitor Banks 1-3 (PCB Area 3.1)	Capacitor Banks 1 through 3 were formerly located in the central portion of the Site. A 1984 spill report summarized in GEI's 1998 Phase I investigation report indicated that a capacitor "blew up" at the Site (location not specified). Based on anecdotal information, it appears that Capacitor Bank 1 suffered damage that resulted in a release to the environment. Impacted soils in this area were subsequently remediated. Capacitor Bank 1 is located flush with the ground and the remaining pad is surrounded by asphalt while Capacitor Banks 2 and 3 sat on elevated concrete pedestals. Subsequent evaluation of the asphalt and soils surrounding Capacitor 1 indicated the need for additional PCB remediation which was subsequently completed in 2002. PCB results depicted on a February 2005 figure prepared by AEI indicate there are elevated concentrations remaining in the concrete pad and surrounding asphalt.	PCBs, ETPH, PAHs	Yes	Yes	Primary: Leakage from the oil-filled equipment onto its concrete base/foundation; Secondary: Seepage into the surrounding soil and asphalt from the surface of the concrete pad on which the capacitors sat or seepage through cracks or breaches in the concrete structure to the soil below; Tracking : Tracking of surficial contamination is a concern in this area due to the movement of equipment and materials associated with nearby demolition activities.	Concrete, asphalt, soil, groundwater	Releases directly or indirectly to the subsurface may be entrapped in the soil pc spaces in the vadose zone. Any product th infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and th fluctuation of the water table.
AOC-7: Former Waste Oil AST/Oil Pump Room Area (PCB Area 5.3)	Exterior Area Adjacent to Oil Pump Room. The Oil Pump Room served high-pressure boiler units 7 and 8 during their operation.	PAHs, ETPH, PCBs and VOCs/Metals (due to the proximity to the waste oil AST)	Yes	Yes	Primary: Leakage from oil-filled equipment being brought out of the building through the nearby overhead door onto the ground surface (asphalt/gravel or soil); Secondary: Seepage into the surrounding soil from infiltration through the asphalt (including through cracks or other breaches); Tracking: Tracking is a concern in this area given the shallow nature of the impacts defined to date and the demolition activities which have taken place.	Asphalt, concrete, soil, groundwater	Releases directly or indirectly to the subsurface may be entrapped in the soil po spaces in the vadose zone. Any smear zor that exists may be exacerbated by the fluctuation of the tide which has been show to have more influence in the areas of the closest to the bulkhead. Any product that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and th fluctuations of the water table.

Notes / Data Gaps

ild be ted he g water	Additional investigation of the "Septic West" structures and surrounding area will be completed to more thoroughly evaluate potential impacts. As the sturctures that make up "Septic East" and the surrounding area has not previously been investigated, additional investigation is planned here as well.
ted he	A review of the CTDEEP spill files associated with the 510 Grand Avenue property was conducted on September 22, 2016 to ensure that this CSM is up- to-date. Areas that have been impacted by documented historic spills (with the exception of the new AOC 15; Catch Basin Release and Oil Stain Area located just to the north of the English Station building) have been and will continue to be addressed through the investigation of the other AOCs/PCB Investigation Areas across the site.
ore et that ive lwater d the	Additional investigation to the north and east of the original remediation area has confirmed the presence of PCBs in soils beyond the limits (PCB Area 3.2) of the initial UI remediation area. The potential for impacts to the surface due to tracking is a data gap that has been identified in this AOC.
e r d the	Additional investigation of the area around Capacitor 1 (including the soils underlying the asphalt that exhibits elevated PCB concentrations) is warranted; including samples to evaluate potential tracking issues. Historically, samples of concrete collected from the raised pedestals of Capacitors 2 and 3 did not exhibit concentrations of PCBs in excess of 1 mg/kg. As the concrete would have been the first media to be impacted had a spill occurred from the capacitors and there was no evidence of impacts, it stood to reason that there were no PCB impacts identified in surrounding soils. As such, there are no data gaps identified associated with the portion of AOC 6 / PCB Area 3.1 that includes Capacitors 2 and 3. However, based on the demolition activities which ocurred after the cessation of investigation, this area will be evaulated further due to tracking concerns.
shown	PCB impacts have been identified from the ground surface to a depth of approximately 6 feet below grade in this area. This area of impacts, as previously defined, appears to extend to the north into the adjacent AOC 13. The available data suggests that vertical delineation of impacts in this area are not complete and, given the potential for tracking, additional investigatory work as proposed for this area.

Area of Concern (AOC)	Description / Operations	COCs (Known or Potential)	PCB Release Area?	Release to Soil, On-Site Sediment, or GW Confirmed?	Release Mechanisms (Known or Potential)	Media Affected or Potentially Affected	Fate and Transport	Notes / Data Gaps
AOC-7 (PCB Area 5.4)	Former Waste Oil AST Area. Historically, there was a waste oil AST located adjacent to the southeastern corner of English Station. This waste oil AST was located just to the south of and adjacent to the southern wall of the Oil Pump Room.	VOCs, PAHs, ETPH, PCBs, Metals	Yes	Yes	Primary: Leakage from the tank and/or associated piping an fittings to the ground surface; Secondary: Seepage into the surrounding soil from infiltration through the asphalt (including through cracks or other breaches), seepage into concrete pads or structures through seams, cracks, other breaches; Tracking: Due to the widespread occurrance of surficial contamination and demolition activities that have taken place, tracking is a concern in this area.	soil, on-site sediment (located in pipe trench; a portion of which runs through this	Releases directly or indirectly to the subsurface may be entrapped in the soil pore spaces in the vadose zone. Any product that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and the fluctuating water table.	The results of previous soil sampling in this area identified impacts to shallow soil underlying the asphalt surface (PCBs > 50 mg/kg) at one boring location and this has not been fully delineated. The concrete pads in this area were sampled previously and did not show signs of impacts, however, concrete will be evaluated as part of the delineation of potential tracking issues in this area. In addition, the sediment (if present) located within the pipe trench in this area will be sampled. If possible, the concrete bottom of the trench will be sampled for PCBs as well.
AOC-7 (PCB Area 5.5)	Tower GH-4 Area.	PCBs, ETPH, PAHs	Yes	Yes	Primary: Unknown, but likely the result of a release to the surface; Secondary: Seepage into the surrounding soil from infiltration through the asphalt (including through cracks or other breaches).	Asphalt, concrete, soil, groundwater	Releases directly or indirectly to the subsurface may be entrapped in the soil pore spaces in the vadose zone. Any smear zone that exists may be exacerbated by the fluctuation of the tide which has been shown to have more influence in the areas of the site closest to the bulkhead. Any product that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and the fluctuations of the water table.	Samples collected from 4 feet below grade exhibited elevated PCB concentrations (greater than 10 mg/kg) and additional sampling has not been conducted to define the vertical extents of the impacts. Additional investigatory work is proposed for this area.
AOC-7 (PCB Area 5.6)	Former Storage Building Area.	VOC, SVOCs, ETPH, PCBs, Metals	Yes	Yes	Primary: Unknown, but likely the result of a release to the surface; Secondary: Seepage into the surrounding soil from infiltration through the asphalt (including through cracks or other breaches), seepage into the concrete pipe trench through seams, cracks, other breaches; Tracking: Due to the presence of surficial contamination of the surrounding area and the demolition activities that have taken place, tracking is a concern in this area.	portion of which runs through this		Previous sampling has indicated the presence of PCBs in soil at one location in excess of 10 mg/kg. This isolated hotspot requires definition and additional work is proposed for the soils in this area. Additional samples of the sediment (if present) in the pipe trench will also be sampled. The concrete that comprises the trench will be sampled for PCBs as well. Several concrete pads/structures will be sampled and/or re-sampled due to tracking concerns.
AOC-8: Former Fuel Oil ASTs (PCB Area 5.7)	One 50,000-gallon No. 6 fuel oil vertical tank was previously located within a concrete containment berm located in the far southern end of the Site. Following the cessation of the use of coal in the 1950s, No. 6 fuel oil was used as the fuel source for the Plant. To the west of the former No. 6 fuel oil tank, there were two 5,000-gallon No. 2 fuel oil ASTs that were formerly located in concrete cradles. During a recent site visit, it was noted that these tanks, although still present at the Site, are no longer located within their cradle structures. Rather, they have been emptied and are currently located to the west of the ir respective cradles (between the cradle structures and the Foam House building). The No. 2 fuel oil formerly housed in these tanks fueled the boilers installed to heat the building to a base temperature (boiler units 7 and 8) during the winter months after the Plant had been moth-balled in the early 1990s.	VOCs, PAHs, ETPH, PCBs	Yes	Yes	Primary: Incidental spills from filling operations (or, the case of the ASTs that have been moved) leaks from valves, piping, fittings to the ground surface or subsurface (relative to the appurtenances); Secondary: Seepage into soils underlying concrete or asphalt through infiltration through cracks, seams or other breaches; Tracking: Tracking is a concern in this area, particularly due to the fact that the identified impacts include PCBs at concentrations greater than 50 mg/kg in shallow soils along the bulkhead where it is not paved.	g in pipe trench; a portion of which runs through this		Although the concrete that comprises the containment dike for the former No. 6 fuel oil tank did not exhibit any impacts during previous PCB sampling efforts and there are no known or reported spills within, there will be samples of the underlying soils proposed for other petroleum-related constituents (particularly if there are breaches observed of the floor of the containment). In addition, as the ASTs that were previously settled in their cradle structures have been removed and placed nearby on the ground surface, sampling is proposed to evaluate the potential of spillage during the pump-out or moving of the tanks. There are sediments present in the portion of the piping trench located within this AOC. Previous sampling has indicated the presence of PCBs in these sediments at a concentration of greater than 50 mg/kg. Additional sampling will be proposed to define the extent of the impacted sediments in the trench and the concrete within which the impacted sediments are in contact will also be sampled. There are five small areas of PCB-impacted soils within AOC 8 (four of which are located right along the southern bulkhead and the remaining one is located between the southern end of English Station and the pipe trench) which require additional delineation. In additional work is proposed to evaluate potential tracking issues.

Area of Concern (AOC)	Description / Operations	COCs (Known or Potential)	PCB Release Area?	Release to Soil, On-Site Sediment, or GW Confirmed?	Release Mechanisms (Known or Potential)	Media Affected or Potentially Affected	Fate and Transport	Notes / Data Gaps
AOC-9: Transformer Areas (PCB Area 3.3)	Northwest Transformer / Capacitor Area: There is one large, pad- mounted transformer (identified as Transformer G) located adjacent to the northwestern corner of English Station. It is located on a concrete pedestal that is, in turn, located in a concrete containment dike. Just behind (to the east of) Transformer G are two circuit breakers that are also located within the footprint of the containment dike that served Transformer G. It was noted in previous reports that a sticker indicating PCBs less than 50 ppm was affixed to Transformer G. Labels indicating PCB concentrations less than 1 ppm were affixed to both the circuit breakers and a small tank associated with Transformer G.	PCBs, ETPH, PAHs	Yes	Yes	Primary: Surface releases from oil-filled electrical equipment (e.g., transformers and capacitors) to concrete pads and dikes, absorption into concrete surfaces; Secondary: Seepage/migration through concrete via cracks, breaches or sumps into the underlying soil, migration with precipitation into adjacent paved (asphalt) and unpaved surfaces, seepage into underlying soils; Tracking: Given the location of this area, tracking of surface contamination is a concern.	soil, sediment (in sumps, manholes and containment structures), groundwater		A soil sample collected in the north-central portion of this area exhibited PCB concentrations >10 mg/kg at a depth of 7 ftbgs., however, the area is well defined. A nearby soil sample (just to the south of Enclosure 2) also exhibited PCB concentrations in excess of 10 mg/kg, however, this location requires additional delineation (particularly vertically). A third soil sample located to the northwest of the remains of the chlorination tower also exhibited PCB concentrations in excess of 10 mg/kg, however, this location is delineated. There are six concrete structures included in this area, five of which have been sampled. The concrete that overlies the intake was not sampled, but will be as part of this effort. The remaining concrete samples that were collected either did not exhibit detectable levels of PCBs or, in the case of Enclosure 2, exhibited PCBs at concentrations greater than 1 mg/kg and less than 10 mg/kg. Of particular note is the concrete containment dike/pedestal on top of which Transformer G sits. The sampling of this structure indicated that it is not PCB-impacted. There was one sediment sample collected from the bottom of the containment and it exhibited very low PCB concentrations. At least one additional sample of sediment will be collected from the base of the containment in order to confirm that result. Due to the high potential for tracking of shallow contamination in this area, additional samples of asphalt, concrete and soils will be collected.
AOC-9: Transformer Areas (PCB Area 4.1)	Former Transformer Area on the West Side of English Station: Three pad-mounted transformers (Identified as Service Transformers 1-3) were previously located adjacent to the western exterior wall of English Station (in the approximate center of the building length). These transformers were all reportedly affixed with labels that indicated PCB concentrations less than 50 ppm.	PCBs, ETPH, PAHs	Yes	Yes	Primary: Surface releases from oil filled electrical equipment (e.g. transformers and capacitors) to concrete pads, absorption into concrete surfaces; Secondary: Seepage/migration through concrete via cracks, breaches or sumps into the underlying soil, migration with precipitation into adjacent paved (asphalt) and unpaved surfaces, seepage into underlying soils; Tracking: Given the location of this area, tracking of surface contamination is a concern.	soil, sediment (in sumps, manholes and containment structures), groundwater	Releases directly or indirectly to the subsurface may be entrapped in the soil pore spaces in the vadose zone. Any product that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and the fluctuation of the water table.	There are two areas of PCB impacts (PCBs greater than 50 mg/kg) located to the west of the locations of three former transformers (previously located immediately adjacent to the building). There are also soil impacts identified (PCBs greater than 10 mg/kg) in between the two highest concentration locations and to the west of the southern-most location with high concentrations. The impacted area requires additional vertical delineation. There are several concrete structures included in this area, and a minimal number of samples have been collected. Due to the high potential for tracking of shallow contamination in this area, additional samples of asphalt, concrete and soils will be collected.
AOC-9: Transformer Areas (PCB Area 4.3)	Southwest Transformer and Former Capacitor Area: The area in which the transformers and former Capacitor Bank No. 4 are located is in the southwestern portion of the Site; specifically in the area that is considered the exterior courtyard portion of English Station. Two transformers (identified as 7A and 37A) were previously located within a containment "tub" located along the southern exterior wall of the screen house. As of the date of a recent visit, these transformers had been removed from the tub (filled with squelching stone) and placed along the southwestern wall of the portion of the English Station building that creates the courtyard. In addition to the transformers, Capacitor Bank No. 4 was previously located within fenced enclosure (also filled with squelching stone) located in the courtyard.	PCBs, ETPH, PAHs	Yes	Yes	Primary: Surface releases from oil filled electrical equipment (e.g. transformers and capacitors) to concrete pads and containment tubs, absorption into concrete surfaces; Secondary: Seepage/migration through concrete via cracks, breaches or sumps into the underlying soil, migration with precipitation into adjacent paved (asphalt) and unpaved surfaces, seepage into underlying soils. Tracking: Given the location of this area, tracking of surface contamination is a concern.	soil, sediment (in sumps, manholes and containment structures), groundwater		There are three areas of PCB impacts (PCBs greater than 50 mg/kg), two of which are located adjacent to former Transformers 7-A and 37-A and Capacitor Bank #4 (previously located immediately adjacent to the building). The third area is located in the far southwestern portion of AOC 9, in between concrete pads P-13A and P-13B. Note that the release mechanism associated with the third area mentioned is unknown, as there has not been anything identified historically that would indicate a source and the there was only positive detection of PCBs (just over 1 mg/kg) in the concrete of Pad 13A. There are also soil impacts identified (PCBs greater than 10 mg/kg) in the central portion of this sub-area of AOC 9 (located between the two primary hot-spot areas likely associated with the former transformers and capacitor). Further delineation of the impact to soil in between the concrete pads will be conducted. In addition, as the two additional hot-spot areas over 50 mg/kg in this area are within tubs/containment structures that are filled with squelching stone and it not known whether the structures that are filled with squelching stone and it not known of the concrete samples collected from these two pads exhibited a PCB concentration of greater than 10 mg/kg (but less than 10 mg/kg). The pad identified as P-14 was not sampled. Due to the high potential for tracking of shallow contamination in this area, additional samples of asphalt, concrete and soils will be collected.

Area of Concern (AOC)	Description / Operations	COCs (Known or Potential)	PCB Release Area?	Release to Soil, On-Site Sediment, or GW Confirmed?	Release Mechanisms (Known or Potential)	Media Affected or Potentially Affected	Fate and Transport
AOC-10: Former Interior Chemical Storage Areas Excluding English Station (Foam House)	The Foam House is a small, stand-alone structure located at the southern tip of the Site (to the west of the former AST location). There is little known (and further, nothing readily ascertained from available documentation) about its potential chemical storage history. GEI, in their 1998 Phase I assessment report, indicated that there were several pumps and pump stands observed in this building at the time of their site inspection.		No	Unknown	Primary: Direct releases to the floor of the building; Secondary: Assuming that the floor of the building is comprised of concrete, a secondary mechanism would be potential seepage through crack, seams or other breaches in the floor to the underlying soils; Tracking: Tracking into or out of the building is not likely (Note that tracking will be generally evaluated in the areas outside of this building.)	Concrete, soil and groundwater	Spills to the surface may have infiltrated through the concrete floor of the building into the underlying soils. Secondary releat resulting from potential infiltration throug the floor to the subsurface may be entrapp in the soil pore spaces in the vadose zone. Impacts that may have infiltrated into the subsurface would be subject to migration the groundwater through the infiltration of rainwater and the fluctuation of the water table.
AOC-10: Former Interior Chemical Storage Areas Excluding English Station (PCB Area 4.2)	Storage and Shop Building Interior. This building is located along the western side of the Site between English Station and the bulkhead. According to a historic map of the Site and anecdotal information provided by UI personnel (as documented in the GEI 1998 Phase I), this one-story building was previously used, at least in part, for storage/a shop and as a contractor office.	SVOCs, Metals	Yes	Yes (immediately adjacent to the building, but unknown beneath the building)	Primary: Direct releases to the floor of the building; Secondary: Absorption into the concrete, seepage through cracks, seams or other breaches in the floor to the underlying soil; Tracking: Tracking is likely both into and out of this building.	Concrete, sediment (contained in a sump located in the building), soil (likely), groundwater	Spills to the surface may have infiltrated through the concrete floor of the building into the underlying soils. Secondary relea resulting from potential infiltration throug the floor to the subsurface may be entrapp in the soil pore spaces in the vadose zone. Impacts that may have infiltrated into the subsurface would be subject to migration the groundwater through the infiltration of rainwater and the fluctuation of the water table.
AOC-10: Former Interior Chemical Storage Areas Excluding English Station (PCB Area 4.4)	Assembly Hall Interior: This one-story masonry building is also located along the western side of the Site (between English Station and the bulkhead) and to the north of the Storage/Shop building. This building was reportedly used as an assembly hall for workers at the Plant.	PCBs	Yes	Unknown but unlikely based or the primary release mechanism)	Primary: Tracking into the building from outside areas (identified as such due to the fact that the documented historic use of this building was for contractor meetings).	Concrete	Given that tracking is considered the likel primary release mechanism in this area (a opposed to spills or leaks) and the interior the building is not fully exposed to the elements, it is likely that any impacts wou remain on the surface of the floor and won not be subject to migration.
AOC-11: On-Site Fill Material	Ball Island is a land mass that was created within the Mill River. As documented in historic reports for the Site, the island was created from spoils generated from dredging operations in the late 1800s and well into the 1900s in the Mill River to maintain navigable waters. As the Mill River was the receiving water body for many discharges emanating from industrial operations over the years, the spoils that comprise the island are inherently impacted with petroleum hydrocarbons, PAHs and metals.	PAHs, ETPH, Metals	No	No	The COCs identified are inherent in the materials that comprise the island on which English Station and Station B are located. As such, although considered a site-wide AOC, the fill itself does not constitute a release to the environment.	N/A	N/A
AOC-12W: Former Coal Storage Area (PCB Area 3.2)	Area Adjacent to PCB Bulkhead Remediation. This portion of the Site is located to the south of the Station B. Coal storage began at the Site as early as the late 1880s and Station B operated as a coal-fired power plant from the 1890s until 1903. English Station burned coal from the early 1900s to the mid-1950s to early 1960s.	PCBs, ETPH and PAHs	Yes	Yes	Primary: Direct release to ground surface from coal storage, dust suppression (spraying of oils); Secondary: Seepage into the surrounding or underlying soils from the surface; Tracking: Due to the widespread surficial contamination of nearby areas and demolition activities that have taken place, tracking is a potential concern in this area.		Releases directly or indirectly to the subsurface may be entrapped in the soil p spaces in the vadose zone. Any product th infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and th fluctuation of the water table.
AOC-12E (PCB Area 6.2)	Mill River East Branch Area.	PCBs, ETPH, PAHs	No	Yes	Primary: Potential direct release to ground surface from dust suppression (spraying of oils); Secondary: Seepage into the surrounding or underlying soils from the surface; Tracking: Tracking is a potential issue in this area as it is the main point of access to the Site.	Asphalt, soil and groundwater	Releases directly or indirectly to the subsurface may be entrapped in the soil p spaces in the vadose zone. Any product ti infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and th fluctuation of the water table.

	Notes / Data Gaps
d ng leases ough upped ne. he on to n to n of ter	There is little information about the use of this building. Given the general lack of sampling in this building, additional evaluation for potential COCs is proposed.
d ng leases ough apped ne. he on to n of ter	Concrete samples collected from the floor of the building exhibited PCB concentrations in excess of 1 mg/kg in the northern and north-western portion; in excess of 10 mg/kg in the eastern, central and northern portions of the building and in excess of 50 mg/kg in the eastern and north-central portion of the building. In addition, as referenced earlier in this table, there was sediment collected from a sump located in the northeastern portion of the building that exhibited PCBs at concentrations of greater than 1 mg/kg. Based on the presence of PCBs and the use of this building as a shop and for storage in which there may have been a variety of chemicals used or handled, there will be additional concrete and soil samples are proposed.
kely (as ior of yould yould	There has been some sampling of the concrete floor within this building and PCBs have been identified at concentrations greater than 1 mg/kg in the southern portion. In order to fill the data gap in this sub-area (i.e., in order to confirm tracking as the source of the identified impacts to the concrete), additional sampling of the concrete will be conducted.
	The fill that comprises the site has been adequately characterized by others during previous investigatory efforts. As such, there are no data gaps identified.
l pore et that d the	Previous investigation in this area has identified PCB hotspots (both greater than 10 mg/kg and greater than 50 mg/kg) that require additional delineation (particularly to the north and east of the former excavation area). Tracking may be an issue in this area and as such, additional sampling will be conducted.
l pore et that d the	This area was investigated previously by others and there have been minimal impacts identified. Despite the previous findings, however, additional work is proposed in order to evaluate any impact that tracking may have had on the area.

Area of Concern (AOC)	Description / Operations	COCs (Known or Potential)	PCB Release Area?	Release to Soil, On-Site Sediment, or GW Confirmed?	Release Mechanisms (Known or Potential)	Media Affected or Potentially Affected	Fate and Transport	Notes / Data Gaps
AOC-13: Former Wastewater Treatment System (PCB Area 5.1)	Former Dumpster Area.	VOCs, SVOCs, ETPH, PCBs, Metals	Yes		Primary: Leakage or spillage onto the concrete pad on which the dumpsters sat; direct discharge to the ground surface; Secondary: Infiltration through the asphalt or concrete or through cracks, seams or other breaches in the asphalt or concrete to the underlying soils; Tracking: Due to the widespread presence of surficial contamination in this area and the demolition activities that have taken place, tracking is a concern in this area.	Asphalt, concrete, soil, groundwater		Soil samples collected from a boring located in the west-central portion of this area exhibited PCB concentrations greater than 50 mg/kg and this hot-spot area has not been fully horizontally delineated and as such, requires additional work. There is also a soil boring located along the eastern-central portion of this area from which soil samples exhibited PCB concentrations greater than 10 mg/kg. Although this location technically requires additional delineation to the northeast, it abuts discharge D1 which will prevent further investigation via drilling. The concrete that comprises pads P01A and P01B exhibited PCB concentrations greater than 10 mg/kg across approximately half of its surface (not contiguously). There is a data gap identified herein as there were no samples collected beneath the concrete pad. As such, additional work is proposed to evaluate underlying soil conditions, as well as soils in the vicinity of the impacted pad that may have been subject to tracking.
AOC-13: Former Wastewater Treatment System (PCB Area 5.2)	Former Wastewater Treatment System Area. This area is located to the east of English Station and includes remnants of a former wastewater treatment system (primarily concrete pads). The operational history of this former treatment system is not well documented in historic reports associated with the site.	PCBs, ETPH, PAHs	Yes		Primary: Leakage or spillage onto the concrete pads on which former treatment system components were located or asphalt surfaces in the area; direct discharge to the ground surface; Secondary: Infiltration through the asphalt or concrete or through cracks, seams or other breaches in the asphalt or concrete to the underlying soils; Tracking: Due to the widespread presence of surficial contamination in this area and the demolition activities that have taken place, tracking is a concern in this area.	Asphalt, concrete, soil, sediment and groundwater		A wastewater piping trench is located within this area. It is constructed similarly to the fuel piping trench located in AOC 8 in that it is covered with the same sectional concrete panels. As such, there are likely sediments present in the piping trench. Samples of the concrete panels that overlie this trench are proposed, as is the collection of samples of sediment in the trench (if accessible). There is one area of PCB-impacted soils (greater than 10 mg/kg) within this portion of AOC 13 which requires additional delineation. There is also a boring that exhibited PCBs in soil at concentrations greater than 1 mg/kg and due to the lack of borings surrounding concentrations. Although there are no PCB hotspots greater than 50 mg/kg in this area based on previous data, the soil boring/samples proposed for this area will serve to evaluate potential tracking issues as well.
AOC-15: Oil Stained Area North of English Station / Release to Catch Basin 4	In 2011 and 2012, demolition and asbestos abatement work was being conducted within English Station. A primary route of egress from the building for the workers was through the Oil Storage Room where many drums and other containers of oil were reported to have been stored. Spillage and/or deliberate dumping and subsequent tracking through the area has resulted in a large oil stain on the pavement on the north side of the building that was documented in 2013/2014. Catch Basin 4 is located within the oil stain and due to the concern that this release was impacting the adjacent Mill River, the USCG executed response actions in 2014.	ETPH, PAHs, PCBs	Suspected		nearby interior Oil Storage Room where breached oil	Asphalt, concrete, soils, catch basin sediment, groundwater	Petroleum resulting from a release to the surface may have infiltrated through the asphalt into the underlying soils. Impacts that infiltrated into the subsurface would be subject to migration to the groundwater through the infiltration of rainwater and the fluctuation of the water table.	This area was minimally investigated upon its discovery in 2014. PCBs were not detected in the sediment sample collected from the bottom of Catch Basin 4. Additional investigation is needed in this area to fill data gaps and to evaluate tracking issues.
AOC-16: English Station Interior (PCB Area 7)	TRC personnel conducted a walk-through of the interior of English Station in September 2016. Observations made during this walk-through have indicated that the floors of the building are generally obstructed from view by a combination of construction and asbestos debris. As such, there is initial abatement that will need to occur prior to reentry into the building to identify the full extent of staining and therefore, the locations that will require investigation.	VOCs, SVOCs, ETPH, PCBs, Metals	Suspected		Primary: Direct spillage or leakage to the floor of the building; Secondary: Absorption into the concrete and infiltration to the soils underlying the building; Tracking: Tracking into, throughout and out of the building is very likely an issue in this AOC.	sumps, trenches and pits), and groundwater	drains, cracks or other breaches into the underlying soils. Secondary releases resulting from potential infiltration through	

Area of Concern (AOC)	Description / Operations	COCs (Known or Potential)	PCB Release Area?	Release to Soil, On-Site Sediment, or GW Confirmed?	Release Mechanisms (Known or Potential)	Media Affected or Potentially Affected	Fate and Transport Notes / Data Gaps
AOC-17: Drainage Structures Associated with/beneath English Station	Although not specifically detailed as of the date of preparation of this CSM given the condition of the interior of English Station, it is evident from some limited markings on a historic drawing that there is a robust drainage system underlying the floor of the building.	VOCs, SVOCs, ETPH, PCBs, Metals	Suspected		sumps; Secondary: Infiltration through the bottoms of drainage structures into the underlying soils; Tracking: Tracking is a likely issue, as materials caught in the treads of mobile equipment may have been deposited through the grates that cover certain floor drainage features.	sediment (in sumps), surface water (contained in sumps, trenches and pits), and groundwater	Spills into the drainage structures may have infiltrated through the concrete floor of the building via drains, cracks or other breaches into the underlying soils and may be entrapped in the soil pore spaces in the vadose zone. Impacts that may have infiltrated into the subsurface would be subject to migration to the groundwater through fluctuations of the tide causing fluctuations in the groundwater table. TRC personnel conducted a walk-through of the interior of English Station in September 2016. Observations made during this walk-through have indicated that the floors of the building are generally obstructed from view by a combination of construction and asbestos debris. As such, there is initial abatement that will need to occur prior to reentry into the building to identify drainage features and therefore, the locations that will require investigation.
AOC-18: Loading Docks and Overhead Doors	Although not specifically detailed as of the date of preparation of this CSM given the condition of the interior of English Station, it is evident that there are interior portions of former loading docks that will need to be assessed.	VOCs, SVOCs, ETPH, PCBs, Metals	Suspected		building or to the surface immediately outside of the building;	soil, sediment and groundwater	Spills to the surface may have infiltrated through the concrete floor of the building or into asphalt or concrete aprons outside of the the floors of the building are generally obstructed from view by a building into the underlying soils. Secondary combination of construction and asbestos debris. As such, there is initial abatement that will need to occur prior to reentry into the building to identify interior conditions associated with loading docks and overhead doors where chemicals were handled. The exterior portions of the loading docks will also be further evaluated, although the yave been subject to a great deal of sampling already through the changes in the tide causing fluctuations in the water table.

Note that "Tracking" includes not only that which happens via anthropogenic means, but also may be the result of the flooding of the Site during storm events.

						SAMPLE L	OCATION, TY	PE(S) AND N	UMBER			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	PROPOSED INVESTIGATION / RATIONALE	Soil Sample	Propose	d Soil Samples an	d Depths	Sediment	Porous Media		0.7	PROPOSED SAMPLE
				Locations	Shallow	Intermediate	Deep	Samples	/ Surface Soil ¹	Hexane Wipe	Other	LOCATIONS
PARCEL	A (STATION B)											
1	Station B Building Interior											
	PCB Area 1.1: Mezzanine and First Floor	PCBs, ETPH	No additional investigative sampling is proposed. Additional remediation will be required in this area, followed by verification sampling in accordance with 40 CFR 761 Subpart O (5-ft. sampling grid).						Concerete verification samples as needed.			
	PCB Area 1.2: Former Annex III	PCBs, ETPH	None; Previously remediated.									
	PCB Area 1.3: Basement	Metals, PCBs, ETPH, PAHs	None; Previously investigated.									
2	Station B Former UST Area	VOCs, PAHs, ETPH, PCBs	4 soil sample locations to confirm that past elevated detections of PAHs in this area are related to fill materials and not a release.	4		4	4					Figure 5-1
3	Former Septic Systems	VOCs, SVOCs, ETPH, PCBs, Metals	One former septic system location has historically been identified on Parcel A. The former septic system on Parcel A was located to the south of Station B. This location was evaluated as part of past investigations and has been adequately characterized. No further investigation in this area is planned. Two additional locations have been identified on Parcel B where other septic systems or structures may have been located. These areas have been identified previously as "Septic East" and "Septic West". Investigation is proposed at those locations and is summarized below under the proposed work for Parcel B.							-		-
12	Former Coal Yard (Includes AOC-12N and 12W)											
12N	PCB Area 6.1: Former Station B Area	PCBs, ETPH, PAHs, Arsenic	4 soil sample locations to confirm past detections of TPH at previous sampling location TB-6. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those boring locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	4		4	4		4			Figure 5-2
	PCB Area 2.1: Elevated Railroad Tracks and Foundations	PCBs, ETPH, PAHs, Arsenic	18 soil / porous media samples (depending on the material present at the time of the investigation) from the elevated rails to further evaluate the presence of PCBs and to test for other COCs not tested for previously.	18	18							Figures 5-3 and 5-4
12W	PCB Area 2.2: Former Coal Storage Areas	PCBs, ETPH, PAHs, Arsenic	87 soil sample locations from the areas in between Tracks B, C, and D of the elevated rail system to evaluate areas not yet fully characterized. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those boring locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected. Sample points will be located on a 20-foot sampling grid.	87	87	87	87		87			Figure 5-3
14	Former Cooling Water Discharge Tunnel	PCBs, ETPH and PAHs	In order to remediate the tunnel, it will have to be exposed and the sediment removed. Sediment will require characterization prior to disposal. Once exposed and cleared of sediment, the tunnel will be sampled and handled based on the results of that sampling. Based on an approximate tunnel length of 400 ft. and a 10 ft. sample spacing, 40 concrete samples are assumed.					40	40	-		-

						SAMPLE L	OCATION, TY	(PE(S) AND NU	JMBER			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	PROPOSED INVESTIGATION / RATIONALE	Soil Sample	Propose	ed Soil Samples and	d Depths	Sediment	Porous Media	Hexane Wipe	Other	FIGURES SHOWING PROPOSED SAMPLE
				Locations	Shallow	Intermediate	Deep	Samples	/ Surface Soil ¹	Trexaile wipe	Other	LOCATIONS
PARCEL	B (ENGLISH STATION)											
			3 soil sample locations to evaluate impacts to soil in the vicinity of a structure identified as Septic East and 1 sediment sample each will be collected from the Septic East, Sump 2 and Sump 4 structures in association with Septic East (located on the east side of English Station).	3	3	3	3	3		-		Figures 5-10 and 5-17
3	Former Septic Systems (Septic East and Septic West)	VOCs, SVOCs, ETPH, PCBs, Metals	3 soil sample locations to evaluate impacts to soil in the vicinity of a structure identified as Septic West, located along the west side of English Station. 2 sediment samples will be collected from Septic West, depending on the number of chambers in the structure. 2 concrete samples will be taken from the top of Septic West to evaluate tracking of PCBs in this area.	3	3	3	3	2	2	-		Figures 5-10 and 5-17
4	Past Spills	VOCs, SVOCs, ETPH, PCBs, Metals	Past spills at the Site have been evaluated through updated research conducted during development of this Plan. No specific investigation of past spills is proposed, however, known spills or releases (such as at Capacitor Bank #1) will be evaluated through the investigation of other AOCs.	-						-		-
5	Bulkhead PCB Remediation Area	PCBs, ETPH, PAHs	9 shallow soil samples from across the former Bulkhead PCB Remedition area to evaluate tracking; deeper soil samples collected from 3 locations to confirm that past remediation met goals.	9	9		3					Figure 5-5
6	Capacitor Release / Outdoor Capacitor Banks 1-3	·	·						•			
	PCB-3.1: Former Capacitor Area	PCBs, ETPH, PAHs	6 soil sample locations to delineate PCB hotspots (>10 mg/kg) horizontally. 7 soil sample locations to evaluate tracking and staging of building debris. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected. The concrete pedestal/foundation on which the former Capacitor Bank #1 sat, contains PCBs at concentrations >50 mg/kg.	13	13	13	13		13	-		Figure 5-6
			4 concrete samples collected from the former capacitor pads and adjacent cable wall to evaluate tracking and staging of building debris.						4			Figure 5-6
7	Former Waste Oil AST / Oil Pump Room Area											
	PCB Area 5.3: Exterior Area Adjacent to Oil Pump Room	PAHs, ETPH, PCBs, VOCs, Metals (due to the proximity to the former Waste Oil AST)	8 soil sample locations to delineate PCB hotspots (>10 mg/kg) and to provide better vertical delineation of known contamination areas, including those locations with elevated ETPH/TPH. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	8	8	8	8		8	-		Figure 5-7

						SAMPLE L	OCATION, T	YPE(S) AND N	UMBER	Hexane Wipe Other FIGURESS SHOWING PROPOSED SAMPLE LOCATIONS Image: Amage:		
AOC ID	AOC LOCATION / DESCRIPTION	COCs	PROPOSED INVESTIGATION / RATIONALE	Soil Sample	Propose	ed Soil Samples and	d Depths	Sediment	Porous Media			PROPOSED SAMPLE
				Locations	Shallow	Intermediate	Deep	Samples	/ Surface Soil ¹	Hexane Wipe	Other	LOCATIONS
	PCB Area 5.4: Former Waste Oil AST Area	VOCs, PAHs, ETPH, PCBs, Metals	4 soil borings to delineate a PCB hotspot (>50 mg/kg) and provide better vertical delineation. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	4	4	4	4		4	-		Figure 5-7
			2 concrete samples from pipe trench covers to evaluate tracking; 2 sediment samples from within the pipe trench if accessible; 2 concrete samples from the trench itself, if accessible. 2 concrete samples from structure P09.					2	6			Figure 5-7
7	PCB Area 5.5: Tower GH-4 Area	PCBs, ETPH, PAHs	3 soil borings to delineate a PCB hotspot (>10 mg/kg) and provide better vertical delineation. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected. 3 soil borings will be advanced around SB-093014-112 to evaluate/delineate potential petroleum-related contamination observed in that boring. 2 soil borings will be advanced around SB-093014- 113 to evaluate similar impacts observed at that boring location.	8	8	8	8		8			Figure 5-7
			4 soil borings to provide additional horizontal and vertical delineation of PCB and ETPH contaminated soils. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	4	4	4	4		2			Figure 5-7
	PCB Area 5.6: Former Storage Building Area	VOCs, SVOCs, ETPH, PCBs, Metals	2 concrete samples from pipe trench covers to evaluate tracking; 2 sediment samples from within the pipe trench if accessible; 2 concrete samples from the trench itself, if accessible.					2	4			Figure 5-7
			2 concrete samples from structure P07 due to a lack of previous data; 7 concrete samples from structure P08 to evaluate tracking.						9			Figure 5-7
			1 sediment sample collected from the manhole in structure P07.					1				Figure 5-7
8	Former Fuel Oil ASTs		·					-	•			
			9 soil samples beneath the former AST containment dikes;	9	9							Figure 5-8
		VOCa DAU- ETDU DOD	6 soil sample locations to delineate PCB hotspots (>50 mg/kg). To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	6	6	6	6		6			Figure 5-8
	PCB Area 5.7: Fuel Oil Tank Area	VOCs, PAHs, ETPH, PCB	4 concrete samples of the pipe trench covers; 4 concrete samples of the trench bottom; 2 concrete samples from structure P10						10			Figure 5-8
			4 sediment samples from within the pipe trench; 2 sediment samples from sumps associated with the secondary containment dikes; 1 sediment sample from within P10; 1 sediment sample from within Catch Basin CB5.					8				Figure 5-8

Image: State in the state												
AOC ID	AOC LOCATION / DESCRIPTION	COCs	PROPOSED INVESTIGATION / RATIONALE	Soil Sample	Propose	ed Soil Samples and	d Depths	Sediment	Porous Media	Hexane Wipe	Other	FIGURES SHOWING PROPOSED SAMPLE
				Locations	Shallow	Intermediate	Deep	Samples	/ Surface Soil ¹	Hexane wipe	Other	LOCATIONS
9	Transformer Areas							_	_			_
			evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a	5	5	5	5		5			Figure 5-9
	PCB Area 3.3: Northwest Transformer Area	PCBs, ETPH, PAHs	1 sediment sample from within Enclosure EN03; 1 sediment sample from the manhole at structure P19; 1 sediment sample from the manhole at structure P20; 1 sediment sample from the manhole at structure P21; 1 sediment sample from the sump at Enclosure EN02.	-				5				Figure 5-9
			6 concrete samples collected from structure P19; 2 concrete samples collected from structure P20; 2 concrete samples collected from structure P21; 7 porous media samples collected from structure P22.						17			Figure 5-9
	PCB Area 4.1: Former Transformer Area on the West Side of English Station	PCBs, ETPH, PAHs	15 soil sample locations to delineate PCB hotspots (>10 and 50 mg/kg). To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	15	15	15	15		15			Figure 5-10
			5 concrete samples collected from structure P16; 3 concrete samples collected from structure P18.						8			Figure 5-10
			1 sediment sample collected from the manhole at structure P16.					1				Figure 5-10
	PCB Area 4.3: Southwest Transformer and Former		28 soil sample locations to vertically and horizontally delineate PCB hotspots (>10 and 50 mg/kg). To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	28	28	28	28		28			Figure 5-11
	Capcitor Area	PCBs, ETPH, PAHs	4 concrete samples to characterize structure P14; 5 concrete samples to evaluate tracking across structure P15; 2 concrete samples to evaluate possible tracking of contaminated soil across pads P13A and P13B.						11			Figure 5-11
			1 sediment sample collected from the manhole in structure P14.					1				Figure 5-11
10	Former Interior Chemical Storage Areas (Excluding	English Station Interior)										
			2 concrete samples of the Foam House floor.						2			Figure 5-8
	Foam House	VOCs, SVOCs, ETPH, PCBs, Metals	2 soil sample locations beneath the floor in the same locations as the concrete samples above.	2	2	2	2					Figure 5-8
			4 wipe samples of non-porous surfaces if staining or other indication of contamination is present.							4		Figure 5-8

						SAMPLE LO	CATION, TY	YPE(S) AND N	JMBER			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	PROPOSED INVESTIGATION / RATIONALE	Soil Sample	Propose	d Soil Samples and	Depths	Sediment	Porous Media	Hexane Wipe	Other	FIGURES SHOWING PROPOSED SAMPLE
				Locations	Shallow	Intermediate	Deep	Samples	/ Surface Soil ¹	nexane wipe	Other	LOCATIONS
10			28 concrete samples of the floor of the Storage building.						28			Figure 5-12
		PCBs, ETPH, VOCs,	11 soil samples collected from beneath the floor of the Storage Building, below select concrete sample locations.	11	11	11	11					Figure 5-12
	PCB Area 4.2: Storage and Shop Building	SVOCs, Metals	8 wipe samples of non-porous surfaces if staining or other indication of contamination is present.							8		Figure 5-12
			1 sediment sample collected from the sump in the Storage Building.					1				Figure 5-12
	DCD Area 4.4. Accomply Hall Duilding	PCBs	14 concrete samples collected from the floor of the Assembly Hall.						14			Figure 5-13
	PCB Area 4.4: Assembly Hall Building	PCBs	4 soil sample locations beneath floor sample locations.	4	4	4	4					Figure 5-13
			No soil sampling; the fill that comprises the Site has been adequately characterized based on previous work.									
11	On-Site Fill Material (Evaluation of tracking across pads/structures not captured by other AOCs/PCB	PAHs, ETPH, Metals	3 concrete samples to evaluate tracking across structure P12.						3			Figure 5-11
	Areas)		2 sediment samples collected from the 2 manholes present in structure P12 (unless the manholes access the same chamber).					2				Figure 5-11
12	Former Coal Yard (Includes AOC-12N, 12E, and 12V	W)										
12W	PCB Area 2.2: Former Coal Storage Areas	PCBs, ETPH, PAHs, Arsenic	14 soil sample locations in between Tracks A and B to further characterize the area with respect to PCBs and to delineate ETPH/TPH impacted soil in the vicinity of previous sample location TB-R.	14	14	14	14					Figure 5-4
	PCB Area 3.2: Area Adjacent to Bulkhead PCB Remediation	PCBs, ETPH, PAHs	11 soil sample locations to further delineate PCB hotspots (>10 mg/kg and >50 mg/kg); provide further evaluation on the northern side of the former excavation area. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	11	11	11	11		11	-		Figure 5-14
12E	PCB Area 6.2: Mill River East Branch Area	PCBs, ETPH, PAHs	60 soil sample locations laid out on a 10-foot sampling grid to further evaluate the main access point into the southwestern portion of the Site, and to further evaluate a PCB hotspot (>50 mg/kg) and SEH area formerly indentified in front of English Station. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	60	60	60	60		60	-		Figure 5-15
			4 soil sample locations to further delineate high concentrations of ETPH/TPH at previous sample location TB-X.	4	4		4		4			Figure 5-16

						SAMPLE L	OCATION, TY	YPE(S) AND N	UMBER			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	PROPOSED INVESTIGATION / RATIONALE	Soil Sample	Propose	ed Soil Samples and	d Depths	Sediment	Porous Media	Hexane Wipe	Other	FIGURES SHOWING PROPOSED SAMPLE
				Locations	Shallow	Intermediate	Deep	Samples	/ Surface Soil ¹	riexane wipe	Other	LOCATIONS
13	Former Wastewater Treatment System											
	PCB Area 5.1: Dumpster Area	VOCs, SVOCs, ETPH, PCBs, Metals	3 soil sample locations beneath the former dumpster pads; 5 soil sample locations to delineate PCB contamination >50 mg/kg to the immediate west of the dumpster pads; 6 soil sample locations to delineate ETPH impacts at previous sample locations.	14	14	14	14					Figure 5-17
			7 porous media (or surface soil) and shallow soil samples collected from the area north of the former dumpster pads and 5TB-010 to evaluate tracking	7	7				7			Figure 5-17
	PCB Area 5.2: Former Wastewater Treatment System Area	PCBs, ETPH and PAHs	4 soil sample locations to delineate/evaluate PCB contamination in the vicinity of previous sample locations where vertical or horizontal delineation isn't complete; 3 soil sample locations along the eastern side of PCB Area 5.2, where little investigation has been done to date. 4 soil sample locations to delineate ETPH impacts to soil at previous sample location SB-111814-127. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	11	11	11	11		11			Figure 5-17
			5 concrete samples of the pipe trench covers that run through this area; 5 samples of the trench bottom (if accessible).						10			Figure 5-17
			5 sediment samples from within the pipe trench in this area					5				Figure 5-17

						SAMPLE L	OCATION, TY	PE(S) AND N	UMBER			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	PROPOSED INVESTIGATION / RATIONALE	Soil Sample	Propose	ed Soil Samples and	d Depths	Sediment	Porous Media	Hexane Wipe	Other	FIGURES SHOWING PROPOSED SAMPLE
				Locations	Shallow	Intermediate	Deep	Samples	/ Surface Soil ¹	nexane wipe	Other	LOCATIONS
			28 soil sample locations to investigate contamination related to the release of oil to the ground surface in this area. To evaluate tracking in this area, porous media (asphalt or concrete) samples will be collected at those sample locations where it is encountered at the ground surface. If no porous media is present, a surface soil sample will be collected.	28	28	28	28		28			Figure 5-18
15	Oil Stained Area North of English Station / Release to Catch Basin 4		The catch basin discharge piping location will be determined through utility location and leaks from the discharge piping to the surrounding soils will be evaluated with a series of soil samples collected from either side of the line. Currently, the discharge piping, direction and location are not known with certainty, but may have previously discharged directly to the Mill River, along the east side of the Site. For the purposes of this table, it is assumed that the piping run is 160 ft. long. 1 sediment sample from the catch basin is also planned.	8	8	8	8	1	8			
16	English Station Interior											
	PCB Area 7.0: English Station Interior	VOCs, SVOCs, ETPH, PCBs, Metals	Investigation of the interior of English Station will be deferred until such time as proper abatement of asbestos and the removal of debris is completed sufficient to allow such investigation.									
17	Drainage Structures Associated With / Beneath English Station	VOCs, SVOCs, ETPH, PCBs, Metals	Investigation of the interior of English Station will be deferred until such time as proper abatement of asbestos and the removal of debris is completed sufficient to allow such investigation.									
18	Loading Docks and Overhead Doors	VOCs, SVOCs, ETPH,	Spills, releases and tracking associated with the movement of materials through access/egress points along the exterior areas of English Station have been investigated and will continue to be evaluated during the investigation of other adjacent AOCs.									
Site-Wide (Notes:	Groundwater	VOCs, SVOCs, ETPH, PCBs, Metals	As part of the initial investigation efforts at the Site, a well condition s remaining viable wells will be made following the condition survey. I CTDEEP.									

Notes:

1 Where the collection of porous media samples is specified, porous media will be sampled in accordance with the USEPA Region 1 Standard Operating Procedure for Sampling Porous Surfaces for Polychlorinated Biphenyls (PCBs), dated May 2011. If no porous media is present where specified, then a surficial soil sample will be collected from the ground surface to a maximum depth of no greater than 3 inches.

TABLE 5-1B PROPOSED INVESTIGATION AND ESTIMATED NUMBER OF SAMPLE ANALYSES English Station

					SAMPLE LO	OCATION, T	YPE(S) AND N	UMBER						ESTIN	IATED	NUMB	EROF	SAMPLI	E ANAL	YSES			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	Soil Sample	Propose	ed Soil Samples an	d Depths	Sediment	Porous Media	Hexane Wipe	Other		Bs		Hs		Ηd	15 Metals	R 15			Cs		0Cs
			Locations	Shallow	Intermediate	Deep	Samples	i orous meura	fiexane wipe	ould	PCBs	SPLP PCBs	PAHs	SPLP PAHs	ETPH	HATA ETPH	RSR 15 N	SPLP RSR 1 Metals	Arsenic	VOCs	SPLP VOCs	SVOCs	SPLP SVOCs
PARCEL	A (STATION B)																						
1	Station B Building Interior																						
	PCB Area 1.1: Mezzanine and First Floor	PCBs, ETPH						Concerete verification samples as needed.															
	PCB Area 1.2: Former Annex III	PCBs, ETPH																					
	PCB Area 1.3: Basement	Metals, PCBs, ETPH, PAHs																					
2	Station B Former UST Area	VOCs, PAHs, ETPH, PCBs	4		4	4					8	4	8	2	8	4				8	2		
3	Former Septic Systems	VOCs, SVOCs, ETPH, PCBs, Metals																					
12	Former Coal Yard (Includes AOC-12N and 12W)				•	•	-		•														
12N	PCB Area 6.1: Former Station B Area	PCBs, ETPH, PAHs, Arsenic	4		4	4		4			12	4	1		8				1				
12W	PCB Area 2.1: Elevated Railroad Tracks and Foundations	PCBs, ETPH, PAHs, Arsenic	18	18							18		5		5				5				
	PCB Area 2.2: Former Coal Storage Areas	PCBs, ETPH, PAHs, Arsenic	87	87	87	87		87			348	87	23		23	11			23				
14	Former Cooling Water Discharge Tunnel	PCBs, ETPH and PAHs					40	40			80		10		10								

TABLE 5-1B PROPOSED INVESTIGATION AND ESTIMATED NUMBER OF SAMPLE ANALYSES English Station

					SAMPLE LO	OCATION, TY	PE(S) AND N	UMBER						ESTIN	IATED	NUMB	ER OF	SAMPL	E ANAL	LYSES			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	Soil Sample	Propose	d Soil Samples an	d Depths	Sediment	Porous Media	Hexane Wipe	Other		Bs		Hs		ΗI	letals	R 15			Cs		ocs
			Locations	Shallow	Intermediate	Deep	Samples	i orous meura	fiexane wipe	Other	PCBs	SPLP PCBs	PAHs	SPLP PAHs	ETPH	HATA AJAS	RSR 15 Metals	SPLP RSR 15 Metals	Arsenic	VOCs	SPLP VOCs	SVOCs	SPLP SVOCs
PARCEL	B (ENGLISH STATION)																						
3	Former Septic Systems (Septic East and Septic	VOCs, SVOCs, ETPH,	3	3	3	3	3				12	4			9		9			9	5	9	5
5	West)	PCBs, Metals	3	3	3	3	2	2			13	5			8		8			8	4	8	4
4	Past Spills	VOCs, SVOCs, ETPH, PCBs, Metals																					
5	Bulkhead PCB Remediation Area	PCBs, ETPH, PAHs	9	9		3					12		3		3								
6	Capacitor Release / Outdoor Capacitor Banks 1-3		-	-			_	_	_	_	_												
	PCB-3.1: Former Capacitor Area	PCBs, ETPH, PAHs	13	13	13	13		13			52	15	2		13	13							
	rCb-5.1: Former Capacitor Area	rcds, Eirn, rAns						4			4												
7	Former Waste Oil AST / Oil Pump Room Area		•	•																			
	PCB Area 5.3: Exterior Area Adjacent to Oil Pump Room	PAHs, ETPH, PCBs, VOCs, Metals (due to the proximity to the former Waste Oil AST)	8	8	8	8		8			32	8	2		8	8	2			2			
	PCB Area 5.4: Former Waste Oil AST Area	VOCs, PAHs, ETPH,	4	4	4	4		4			16	4	1		4	4	1			1			
	PCB Area 5.4: Former Waste Oil AS1 Area	PCBs, Metals					2	6			8		2		2		2			2			
	PCB Area 5.5: Tower GH-4 Area	PCBs, ETPH, PAHs	8	8	8	8		8			32	8	1		18	9							
			4	4	4	4		2			14	4			8	4	1			1		1	
	DCD Area 5 C Earnea Starras Duildias Area	VOCs, SVOCs, ETPH,					2	4			6				1			1		1		1	
	PCB Area 5.6: Former Storage Building Area	PCBs, Metals						9			9												
							1				1				1			1		1		1	

TABLE 5-1B PROPOSED INVESTIGATION AND ESTIMATED NUMBER OF SAMPLE ANALYSES English Station

					SAMPLE LO	OCATION, TY	PE(S) AND N	UMBER						ESTIN	IATED	NUMB	ER OF S	SAMPLI	E ANAL	YSES			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	Soil Sample	Propose	d Soil Samples and	d Depths	Sediment	Donous Madia	Hexane Wipe	Other		Bs		Hs		Hd	letals	R 15			Cs)Cs
			Locations	Shallow	Intermediate	Deep	Samples	r of ous Media	nexane wipe	Other	PCBs	SPLP PCBs	PAHs	SPLP PAHs	ETPH	HATA ALAS	RSR 15 Metals	SPLP RSR 15 Metals	Arsenic	VOCs	SPLP VOCs	SVOCs	SPLP SVOCs
8	Former Fuel Oil ASTs			_			-	-	-	-	_												
			9	9							9		9	9	9	9				9			
	PCB Area 5.7: Fuel Oil Tank Area	VOCs, PAHs, ETPH, PCBs	6	6	6	6		6			24	6	6	4	6	4				2			
		voes, 17413, 21111, 1923						10			10												
							8				8				8			8		8		8	
9	Transformer Areas				1						•	1	r										
			5	5	5	5		5			20		4	2	4	2							
	PCB Area 3.3: Northwest Transformer Area	PCBs, ETPH, PAHs					5				5				5		5			5		5	
								17			17												
			15	15	15	15		15			60	15	8	4	8	4							
	PCB Area 4.1: Former Transformer Area on the West Side of English Station	PCBs, ETPH, PAHs						8			10												
							1				2				2		2			2		2	
			28	28	28	28		28			112		8	8	8	8							
	PCB Area 4.3: Southwest Transformer and Former Capcitor Area	PCBs, ETPH, PAHs	-					11			11												
							1				1				1		1			1		1	

TABLE 5-1B PROPOSED INVESTIGATION AND ESTIMATED NUMBER OF SAMPLE ANALYSES English Station

					SAMPLE LO	OCATION, TY	YPE(S) AND N	UMBER						ESTIM	ATED	NUMBI	ER OF S	SAMPLI	E ANAL	LYSES			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	Soil Sample	Propose	d Soil Samples an	d Depths	Sediment	Porous Media	Hexane Wipe	Other		Bs		Hs		ΡΗ	letals	R 15			Cs		Ĵ
			Locations	Shallow	Intermediate	Deep	Samples	i orous media	fiexane wipe	Other	PCBs	SPLP PCBs	PAHs	SPLP PAHs	ETPH	SPLP ETPH	RSR 15 Metals	SPLP RSR 15 Metals	Arsenic	VOCs	SPLP VOCs	SVOCs	SPLP SVOCs
10	Former Interior Chemical Storage Areas (Excluding	English Station Interior)		-			-	-				_								-		-	
								2			2												-
	Foam House	VOCs, SVOCs, ETPH, PCBs, Metals	2	2	2	2					6				2			2		2		2	-
									4		4												-
								28			28												
	PCB Area 4.2: Storage and Shop Building	PCBs, ETPH, VOCs, SVOCs, Metals	11	11	11	11					33	11			3			3		3		3	
							1		8		9												
	PCB Area 4.4: Assembly Hall Building	PCBs						14			14												
			4	4	4	4					12	4											
11	On-Site Fill Material (Evaluation of tracking across pads/structures not captured by other AOCs/PCB Areas)	PAHs, ETPH, Metals					2	3			5				2		2			2		2	
12	Former Coal Yard (Includes AOC-12N, 12E, and 12	W)				-			•		-												
12W	PCB Area 2.2: Former Coal Storage Areas	PCBs, ETPH, PAHs, Arsenic	14	14	14	14					42	14	4		14	14			4				
	PCB Area 3.2: Area Adjacent to Bulkhead PCB Remediation	PCBs, ETPH, PAHs	11	11	11	11		11			44	11	3	3	3	3							
12E	PCB Area 6.2: Mill River East Branch Area	PCBs, ETPH, PAHs	60	60	60	60		60			240	60	15	15	30	15							
140	r ob raca 0.2. Ivini kivor East Dianon Aica	1 CD3, 21111, 1 A113	4	4		4		4			12	4	8	8	8	8							

TABLE 5-1B PROPOSED INVESTIGATION AND ESTIMATED NUMBER OF SAMPLE ANALYSES English Station

					SAMPLE LO	DCATION, TY	PE(S) AND N	UMBER						ESTIN	IATED	NUMBI	ER OF S	SAMPLI	E ANAL	YSES			
AOC ID	AOC LOCATION / DESCRIPTION	COCs	Soil Sample	Propose	ed Soil Samples and	d Depths	Sediment	Donous Modia	Hexane Wipe	Other		3s		Is		Н	letals	R 15			S		DCs
			Locations	Shallow	Intermediate	Deep	Samples	rorous media	Hexane wipe	Other	PCBs	SPLP PCBs	PAHs	SPLP PAHs	ETPH	HdTƏ AJAŞ	RSR 15 Metals	SPLP RSR 15 Metals	Arsenic	VOCs	SPLP VOCs	SVOCs	SPLP SVOCs
13	Former Wastewater Treatment System			_			_	-	_	_	-												
	PCB Area 5.1: Dumpster Area	VOCs, SVOCs, ETPH,	14	14	14	14					42	14			4		4			4		4	
		PCBs, Metals	7	7				7			14												
			11	11	11	11		11			44	11	3		3		3						
	PCB Area 5.2: Former Wastewater Treatment System Area	PCBs, ETPH and PAHs						10			10												
							5				5				5		5			5		5	
15	Oil Stained Area North of English Station / Release	PCBs, ETPH and PAHs	28	28	28	28		28			112	28	7		28								
	to Catch Basin 4	- ·, · · · ·	8	8	8	8	1	8			33	8	1		8		1			1		1	
16	English Station Interior				T	1	T	1	•								1						
	PCB Area 7.0: English Station Interior	VOCs, SVOCs, ETPH, PCBs, Metals																					
17	Drainage Structures Associated With / Beneath English Station	VOCs, SVOCs, ETPH, PCBs, Metals																					
18	Loading Docks and Overhead Doors	VOCs, SVOCs, ETPH, PCBs, Metals																					
	Site-Wide Groundwater		The number of grou groundwater.	indwater sample:	s collected will depen	d on the final we	ll network. See T	Cable 5-1A for fur	ther discussion on	Site-Wide													
		Totals	402	394	355	362	74	477	12	0	1677	329	134	55	290	120	46	15	33	77	11	53	9
	Total Pro	oposed Sample Locations	607	7	1		8										1						
		Total Proposed Samples	167	4]																		

AOC ID	AOC / PCB Area Description	Generalized Sampling Approach	Depth of Highest Detected Contaminant	Maximum Depth Exhibiting	Sample Surficial Materials (Porous	Propos	ed Soil Sample De	epths ^{2,3}
AUCID	AUC / FCB Area Description	Generanzeu Sampning Approach	Concentration	Contaminants of Concern	Media / Surficial Soil)? (Y/N) ¹	Shallow Sample Range	Intermediate Sample Range	Deep Sample Range
PARCEL	Α							
2		Four soil borings will be advanced in areas where elevated PAHs were detected in soil around a former UST location. Soil samples will be collected from two separate depth intervals (intermediate and deep).	~8'	14'	No		7'-8'	13'-14'
12N	PCB Area 6.1: Former Station B Area	Four soil borings will be advanced around an area where elevated concentrations of TPH were detected in soil. Soil samples will be collected from two separate depth intervals (intermediate and deep) below porous media.	7'	7'	Yes		6'-7'	10'-11'
12W	PCB Area 2.1: Elevated Railroad Tracks and Foundations	Based on historical environmental reports, Tracks A, B, C, and D are covered by soil. All proposed samples will be surface soil samples unless concrete or asphalt is present. If concrete or asphalt is present at the surface of a planned sample location, the sample will be a porous media sample.	0.3'	1.5'	Yes, if present	0-0.25'		
	PCB Area 2.2: Former Coal Storage Areas	Eighty seven soil borings will be advanced across this area of the Site to provide additional soil characterization. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media.	0-0.3'	4.3'-6.3'	Yes	0.5'-1.5'	3'-4'	7'-8'
PARCEL	B							
3	Former Septic Systems	Little to no evaluation of soils surrounding the "Septic East" and "Septic West" structures has been completed to date. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) in the borings planned around these structures.	NA	NA	Yes	3'-4'	7'-8'	11'-12'

AOC ID	ACC / BCB Area Description	Conceptized Someling Approach	Depth of Highest Detected Contaminant	Maximum Depth Exhibiting	Sample Surficial Materials (Porous	Propos	ed Soil Sample Do	epths ^{2,3}
AUCID	AOC / PCB Area Description	Generalized Sampling Approach	Concentration	Contaminants of Concern	Media / Surficial Soil)? (Y/N) ¹	Shallow Sample Range	Intermediate Sample Range	Deep Sample Range
5	Bulkhead PCB Remediation Area	Nine soil borings will be advanced across the former bulkhead remediation area. Shallow soil samples will be collected from all nine soil borings; deep soil samples will be collected from three of the nine borings.	8.5'	~12.5'	No	0-0.25'		12'-13'
6	PCB Area 3.1: Former Capacitor Area	Thirteen soil borings will be advanced across this area. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media in each of the thirteen borings.	0-0.3'	2.3'-4.3'	Yes	0.5'-1.5'	2'-3'	5'-6'
7	PCB Area 5.3: Exterior Area Adjacent to Oil Pump Room	Eight soil borings will be advanced in this area. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the eight borings.	0.3'-1.3'	~12'	Yes	0.5'-1.5'	5.5'-6.5'	12'-13'
7	PCB Area 5.4: Former Waste Oil AST Area	Four soil borings will be advanced around a previous soil boring location where elevated concentrations of PCBs were detected in soil. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the four borings.	0.3'-1.3'	5.3'	Yes	0.3'-1.3'	3'-4'	5'-6'
7	PCB Area 5.5: Tower GH-4 Area (PCB Delineation)	Three soil borings will be advanced around a PCB hotspot to delineate impacts horizontally and vertically. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the three borings.	2'-2.3'	8'-8.3'	Yes	2'-3'	4'-5'	9'-10'
7	P(K Area 5 5, Lower (_H_4 Area	Five soil borings will be advanced around previous boring locations where minor petroleum-related impacts were observed in soil. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the five borings.	Odors and staining observed from 8.5'-15'	15'	Yes	8'-10'	13'-15	15'-17'
7	PCB Area 5.6: Former Storage Building Area	Four soil borings will be advanced around past sampling locations where PCB and petroleum-related impacts were detected in shallow soils. Two of the proposed soil borings will be drilled through concrete pad P08. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the four borings.	0.5'	1.8'	Yes	0.5'-1.5'	2'-3'	7'-8'

510 Grand Avenue

New Haven, Connecticut

AOC ID	AQC / BCB Area Decovirtion	Conceptized Someling Approach	Depth of Highest Detected Contaminant	Maximum Depth Exhibiting	Sample Surficial Materials (Porous	Propos	ed Soil Sample Do	epths ^{2,3}
AUCID	AOC / PCB Area Description	Generalized Sampling Approach	Concentration	Contaminants of Concern	Media / Surficial Soil)? (Y/N) ¹	Shallow Sample Range	Intermediate Sample Range	Deep Sample Range
8	PCB Area 5.7: Fuel Oil Tank Area (Petroleum Delineation)	Nine soil borings will be advanced beneath the former containment dikes for the former fuel oil ASTs. Shallow soil samples will be collected from beneath the concrete containment structures in this area.	NA	NA	No	Directly below containment structure (~1'-2')		
8	PCB Area 5.7: Fuel Oil Tank Area (PCB Delineation)	Six soil borings will be advanced in the vicinity of previous soil borings that exhibited elevated PCB concentrations. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the six borings.	0-0.25'	1.7'-2'	Yes	0.5'-1.5'	2'-3'	5'-6'
9		Five soil borings will be advanced around previous boring locations where elevated concentrations of PCBs were detected. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the five borings.	5'-7'	20'-25' (1 isolated detection)	Yes	0.5'-1.5'	6'-7'	11'-12'
9	PCB Area 4.1: Former Transformer Area on the West Side of English Station	Fifteen soil borings will be advanced across this area, in close proximity to previous soil boring locations where elevated concentrations of PCBs were detected in soil. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the fifteen borings.	0-0.3'	6'-8'	Yes	0.5'-1.5'	2'-3'	6'-7'
9	PCB Area 4.3: Southwest Transformer and Former Capcitor Area	Twenty eight soil borings will be advanced across this area to further delineate the horizontal and vertical extents of PCB contaminated soils identified during previous investigations. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the twenty eight borings.	0.3'-1.3'	6.3'-8.3' (1 isolated detection)	Yes	0.5'-1.5'	1.5'-2.5'	5.5'-6.5'
10		Two soil borings will be advanced through the floor of the Foam House building to collect soil samples. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below the floor of the building at both boring locations.	0-0.25' (located south of the Foam House)	0.75'-1.5'	Yes, the concrete floor of the Foam House will be sampled	0.5'-1.5'	1.5'-2.5'	2.5'-3.5'

AOC ID	AOC / BCB Area Decovirtion	Conceptized Someling Approach	Depth of Highest Detected Contaminant	Maximum Depth Exhibiting	Sample Surficial Materials (Porous	Propos	ed Soil Sample Do	epths ^{2,3}
AUCID	AOC / PCB Area Description	Generalized Sampling Approach	Concentration	Contaminants of Concern	Media / Surficial Soil)? (Y/N) ¹	Shallow Sample Range	Intermediate Sample Range	Deep Sample Range
	PCB Area 4.2: Storage and Shop Building	Eleven soil borings will be advanced through the floor of the former Storage and Shop Building to collect soil samples. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below the floor of the building, at each of the boring locations.	0-0.3' along the southern side of the building	6'-8' along the southern side of building	Yes, the concrete floor of the Storage and Shop Building will be sampled	0.5'-1.5'	1.5'-2.5'	8'-9'
10	PCB Area 4.4: Assembly Hall Building	Four soil borings will be advanced through the floor of the former Assembly Hall to collect soil samples. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below the floor of the building at each of the boring locations.	Soil beneath, and in the i the building has not be	•	Yes, the concrete floor of the Assembly Hall Building will be sampled	0.5'-1.5'	1.5'-2.5'	2.5'-3.5'
12W		Ten soil borings will be advanced in this area to provide additional soil data where previous investigation is limited. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) at each of the boring locations.	Soil in this area of the Si character		No	0-0.25'	0.5'-1.5'	3'-4'
12W	Delineation)	Four soil borings will be advanced in the vicinity of a previous boring location where elevated concentrations of TPH were detected in soil. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) at each of the boring locations.	5'-7'	10'-12'	No	5'-7'	10'-12'	12'-14'
	Bulkhead PCB Remediation	Eleven soil borings will be advanced in the vicinity of the former Bulkhead Remediation Area, and in an area where widespread PCB contamination of soil has been identified. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep), below porous media in each of the eleven borings.	2'-4'	4.3'-6.3'	Yes	1'-2'	3'-4'	7'-8'
128	PCB Area 6.2: Mill River East Branch Area (PCB Delineation)	Sixty soil borings will be advanced across this area of the Site to better characterize soils in this area, and to further delineate known areas of soil contamination. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep), below porous media at each boring location.	~0-1'	~0-1'	Yes	0.5'-1.5'	1.5'-2.5'	5'-6'

510 Grand Avenue

New Haven, Connecticut

	AOC / BCP Area Deceminition	Generalized Sampling Approach	Depth of Highest Detected Contaminant	Maximum Depth Exhibiting	Sample Surficial Materials (Porous	Proposed Soil Sample Depths ^{2,3}		
AUCID	AOC ID AOC / PCB Area Description	Generalized Sampling Approach	Concentration	Contaminants of Concern	Media / Surficial Soil)? (Y/N) ¹	Shallow Sample Range	Intermediate Sample Range	Deep Sample Range
12E	PCB Area 6.2: Mill River East Branch Area (Petroleum Delineation)	Four soil borings will be advanced in the vicinity of a previous boring location where elevated concentrations of TPH were detected in soil. Soil samples will be collected from two separate depth intervals (shallow and deep) at each of the boring locations.	0-2'	0-2'	Yes	1'-3'		5'-7'
	PCB Area 5.1: Dumpster Area (PCB Delineation)	Eight soil borings will be advanced in this area to further delineate the vertical extents of PCB contamination. Three of the soil borings will be advanced through the concrete pad at the former dumpster location; five soil borings will be advanced throuth the asphalt to the west of the dumpster pad. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep), below porous media in all eight of the borings.	0.3'-2.3'	3.3'-5.3'	No	0.5'-1.5'	2'-3'	5'-6'
13		Seven shallow soil or porous media samples (depending upon which material is present) will be collected from the area immediately north of the dumpster pad.	NA	NA	Yes, if present	0-0.25'		
13	PCB Area 5.1: Dumpster Area (Petroleum Delineation)	Six soil borings will be advanced in the vicinity of previous boring locations where elevated concentrations of TPH were detected in soil. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) at each of the boring locations.	8'	13'	No	5'-7'	7'-9'	15'-17'
13	PCB Area 5.2: Former Wastewater Treatment System Area (PCB Delineation)	Seven soil borings will be advanced in this area where previous investigations have identified but not delineated PCB contamination in soil and where data gaps exist. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the seven borings.	0.25'-1.0'	2.3'-4.0'	Yes	0.5'-1.5'	1.5'-2.5'	5'-6'

510 Grand Avenue New Haven, Connecticut

AOC ID	AOC / PCB Area Description	Generalized Sampling Approach	Depth of Highest Detected Contaminant	Maximum Depth Exhibiting	Sample Surficial Materials (Porous	Proposed Soil Sample Depths ^{2,3}		
AUC ID	AOC / I CD AIta Description	Generalizeu Sampning Approach	Concentration	Contaminants of Concern	Media / Surficial Soil)? (Y/N) ¹	Shallow Sample Range	Intermediate Sample Range	Deep Sample Range
13	PCB Area 5.2: Former Wastewater Treatment System Area (PCB and	Four soil borings will be advanced in the vicinity of a previous boring location where PCBs and petroleum-related impacts were identified. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the four borings.	13'-15'	13'-15'	Yes	11'-12'	14'-15'	17'-18'
1 15	Oil Stained Area North of English Station	Twenty eight soil borings will be advanced in an area along the northern side of English Station where a large oil stain is present. No significant effort has been undertaken to date to characterize this release. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the twenty eight borings.	NA	NA	Yes	0.5'-1.5'	1.5'-2.5'	4'-5'
15	Release to Catch Basin 4	Eight soil borings will be advanced along the Catch Basin 4 discharge piping (once located) to evaluate impacts to the surrounding soil resulting from the release of the large oil spill (detailed above) along the northern side of English Station. No significant effort has been undertaken to date to characterize this release. Soil samples will be collected from three separate depth intervals (shallow, intermediate and deep) below porous media from each of the eight borings.	NA	NA	Yes	4'-5'	6'-7'	8'-9'

NOTES:

1 Where the collection of porous media samples is specified, porous media will be sampled in accordance with the USEPA Region 1 Standard Operating Procedure for Sampling Porous Surfaces for Polychlorinated Biphenyls (PCBs), dated May 2011. If no porous media is present where specified, then a surficial soil sample will be collected from the ground surface to a maximum depth of no greater than 3 inches.

2 Soil sample ranges presented are approximate. Actual sample depths may be adjusted based on historic contaminant detections, field observations and/or measurements, or unanticipated conditions.

3 Soil sample ranges are generally presented as 1-foot sample intervals, however 6-inch intervals may be used to collect PCB samples.

Field Sample Matrix	Parameter	Sample Type	Preparation/ Analytical Method References	Sample Preservation	Holding Time from Collection	Container
Soil	VOCs	Field Sample, Field Duplicate, MS/MSD, EB, and Trip Blank	SW-846 5035A/8260B	Methanol - preserved in the field and Cool to 4°C (high-level); and water – preserved in the field and Cool to 4°C (low-level). (Soil/preservative ratio: 1:1)	High-Level: 14 days to analysis Low-Level: 48 hours to freezing at <- 7°C; 14 days to analysis	2-40 mL Methanol preserved VOA vials (high-level); or 2-40 mL vials with lab reagent water and magnetic stir bar (low-level)
Soil	SVOCs/ PAHs	Field Sample, Field Duplicate, EB, and MS/MSD	SW-846 3540C, 3545A, 3546/8270D	Cool to 4°C	14 days to extraction; 40 days from extraction to analysis	1-4 oz. amber glass jar with Teflon lined cap
Soil	ETPH	Field Sample, Field Duplicate, and MS/MSD	CTDEEP Modified Method Rev. 0	Cool to 4°C	14 days to extraction 40 days to analysis	1-4 oz glass jar w/Teflon lined cap
Soil	PCB Aroclors	Field Sample, Field Duplicate, EB, and MS/MSD	SW-846 3540C/8082A	Cool to 4°C	14 days to extraction; 40 days from extraction to analysis	1-4oz amber glass jar with Teflon lined cap
Soil	Metals	Field Sample, Field Duplicate, EB, and MS/DUP	SW-846 3050B/ 6010C/6020A/ 7471A	Cool to 4°C	Mercury: 28 days to analysis Other Metals: 180 days to analysis	1-8 oz. polyethylene/glass bottle and cap

Field Sample Matrix	Parameter	Sample Type	Preparation/ Analytical Method References	Sample Preservation	Holding Time from Collection	Container
Soil/ Sediment	рН	Field Sample, Field Duplicate, and Lab Duplicate	SW-846 9045D	Cool to 4°C	24 hours to analysis	1-4 oz. glass jar with Teflon-lined cap
Soil/ Sediment	ORP	Field Sample, Field Duplicate, and Lab Duplicate	ASTM Method D 1498-00, modified	Cool to 4°C	24 hours to analysis	1-4 oz. glass jar with Teflon-lined cap
Soil/ Sediment	Corrosivity	Field Sample, Field Duplicate, and Lab Duplicate	SW-846 9045D	Cool to 4°C	24 hours to analysis	1-4 oz. amber glass jar with Teflon lined cap
Soil/ Sediment	Ignitability	Field Sample, Field Duplicate, and Lab Duplicate	SW-846 1030	Cool to 4°C	None	1-4 oz. amber glass jar with Teflon lined cap
Soil/ Sediment	TCLP VOCs	Field Sample, Field Duplicate, and MS/MSD	SW-846 1311/5030B/ 8260B	Cool to 4°C No headspace	14 days to analysis	1-4 oz glass jar with Teflon lined cap

Field Sample Matrix	Parameter	Sample Type	Preparation/ Analytical Method References	Sample Preservation	Holding Time from Collection	Container
Soil/ Sediment	TCLP SVOCs	Field Sample, Field Duplicate, and MS/MSD	SW-846 Method 1311/3510C/ 8270D	Cool to 4°C	14 days to TCLP extraction; 7 days from TCLP extraction to SVOC extraction; 40 days from SVOC extraction to analysis	1-8 oz glass jar with Teflon lined cap
Soil/ Sediment	TCLP Metals	Field Sample, Field Duplicate, and MS/DUP	SW-846 1311/3005A, 3015A/6010C/ 7470A	Cool to 4°C	Mercury: 28 days Other metals: 180 days to analysis	1-8 oz glass bottle and cap
Soil/ Sediment	Reactive cyanide	Field Sample, Field Duplicate, and MS/DUP	SW-846 Update III Chapter 7, Section 7.3.4	Cool to 4°C; no headspace	3 days to analysis	1-4 oz. amber glass jar with Teflon lined cap
Soil/ Sediment	Reactive sulfide	Field Sample, Field Duplicate, and MS/DUP	SW-846 Update III Chapter 7, Section 7.3.3	Cool to 4°C; no headspace	3 days to analysis	1-4 oz. amber glass jar with Teflon lined cap
Wipe	PCBs	Field Sample, Field Duplicate	SW-846 3540C/8082A	Cool to 4°C	14 days to extraction; 40 days from extraction to analysis	1-4oz amber glass jar with Teflon lined cap

Field Sample Matrix	Parameter	Sample Type	Preparation/ Analytical Method References	Sample Preservation	Holding Time from Collection	Container
Sediment	VOCs	Field Sample, Field Duplicate, EB, MS/MSD, and Trip Blank	SW-846 5035A/ 8260B	Methanol - preserved in the field and Cool to 4°C (high-level); and water – preserved in the field and Cool to 4°C (low-level). (Sediment/ preservative ratio: 1:1)	High-Level: 14 days to analysis Low-Level: 48 hours to freezing at <- 7°C; 14 days to analysis	2-40 mL Methanol preserved VOA vials (high-level); or 2-40 mL vials with lab reagent water and magnetic stir bar (low-level)
Sediment	SVOCs/ PAHs	Field Sample, Field Duplicate, EB, and MS/MSD	SW-846 3540C, 3545A, 3546/8270D	Cool to 4°C	14 days to extraction; 40 days from extraction to analysis	1-4 oz. amber glass jar with Teflon lined cap
Sediment	ЕТРН	Field Sample, Field Duplicate, and MS/MSD	CTDEEP Modified Method Rev. 0	Cool to 4°C	14 days toextraction40 days to analysis	1-4 oz glass jar w/Teflon lined cap
Sediment	PCB Aroclors	Field Sample, Field Duplicate, EB, and MS/MSD	SW-846 3540C/8082A	Cool to 4°C	14 days to extraction; 40 days from extraction to analysis	1-4oz amber glass jar with Teflon lined cap

Field Sample Matrix	Parameter	Sample Type	Preparation/ Analytical Method References	Sample Preservation	Holding Time from Collection	Container
Sediment	Metals	Field Sample, Field Duplicate, EB, and MS/DUP	SW-846 3050B/ 6010C/6020A/ 7471A	Cool to 4°C	Mercury: 28 days to analysis Other Metals: 180 days to analysis	1-8 oz. polyethylene/glass bottle and cap
Groundwater	VOCs	Field Sample, Field Duplicate, EB, MS/MSD, and Trip Blank	SW-846 5030B/8260B	Cool to 4°C HCl to pH<2	14 days to analysis	2-40 mL VOA vials
Groundwater	SVOCs/ PAHs	Field Sample, Field Duplicate, EB, and MS/MSD	SW-846 3510C/8270C	Cool to 4°C	7 days to extraction; 40 days from extraction to analysis	2 1-liter amber glass bottles with Teflon- lined cap
Groundwater	ETPH	Field Sample, Field Duplicate, and MS/MSD	CTDEEP Modified Method Rev. 0	Cool to 4°C	7 days to extraction 40 days to analysis	2 1-liter amber glass bottles with Teflon- lined cap
Groundwater	PCB Aroclors	Field Sample, Field Duplicate, EB, and MS/MSD	SW-846 3510C/8082A	Cool to 4°C	7 days to extraction; 40 days from extraction to analysis	2 1-liter amber glass bottles with Teflon- lined cap
Groundwater	Metals	Field Sample, Field Duplicate, EB, and MS/DUP	SW-846 3005A, 3015A/6010C/ 6020A/7470A	pH <2 with HNO ₃ ; Cool to 4°C	Mercury: 28 days to analysis Other Metals: 180 days to analysis	1 1-liter polyethylene/glass container

Field Sample Matrix	Parameter	Sample Type	Preparation/ Analytical Method References	Sample Preservation	Holding Time from Collection	Container
Surface Water	VOCs	Field Sample, Field Duplicate, EB, MS/MSD, and Trip Blank	SW-846 5030B/8260B	Cool to 4°C HCl to pH<2	14 days to analysis	2-40 mL VOA vials
Surface Water	SVOCs/ PAHs	Field Sample, Field Duplicate, EB, and MS/MSD	SW-846 3510C/8270C	Cool to 4°C	7 days to extraction; 40 days from extraction to analysis	2 1-liter amber glass bottles with Teflon- lined cap
Surface Water	ЕТРН	Field Sample, Field Duplicate, and MS/MSD	CTDEEP Modified Method Rev. 0	Cool to 4°C	7 days to extraction 40 days to analysis	2 1-liter amber glass bottles with Teflon- lined cap
Surface Water	PCB Aroclors	Field Sample, Field Duplicate, EB, and MS/MSD	SW-846 3510C/8082A	Cool to 4°C	7 days to extraction; 40 days from extraction to analysis	2 1-liter amber glass bottles with Teflon- lined cap
Surface Water	Metals	Field Sample, Field Duplicate, EB, and MS/DUP	SW-846 3005A, 3015A/6010C/ 6020A/7470A	pH <2 with HNO ₃ ; Cool to 4°C	Surface water	Metals

Note: Solid media (e.g., concrete, asphalt, etc.) sampling and analytical methods will be as described for soils, with results reported on a dry weight basis.

TABLE 6-1 ESTIMATED PCB BULK SAMPLE QUANTITIES-STATION B AND EXTERIOR LOCATIONS English Station 510 Grand Avenue New Haven, Connecticut				
General Location	Estimated Quantity of Bulk Building Material Product Samples			
Station B - Basement	36			
Station B – 1 st Floor	171			
Station B – 2 nd Floor	12			
Station B – Roof	39			
Station B – Exterior	57			
Exterior – Satellite Buildings/Structures	87			
Exterior – Debris/ Miscellaneous	36			
SAMPLE TOTAL	438			

APPENDIX A

COPY OF PARTIAL CONSENT ORDER COWSPCB 15-001

STATE OF CONNECTICUT

V.

THE UNITED ILLUMINATING COMPANY

PARTIAL CONSENT ORDER NUMBER COWSPCB 15-001¹

:

•

Date Issued:

- A. The Commissioner of Energy and Environmental Protection (the "Commissioner") finds:
 - 1. Respondent The United Illuminating Company ("UI") is a regional electric distribution company, established in New Haven, Connecticut in 1899, currently engaged in the purchase, transmission, distribution and sale of electricity and related services to residential, commercial and industrial customers.
 - 2. Respondent has a business address of 180 Marsh Hill Road, Orange, Connecticut.
 - 3. From 1914 until December of 2000, Respondent owned an approximately 8.9 acre parcel of land located at 510 Grand Avenue in New Haven, Connecticut, as set forth in Sections A.5. through A.10. below, said site is presently described in two deeds recorded at page 14 of volume 7814, and page 195 volume 7817 of the City of New Haven land records (the "Site"). The Site, part of an island in the Mill River, is depicted on the map included as Exhibit A to this Consent Order. For purposes of Respondent's obligations under this Consent Order, any reference to the Site includes all soil, surface water, groundwater and sediment located within the perimeter of the Site as shown on Exhibit A, but shall not include offsite soil, groundwater and sediment in the Mill River, including the East and West branches of said River or any areas that are offsite from the Site.
 - 4. The Site is referred to and known as "English Station."
 - 5. On or about August 16, 2000, Respondent transferred the Site to Quinnipiac Energy, LLC ("Quinnipiac Energy") as described in a deed which is recorded at page 72 of volume 5716 of the City of New Haven land records.

¹ This Consent Order is referred to herein as "Partial Consent Order", "Consent Order" or "order."

- 6. At some point prior to December 9, 2006, the Site was divided into two parcels, Parcel A and Parcel B.
- Parcel A is located on the northern portion of the Site adjacent to Grand Avenue and includes, among other structures, a building known as Station B.
- 8. Parcel B is located on the southern portion of the Site and includes, among other structures, a former power generation building.
- 9. On December 9, 2006, Quinnipiac Energy sold Parcel A to Evergreen Power, LLC ("Evergreen"), as described in a deed which is recorded at page 14 of volume 7814 of the City of New Haven land records.
- 10. On December 13, 2006, Quinnipiac Energy sold Parcel B to ASNAT Realty, LLC ("ASNAT"), as described in a deed which is recorded at page 195 of volume 7817 of the City of New Haven land records.

SITE HISTORY AND ENVIRONMENTAL SETTING

- 11. Groundwater below and near the Site is classified as a GB groundwater area.
- 12. The surface water of the adjacent Mill River is classified as SD/SB.
- 13. From 1929 through 1992 Respondent operated an electrical power plant ("the Plant") at the Site.
- 14. The Plant was constructed on a man-made island in the middle of the Mill River located south of Grand Avenue in New Haven, CT. The island is constructed of historically placed fill and comprised of ash, dredge spoils, and other miscellaneous debris.
- 15. In 1992 the Plant was placed on deactivated status.
- 16. Respondent's activities on the Site involved the use and storage of equipment and oil, both containing polychlorinated biphenyls ("PCBs").
- 17. PCBs are a class of human-made chemicals whose manufacture, along with many of its uses, was banned by the United States Environmental Protection Agency ("EPA") in 1979. PCBs have been shown to cause cancer in animals. PCBs have been shown to cause other non-cancer health effects in animals and humans including, but not limited to, effects on the immune system, reproductive system, endocrine system, and

nervous system. Studies in humans provide supportive evidence for the potential impact of PCBs on humans.

- 18. Respondent's activities on the Site also involved the use and/or management of other equipment and/or materials that contained various pollutants including but not limited to metals, volatile organic compounds, semivolatile organic compounds, and total petroleum hydrocarbons.
- 19. Respondent operated five (5) PCB transformers ("PCB Transformers"), seventy (70) large high voltage capacitors, and eight (8) pieces of PCB containing electrical equipment including additional transformers and circuit breakers.
- 20. Respondent also operated two (2) PCB storage areas at the Site.
- 21. Respondent's employees routinely sprayed waste oil, including transformer oil contaminated with PCBs, for dust control, on coal piles, transit areas and handling areas.
- 22. Between 1975 and 1997, Respondent filed a number of spill reports with the Commissioner in connection with spills at the Site.
- 23. On or about December 8, 1997, while excavating on the Site, Respondent's employees discovered an oily material on the groundwater table at the Site, which later broke out through a rotted bulkhead and spilled into the Mill River. Analysis of the oily material indicated the presence of PCBs at levels near 350 parts per million ("ppm").
- 24. The Site has been the subject of a number of plans, reports and investigations that, among other things, have confirmed the presence of PCBs and other hazardous contaminants at the Site at levels exceeding Connecticut's Remediation Standards Regulations ("RSRs"), Regulations of Connecticut State Agencies ("R.C.S.A.") §§22a-133k-1 through 22a-133k-3. Notwithstanding that not all of the these plans, reports or investigations, may have been reviewed and approved by the Commissioner, these plans, reports and investigations shall be taken into account by Respondent in connection with its investigation and remedial actions hereunder, including the following:
 - A 1999 Draft Asbestos and Hazardous Materials Survey for English Station, prepared by GEI Consultants, Inc.;
 - A May 2000 Draft Remedial Action Report prepared by GEI Consultants, Inc.;
 - A 2000 Dismantling Cost Study prepared by TLG Services, Inc.;

- A 2002 Site-Wide PCB Characterization and Clean-Up Plan, prepared by Advanced Environmental Interface;
- A 2012 Conceptual Remediation Action Plan for PCB Impacted soil, prepared by Stantec Consulting Services;
- A 2015 Subsurface Investigation Report for the Former English Station, prepared by HRP Associates; and
- A Revised Equipment Decontamination Work Plan, prepared by Partner Engineering and Science, Inc.
- 25. The RSRs apply to any action taken to remediate polluted soil or other environmental media, surface water or a groundwater plume at or emanating from a release area which action is required pursuant to Chapter 445 or 446k of the General Statutes.
- 26. On March 27, 2003 the Commissioner granted a Widespread Polluted Fill Variance for the Site in accordance with R.C.S.A. § 22a-133k-2(f)(1) ("Fill Variance").
- 27. On or about March 1, 2005, Quinnipiac Energy submitted a Significant Environmental Hazard Report to the Commissioner reporting that PCBs, at concentrations greater than thirty (30) times the industrial/commercial direct exposure criteria established by the RSRs, were present in surface soils at the Site, posing a potential risk to human health through contact and exposure as required by Connecticut General Statutes ("C.G.S.") § 22a-6u.
- 28. On or about May 22, 2007, EPA Region 1 conditionally approved a PCB cleanup plan for Parcel A of the Site proposed by Quinnipiac Energy, although the clean-up was not completed.
- 29. To date, five (5) PCB Transformers, which contained PCB transformer oil, remain at the Site in the Plant on Parcel B.

ESTABLISHING A FACILITY, CREATING A CONDITION, AND/OR MAINTAINING A FACILITY OR CONDITION WHICH CAN REASONABLY BE EXPECTED TO CREATE A SOURCE OF POLLUTION TO THE WATERS OF STATE

30. By virtue of the above, prior to the transfer of the Site to Quinnipiac Energy on August 16, 2000, Respondent established a facility or created a condition and/or maintained a facility or condition which reasonably can be expected to create a source of pollution to the waters of the State; maintained a discharge of waste in violation of Conn. Gen. Stat. §22a-427; initiated, created, or originated or maintained an unpermitted discharge in violation of Conn. Gen. Stat. §22a-430; and/or disposed of PCBs or PCBcontaining items, products or materials in violation of Conn. Gen. Stat. §22a-467. Respondent denies each such allegation and admits no liability hereunder.

- 31. Proper disposal of PCBs and the prevention of pollution are within the jurisdiction of the Commissioner under the provisions of Chapters 439, 445 and 446k of the Connecticut General Statutes, including but not limited to, §§ 22a-5, 22a-6, 22a-427, 22a-430, 22a-432, 22a-464, 22a-465, and §22a-467.
- 32. On April 8, 2013, the Commissioner issued Administrative Order # AOWSPCB 13-001 to Respondent and several other respondents, including ASNATand Evergreen (collectively, the "Current Owner"), Uri Kaufman, Ira Schwartz, and Mehboob Shah, as well as Quinnipiac Energy, and Grant MacKay Company Inc.
- 33. By agreement to the issuance of this Consent Order Respondent makes no admission of fact or law with respect to the matters addressed herein, including the allegations set forth above, other than the facts asserted in Sections A.1 through 5, A.13, A.15 and A.34 and Respondent shall not be deemed to have made any such admissions by the fact that the Respondent has agreed to perform work pursuant to this Consent Order.
- 34. The Commissioner and Respondent acknowledge and agree that the current zoning for the Site is heavy industrial and further acknowledge and agree that the remedial actions shall be consistent with this current zoned use.

B. Now, therefore, with the agreement of Respondent, the Commissioner, acting under §22a-6, §22a-424, §22a-425, §22a-427, §22a-430, §22a-431, §22a-432, §22a-449, §22a-465, and §22a-467 of the Connecticut General Statutes, orders Respondent as follows:

- <u>On-Site Remediation</u>: Respondent shall conduct the investigation and cleanup of the Site in accordance with this Consent Order. Such investigation and cleanup shall be completed pursuant to a schedule acceptable to the Commissioner, provided however that the cleanup, not including any confirmatory monitoring performed by Respondent after the completion of such cleanup activities, shall be completed within 3 years of the Access Date defined in Section B.5 below, unless a later completion date is specified in writing by the Commissioner. Whenever this Consent Order refers to the RSRs, the standards shall be those in effect at the time of the Effective Date unless the Commissioner and the Respondent otherwise agree. The Commissioner and Respondent further agree as follows:
 - a. On or before thirty (30) days from the Effective Date of this order, Respondent shall retain one or more Licensed Environmental Professional(s) ("LEP"(s)) acceptable to the Commissioner to prepare the documents and

implement or oversee the actions required by this order and shall, by that date, notify the Commissioner in writing of the identity of such LEP(s). Respondent shall retain one or more LEP(s) acceptable to the Commissioner until this order is fully complied with, and, within ten (10) days after retaining any LEP(s) other than the one(s) originally identified under this section, Respondent shall notify the Commissioner in writing of the identity of such other LEP(s). The consultants (LEP(s)) retained to perform PCB investigation, remediation, disposal, and confirmatory sampling must be familiar with the PCB requirements of both the applicable state and federal regulations, including but not limited to, those found at 40 CFR Part 761. Respondent shall submit to the Commissioner a description of the LEP's education, experience and training which is relevant to the work required by this order within ten (10) days after a request for such a description. Nothing in this section shall preclude the Commissioner from finding a previously acceptable LEP unacceptable; the Commissioner has determined that the LEPs listed on Exhibit B hereto are acceptable.

- b. On or before sixty (60) days from the Access Date of this order, Respondent shall submit for the Commissioner's review and written approval a scope of study for an investigation of the Site and its potential impact on human health and the environment, including, but not limited to, the existing and potential extent and degree of contamination of soil and ground water, surface water, and sediment within the Site boundary (i.e., within the tunnel on the Site), as well as contamination of the Plant and any other building structures on the Site and any content therein (the "Scope of Study"). The Scope of Study shall:
 - be consistent with and comply with the sampling requirements in 40 CFR Part 761 for PCBs, including but not limited to the Standard Operating Procedure for sampling on, into and through concrete;
 - identify, document, inventory and assess asbestos and asbestoscontaining materials to determine if such materials are friable, damaged, unstable, and accessible or may be disturbed by other actions required by this Consent Order, and to determine how to conduct asbestos abatement in a manner that is necessary to comply with all applicable laws in connection with a plan of abatement for such materials in accordance with Section B.1.e.8. below.
 - other than with respect to asbestos characterization as addressed above, fully characterize PCB constituents of all caulk, paint, flooring, roofing, mastics, fireproofing, soundproofing, waterproofing, sealants and all other materials. Notwithstanding the above, Respondent shall investigate the presence of lead and mercury.

- identify non-hazardous and hazardous waste and other hazardous materials at the Site; and
- comply with all prevailing standards and guidelines, including, but not limited to, the Connecticut Department of Energy and Environmental Protection's (the "Department" or "DEEP") Site Characterization Guidance Document; and
- include:
 - the proposed location and depths of any additional ground water monitoring wells;
 - a proposed sampling and analytical program including at least the parameters to be tested, proposed sampling and analytical methods, for sediments within the boundary of the Site and soils, surface water, groundwater, the Plant and other structures at the Site and any contents therein as set forth above;
 - o quality assurance and quality control procedures; and
 - a schedule for conducting the investigation.

The proposed Scope of Study for the Commissioner's review and approval may reference and evaluate existing data to support the proposed investigation.

- c. If the Commissioner determines that the investigation carried out under the approved Scope of Study, in addition to previous studies and investigations of the Site, does not fully characterize the extent and degree of soil, sediment (within the boundaries of the Site), ground water, and surface water pollution at the Site as well as contamination of the Plant or other structures on the Site and any contents therein, to the satisfaction of the Commissioner, Respondent shall perform additional investigation in accordance with a supplemental plan and schedule approved in writing by the Commissioner. Unless otherwise specified in writing by the Commissioner, the supplemental plan and schedule shall be submitted by Respondent for the Commissioner's review and written approval on or before thirty (30) days after notice from the Commissioner that such supplemental plan is required.
- d. Respondent shall implement the approved Scope of Study and, if same are required, any approved supplemental plan(s), in accordance with the approved schedule(s). Respondent shall notify the Commissioner of the date and time of installation of monitoring wells and of each soil, on-site

sediment, building material and water sampling event at least five (5) full business days prior to such installation or sampling.

- e. Except as may be provided in the investigation schedule approved by the Commissioner, on or before thirty (30) days after the approved date for completion of the investigation, Respondent shall submit for the Commissioner's review and written approval a comprehensive and thorough report which:
 - 1) describes in detail the investigation performed;
 - identifies the type, quantity and location of all asbestos, nonhazardous and hazardous wastes or other hazardous materials on the Site;
 - defines the existing and potential extent and degree of soil, sediment within the boundary of the Site, ground water, and surface water pollution as well as all contamination of the Plant and any other structures on the Site and contents therein;
 - 4) evaluates the alternatives for remedial actions to abate on-site pollution and impacts for industrial/commercial use of the Site, including but not limited to any alternative specified by the Commissioner, which alternatives are in compliance with all applicable state and federal statutes and regulations, provided that
 - to address the direct exposure and volatilization requirements under the RSRs for all contaminants (other than PCBs which are addressed below), Respondent will not be obligated to evaluate alternatives for remedial actions other than those required to comply with the commercial/industrial provisions in the RSRs;
 - for PCBs, for direct exposure, a) outside the buildings, Respondent will not be obligated to evaluate alternatives for remedial actions other than those required to comply with 40 CFR Part 761 and with the inaccessible soil provisions of §22a-133k-2(b)(3) of the RSRs, b) inside the buildings, the Respondent shall only be obligated to evaluate alternatives for remedial actions associated with the high occupancy standards in 40 CFR Part 761, and c) under the buildings, the Respondent shall only be obligated to evaluate alternatives for remedial actions associated to evaluate alternatives for remedial only be obligated to evaluate alternatives for remedial actions associated to evaluate alternatives for remedial actions associated with the more stringent of the high occupancy standards in 40 CFR Part 761 and the inaccessible soil provisions of §22a-133k-2(b)(3) of the RSRs; and
 - The RSR Pollutant Mobility provisions, for both PCBs and for releases into fill, apply in full to all alternatives; the Fill Variance exempts the Pollutant Mobility provisions with respect to the fill itself. The alternatives for remedial actions evaluated by Respondent must also include those alternatives for remedial actions required to comply with this Consent Order as set forth in this subsection B.1. and any approval

issued to Respondent by the Connecticut Department of Public Health requiring Respondent to abate asbestos containing materials that are friable, damaged, unstable, and accessible or may be disturbed by other actions required by this Consent Order.

- 5) states in detail the most expeditious schedule for performing each alternative;
- lists all permits and approvals required for each alternative, including but not limited to any permits required under Sections 22a-32, 22a-42a, 22a-342, 22a-361, 22a-368, 22a-430, 22a-465 or 22a-467 of the Connecticut General Statutes;
- 7) proposes a preferred alternative from among those evaluated pursuant to and consistent with the provisions identified in Section B.1.e.4., with supporting justification therefor;
- 8) provides that Respondent shall only be required to abate asbestos that is friable, damaged, unstable, and accessible or may be disturbed by other actions required by this Consent Order, and to determine how to conduct asbestos abatement in a manner that is necessary to comply with all applicable laws; and
- 9) proposes a detailed program and schedule to perform the preferred on-site remedial actions, including but not limited to a schedule for applying for and obtaining all permits and approvals required for such remedial actions.
- f. Unless otherwise specified in writing by the Commissioner, on or before thirty (30) days after approval of the report described in the preceding section, Respondent shall submit, for the Commissioner's review and written approval, contract plans and specifications for the approved remedial actions, a revised list of all permits and approvals required for such on-site actions, and a revised schedule for applying for and obtaining such permits and approvals, consistent with all applicable state and federal statutes and regulations and this Consent Order. Respondent shall use best efforts to obtain all required permits and approvals.
- g. Respondent shall implement the approved remedial actions in accordance with the approved schedule. Respondent shall notify the Commissioner at least five (5) full business days prior to conducting remedial actions at the Site. Any such notice may include multiple dates that Respondent expects to be undertaking remediation at the Site. Within fifteen (15) days after completing such actions, Respondent shall certify to the Commissioner in writing that the actions have been completed as approved.
- h. Except as may be provided in the approved remedial action schedule, on or before thirty (30) days after the approved date for completion of the remediation, Respondent shall submit for the Commissioner's review and written approval a comprehensive and thorough report which describes all remedial actions performed at the Site. Such report shall also include a soil,

on-site sediment, ground water and surface water post-remediation monitoring program to determine the degree to which the approved on-site remedial actions have been effective, and a schedule for performing the postremediation monitoring program. Respondent shall implement the approved monitoring program to determine the effectiveness of the remedial actions in accordance with the approved schedule.

- i. If the approved remedial actions do not result in the prevention and abatement of soil, on-site sediment, ground water, and surface water pollution and contamination of the Plant, other structures on the Site or items contained therein, in a manner that complies with all applicable state and federal statutes and regulations, to the satisfaction of the Commissioner, additional remedial actions and measures for monitoring and reporting on the effectiveness of those actions shall be performed in accordance with a supplemental plan and schedule approved in writing by the Commissioner, provided Respondent shall not be required to take actions more stringent than as provided in section B.1.e.4. and section B.1.k. Unless otherwise specified in writing by the Commissioner, the supplemental plan and schedule shall be submitted for the Commissioner's review and written approval on or before thirty (30) days after notice from the Commissioner that such supplemental plan is required.
- j. On a schedule established by the Commissioner or, if no such schedule is established, on a quarterly basis beginning no later than ninety (90) days after completion of the approved remedial actions or, as applicable, supplemental remedial actions, Respondent shall submit for the Commissioner's review and written approval a report describing the results to date of the approved monitoring program to determine the effectiveness of the on-site remedial actions.
- k. The current zoning of the Site is heavy industrial. The remedial actions shall be consistent with the current zoned use and be no more stringent than those alternatives referenced in Section B.1.e.4. and Section B.1.e.7., and, if approved therein, may make use of environmental land use restrictions ("ELURs") and/or existing or constructed features that render soil inaccessible or environmentally isolated in accordance with the RSRs. Nothing herein prevents Respondent from agreeing to a more stringent standard of remediation.
- 2. <u>Revisions</u>. Respondent may, by written request, ask that the Commissioner approve, in writing, revisions to any document approved hereunder in order to make such document consistent with law or for any other appropriate reason.
- 3. <u>Site Security</u>. Subject to Section B.18. concerning Site Access, upon the Access Date of this Consent Order and until Respondent is in full compliance with the requirements of Section B.1. hereto (as provided in Section B.7.), Respondent shall maintain security at the Site. Respondent shall maintain security at the Site to, at a

minimum, the current level of security maintained at the Site by the Current Owner and approved by the Commissioner.

- 4. <u>Effective Date</u>. Respondent's parent company has made application to the Public Utilities Regulatory Authority ("PURA") and Massachusetts Department of Public Utilities ("MDPU") for approval of a merger transaction ("Transaction") with a subsidiary of Iberdrola USA, Inc. (the "PURA Application"). Respondent shall promptly notify the Commissioner when the Transaction closes. The "Effective Date" of this order shall be the later of the Closing of the Transaction or when this Consent Order becomes a final order of the Commissioner; provided, however, that if the Transaction does not close within ninety (90) days following the receipt of PURA approval and approval of the MDPU, then the Commissioner has the discretion to terminate this agreement. If PURA does not approve the PURA Application then this agreement is null and void. Respondent shall have no obligations under this Consent Order until the Effective Date.
- 5. <u>Access Date</u>. The "Access Date" is the date that the Commissioner provides written notification to Respondent that the Commissioner has secured "Required Access" as defined in Section B.18. and that such Required Access is in effect after the Effective Date. For purposes of this Consent Order, Respondent shall have no obligations under this Consent Order prior to the Effective Date.
- 6. <u>Progress Reports</u>. On or before the last day of each month following the Effective Date and continuing until all actions required by this order have been completed as approved and to the Commissioner's satisfaction, Respondent shall submit a progress report to the Commissioner describing the actions which Respondent has taken to date to comply with this order including the amounts incurred regarding such compliance; provided, however, that for any period in which actions required by this order consist solely of groundwater monitoring, Respondent shall submit a progress report on or before the last day of each month in which a groundwater monitoring event takes place.
- 7. <u>Full Compliance</u>. Respondent shall not be considered in full compliance with this Consent Order until all actions required by this order have been completed as approved and to the Commissioner's satisfaction. Subject to Section B.15., upon such full compliance or in the event of payment by Respondent as provided in Section B.18. or Section B.24., the Commissioner will issue to Respondent a certificate of compliance, which shall fully and finally conclude Respondent's obligations with respect to the Site, and Respondent shall have no further obligation or liability for any matter within the jurisdiction of the Commissioner relating thereto, except in the event of Respondent's unlawful behavior or gross negligence.
- 8. <u>Sampling.</u> All sampling shall be performed in accordance with procedures specified or approved in writing by the Commissioner, or, if no such procedures have been specified or approved, in accordance with the most recent final version of EPA publication SW-846, entitled "Test Methods for Evaluating Solid Waste,

Physical/Chemical Methods," Standard Operating Procedures for Sampling Porous Surfaces For Polychlorinated Biphenyls, the most recent final version of the Department's "Site Characterization Guidance Document," and relevant policies and guidelines issued by the Commissioner.

- 9. <u>Sample Analyses</u>. All sample analyses which are required by this order and all reporting of such sample analyses shall be conducted by a laboratory certified by the Connecticut Department of Public Health and approved to conduct such analyses. In addition,
 - The Reasonable Confidence Protocols shall be used when there is a method published by Department. In all cases where the Reasonable Confidence Protocol method is used, a properly completed laboratory QA/QC certification form, certified by the laboratory shall be provided to the Commissioner with the analytical data.
 - In cases where a Reasonable Confidence Protocol method has not been published, the analytical data shall be generated using a method approved by the Commissioner, such method shall include and report a level of quality control and documentation equivalent to the Reasonable Confidence Protocols.
 - The reporting limit shall be established consistent with the Reasonable Confidence Protocols and standard industrial and laboratory practices. The Reporting Limit shall not be set at levels greater than those used in such standard practices, as determined by the Commissioner, in consultation with the Commissioner of Public Health and in no case shall be greater than the Applicable Criteria or Background Concentration established in §22a-133k-1 through §22a-133k-3 of the Regulations of Connecticut State Agencies. The Reporting Limit for a given sample shall be corrected for specific sample weight or volume, and dilutions, and, for soil and sediment samples moisture content (reported as dry weight).
- 10. <u>Approvals</u>. Respondent shall use best efforts to submit to the Commissioner all documents required by this order in a complete and approvable form. If the Commissioner notifies Respondent that any document or other action is deficient, and does not approve it with conditions or modifications, it is deemed disapproved, and Respondent shall correct the deficiencies and resubmit it within the time specified by the Commissioner or, if no time is specified by the Commissioner, within thirty (30) days of the Commissioner's notice of deficiencies. In approving any document or other action under this order, the Commissioner may approve the document or other action as submitted or performed or with such conditions or modifications as the Commissioner deems necessary to carry out the purposes of this order. Nothing in this section shall excuse noncompliance or delay. Any reference in this Consent Order to an approved document such as a scope of work or a schedule shall mean approved by the Commissioner.

- 11. <u>Definitions</u>. As used in this order, "Commissioner" means the Commissioner or a representative of the Commissioner.
- 12. <u>Dates</u>. The date of submission to the Commissioner of any document required by this order shall be the date such document is received by the Commissioner. The date of any notice by the Commissioner under this order, including but not limited to, notice of approval or disapproval of any document or other action, shall be the date such notice is deposited in the U.S. mail or is personally delivered, whichever is earlier. Except as otherwise specified in this order, the word "day" as used in this order means calendar day. Any document or action which is required by this order to be submitted or performed by a date which falls on a Saturday, Sunday or a Connecticut or federal holiday shall be submitted or performed by the next day which is not a Saturday, Sunday or Connecticut or federal holiday.
- 13. <u>Certification of Documents</u>. Any document, including but not limited to any notice, which is required to be submitted to the Commissioner under this order shall be signed by Respondent or, if a Respondent is not an individual, by such Respondent's chief executive officer or a duly authorized representative of such officer, or by a "responsible corporate officer" of Respondent as that term is defined in §22a-430-3(b)(2) of the Regulations of Connecticut State Agencies, and by the LEP(s) or other individual(s) responsible for actually preparing such document, and Respondent or Respondent's chief executive officer and each such individual shall certify in writing as follows:

"I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and I certify, based on reasonable investigation, including my inquiry of those individuals responsible for obtaining the information, that the submitted information is true, accurate and complete to the best of my knowledge and belief. I understand that any false statement made in the submitted information is punishable as a criminal offense under §53a-157b of the Connecticut General Statutes and any other applicable law."

- 14. <u>False Statements</u>. Any false statement in any information submitted pursuant to this order is punishable as a criminal offense under §53a-157b of the Connecticut General Statutes and any other applicable law.
- 15. <u>Commissioner's Powers</u>. Subject to provisions of Section B.23., nothing in this order shall affect the Commissioner's authority to institute any proceeding or take any other action to prevent or abate violations of law, prevent or abate pollution, recover costs and natural resource damages, and to impose penalties for past, present, or future violations of law. If at any time the Commissioner determines that the actions taken by Respondent pursuant to this order have not successfully corrected all violations, fully characterized the extent and degree of any pollution or successfully abated or prevented pollution, the Commissioner may institute any

proceeding to require Respondent to undertake further investigation or further action to prevent or abate violations or pollution; provided, however, that in the event the Commissioner issues a certificate of compliance pursuant to Section B.7., the Commissioner may only institute any proceeding to require Respondent to undertake further investigation or further action to prevent or abate violations or pollution after issuing a certificate of compliance if the Commissioner determines that a certificate of compliance was obtained through the submittal of materially inaccurate or erroneous information, or otherwise materially misleading information or that material misrepresentations were made in connection with the obtaining of the certificate of compliance. In accordance with Conn. Gen. Stat. Sec. 22a-6dd, the requirements and standards for remediation required of Respondent pursuant to this Consent Order shall not be modified by the Department unless both the Department and Respondent agree to such modification.

- 16. <u>Respondent's Obligations Under Law</u>. Nothing in this order shall relieve Respondent of other obligations under applicable federal, state and local law.
- 17. <u>No Assurance by Commissioner</u>. No provision of this order and no action or inaction by the Commissioner shall be construed to constitute an assurance by the Commissioner that the actions taken by Respondent pursuant to this order will result in compliance or prevent or abate pollution.
- 18. Access to Site. The Commissioner and Respondent acknowledge that Respondent does not currently own, or control access to, the Site, and that Respondent requires access, without interference from the Current Owner or the property owner, necessary to be able to comply with its obligations under this Consent Order to investigate, remediate, monitor and secure the Site and shall not be obligated to proceed with such obligations that require Site access unless and until it has such access and only for so long as it continues to have access pursuant to the terms of this Section B.18. The Commissioner will endeavor, using all reasonable efforts, to obtain and, if so obtained, will use all reasonable efforts to maintain, access to, or control of, the Site, pursuant to a written access agreement, on terms that enable Respondent to comply with the terms and conditions of this Consent Order requiring Respondent to investigate, remediate, monitor and secure the Site, and that require the Current Owner (or, as applicable, any subsequent owners) to (i) refrain from engaging in actions that adversely, substantially and materially affect Respondent's ability to comply with the obligations under this Consent Order or otherwise engaging in activities that cause environmental conditions or exacerbate or contribute to existing environmental conditions at the Site that cause a significant increase in costs, (ii) agree to the recordation and implementation of ELURs pursuant to 40 CFR Part 761 and the RSRs, as applicable, and (iii) include notice of such ELURs in any sale or lease agreement regarding the Site and terms that expressly condition any such sale or lease agreement on the purchaser's or lessee's (as applicable) agreement to assume all liabilities arising from the failure by such purchaser or lessee to comply with the ELUR(s) ("Required Access"). Respondent shall make all reasonable efforts to

support any effort by the Commissioner to obtain the Required Access and shall not take any actions to impede or prevent the Required Access. Reasonable efforts by Respondent shall include, but not be limited to, providing a release, indemnification and hold harmless to the Current Owner from liability as the Current Owner arising solely out of the activities of Respondent or its contractors on the Site in the course of performing work under this Consent Order, and shall further include, if requested by the Commissioner, a release by Respondent of contribution claims against the Current Owner in respect of onsite conditions at the Site as long as the Current Owner, on behalf of itself and its owners, agents, officers, directors, shareholders, partners and members, also agrees to provide a reciprocal general release reasonably acceptable to Respondent. Reasonable efforts by Respondent shall not include paying the Current Owner or its owners, agents, officers, directors, shareholders, partners and members or reimbursing or funding, directly or indirectly, all or any part of any payment to the Current Owner or its owners, agents, officers, directors, shareholders, partners and members by others or remediating to standards that are more stringent than required by this Consent Order. In the event that the Commissioner after the Effective Date, in his sole discretion, determines (following consultation with Respondent) that the Commissioner is unable to secure the Required Access, the Commissioner may direct Respondent to make payment to the Commissioner in accordance with this section in lieu of completing performance of work otherwise required in this Consent Order. In the event that the Commissioner, after the Effective Date, is unable to maintain Required Access to the Site, then the three year period for completion in Section B.1. is tolled until either the Commissioner obtains access or until the Commissioner, following consultation with Respondent, but in his sole discretion, directs Respondent to make payment to the Commissioner in accordance with this section in lieu of completing performance of work otherwise required by this Consent Order. The Commissioner shall give notice of such direction to Respondent together with a draft certificate of compliance. Within one hundred twenty (120) days of receipt of such notice, Respondent shall pay, by cashier or certified check, \$30 million minus any costs incurred or accrued for remediation and investigation (not including attorney's fees and any direct time charges of Respondent's employees, managers or officers) after the Effective Date of this order for compliance with this order, to the account designated by the Commissioner, and such payment shall fully resolve Respondent's obligations herein and the Commissioner shall provide a certificate of compliance as provided for in Section B.7. herein. The Commissioner shall use the funds for the investigation and remediation of the Site, and any funds remaining after the completion of the investigation and remediation of the Site shall, with the concurrence of the Governor and the Attorney General, be used for a public purpose. Within thirty (30) days of the Commissioner's issuance of such notice and certificate of compliance, Respondent shall provide a detailed accounting of any remedial costs incurred. Payment of the funds required by this section shall satisfy Respondent's obligations under this Consent Order.

- 19. <u>No Effect on Rights of Other Persons.</u> This order neither creates nor affects any rights of persons, entities (of any form or nature) or municipalities that are not parties to this order. Without limiting the generality of the foregoing, the parties expressly disclaim any intent to create any rights enforceable by any non-parties as third-party beneficiaries hereunder.
- 20. <u>Notice to Commissioner of Changes.</u> Within fifteen (15) days of the date Respondent becomes aware of a change in any information submitted to the Commissioner under this order, or that any such information was inaccurate or misleading or that any relevant information was omitted, Respondent shall submit the correct or omitted information to the Commissioner.
- 21. <u>Notification of Noncompliance.</u> In the event that Respondent becomes aware that it did not or may not comply, or did not or may not comply on time, with any requirement of this order or of any document required hereunder, Respondent shall immediately notify by telephone the individuals identified in the next section and shall take all reasonable steps to ensure that any noncompliance or delay is avoided or, if unavoidable, is minimized to the greatest extent possible. Within five (5) days of the initial notice, Respondent shall submit in writing the date, time, and duration of the noncompliance and the reasons for the noncompliance or delay and propose, for the review and written approval of the Commissioner, dates by which compliance will be achieved, and Respondent shall comply with any dates which may be approved in writing by the Commissioner. Notification by Respondent shall not excuse noncompliance or delay, and the Commissioner's approval of any compliance dates proposed shall not excuse noncompliance or delay unless specifically so stated by the Commissioner in writing.
- 22. <u>Submission of Documents.</u> Any document required to be submitted to the Commissioner under this order shall, unless otherwise specified in this order or in writing by the Commissioner, be directed to:

Gary Trombly, Jr. Department of Energy and Environmental Protection Storage Tank & PCB Enforcement Unit 79 Elm Street Hartford, Connecticut 06106

And

Craig Bobrowiecki Department of Energy and Environmental Protection Remediation Division 79 Elm Street Hartford, Connecticut 06106

- 23. Effect of Order. Except as provided herein, as of the Effective Date, other than as may be necessary to compel Respondent's compliance with this Consent Order (i) this Consent Order fully resolves all matters alleged in Administrative Order No. AOWSPCB 13-001 against Respondent at the Site, and all known claims of the Commissioner against Respondent related to environmental conditions at the Site, (ii) subject to Section B.15., upon such full compliance or in the event of payment by Respondent as provided for in Section B.18. and Section B.24., the Commissioner will issue to Respondent a certificate of compliance, which shall fully and finally conclude Respondent's obligations with respect to the Site and Respondent shall have no further obligation or liability for any matter within the jurisdiction of the Commissioner relating thereto, except in the event of Respondent's unlawful behavior or gross negligence, (iii) the Commissioner agrees to dismiss all claims, orders, demands, and allegations raised in Administrative Order No. AOWSPCB 13-001 against Respondent in connection with environmental conditions at the Site.Nothing in this Consent Order shall prevent the Commissioner from maintaining Administrative Order No. AOWSPCB 13-001 and proceedings relating thereto, or initiating new proceedings or actions, with respect to environmental impacts at off-site locations, including, but not limited to, sediments, soil, groundwater or any contaminants that have emanated offsite from the Site.
- 24. <u>Provisions Relating to the Cost of Compliance with this Order</u>. If the total costs to Respondent of performing the obligations after the Effective Date of this Consent Order exceed \$30 million, the State, at Respondent's request, will discuss options for recovering or funding any costs above that amount, for example, through public funding or recovery from third parties, but is not bound to agree to or support any means of recovery or funding. Nothing in this section shall alter Respondent's obligation to fully comply with this Consent Order, including but not limited to, the time for compliance during any time that there are discussions about recovery of costs exceeding \$30 million. Respondent shall comply with this Consent Order even if the costs of such compliance exceed \$30 million, except in the event of payment by Respondent as provided for in Section B.18.

Respondent shall maintain an accounting of all of the costs incurred or accrued regarding compliance with this Consent Order. Upon issuance of a certificate of compliance pursuant to Section B.7. herein, to the extent that the costs incurred by Respondent under this Consent Order for the investigation and remediation of the Site after the Effective Date are less than \$30 million, then Respondent shall remit to the State the difference between such costs and \$30 million for a public purpose as determined in the discretion of the Governor, the Attorney General, and the Commissioner ... Within thirty (30) days of a written demand by the Commissioner for the accounting of the costs incurred by Respondent regarding compliance with this Consent Order, Respondent shall provide a detailed accounting of such costs. Within thirty (30) days following a written demand by the Commissioner and the issuance by the Commissioner of a certificate of compliance resolving Respondent's liabilities regarding matters addressed in this

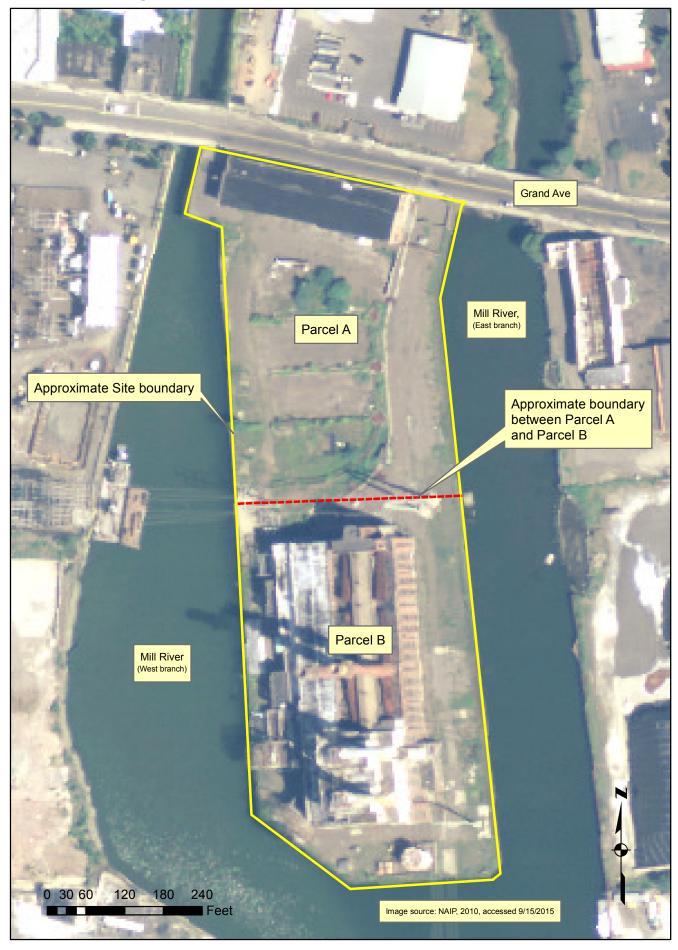
Consent Order, Respondent shall make payment of the difference between such costs (which shall include any costs incurred or accrued in relation to the cessation of activities) and \$30 million to the recipient identified by the Commissioner.

Respondent consents to the issuance of this Partial Consent Order without further notice. The undersigned certifies that <u>Tames</u> <u>Proceeding</u> is fully authorized to enter into this Partial Consent Order and to legally bind Respondent The United Illuminating Company to the terms and conditions of the Consent Order.

Respondent The United Illuminating Company

DATE: 9/16/15

ORDER NO. ____


Issued as a final order of the Commissioner of Energy and Environmental Protection.

BY: ____

Commissioner

DATE: _____

Exhibit A - English Station, 510 Grand Avenue, New Haven

EXHIBIT B TO PARTIAL CONSENT ORDER NUMBER COWSPCB 15-001

Project Management Consultant:

TRC Environmental Corporation 21 Griffin Road North Windsor, Connecticut 06095 860-298-9692

Project Licensed Environmental Professional (LEP): Sarah Trombetta, CPG, LEP, CHMM TRC Windsor, Connecticut Office

Licensed Environmental Professional, Connecticut (#294, 1998) Certified Professional Geologist, American Institute of Professional Geologist, (#8899, 1993) Certified Hazardous Materials Manager (#15404, 2010)

Project Support LEP: Marya Mahoney, LEP TRC Windsor, Connecticut Office Licensed Environmental Professional, Connecticut, (#478, 2007)

TRC Project Resources:

Ed Doubleday, Project Management and Project Performance TRC Windsor, Connecticut Office

Certified Project Management Professional (2011) FEMA Incident Command Station Certification (2008) U.S. Naval Academy

Carl Stopper, P.E., Connecticut Professional Engineer, TRC PCB and Site Remediation Expert TRC Windsor, Connecticut Office

Professional Engineer, Connecticut (#13255, 1984)

Eric Plimpton, P.E., Connecticut Professional Engineer, TRC Asbestos Materials Expert TRC Windsor Connecticut Office

Professional Engineer, Connecticut (#20593) 1998 Certified Hazardous Materials Manager, Master Level (#11384) 2002 Certified Safety Management Practitioner (#14197) 2013 Asbestos Analyst, AIHA (#4554) 1992 Asbestos Project Monitor, Connecticut (#000082) 1993 Asbestos Management Planner, Connecticut (#000219) 2002 Asbestos Inspector, Connecticut (#000074/000219) 1993 Asbestos Project Designer, Connecticut (#00152) 1999 Lead Inspector/Risk Assessor, Connecticut (#001206) 1996 Lead Planner Project Designer, Connecticut (#001866) 1998

David Sullivan, TRC Indoor TSCA/PCB Expert TRC Lowell, Massachusetts Office

Massachusetts Licensed Site Professional (#1488, 2004) Extensive experience with USEPA Region I TSCA Office and Managers

Stacy McAnulty, P.E., TRC Site Remediation and PCB Sediment Expert TRC Madison, Wisconsin, Office

Professional Engineer in Wisconsin, Maine, Colorado, and North Carolina

APPENDIX B

HISTORICAL ANALYTICAL SUMMARY TABLES

Page: 1A of 1F Date: 07/27/98

CONSTITUENT (Units in ppb)	SITE SAMPLE ID DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-001 GW-1 08/18/98	MW-002 GW-2 06/18/98	MW-003 GW-3 08/18/98	MW-004D ES MW4D 06/18/98
, 1-Dichloroethane		34800		1 U	1 U	1 U	1 U
is-1,2-Dichloroethylene		•	•	10	10	10	5.0
chloroform		287	14100	1 U	1 U	10	1 U
,1,1-Trichloroethane		20400	62000	1 U	10	1 Ü	10
richloroethylene		219	2340	10	10	10	
kromodichloromethane				1U .	10	1 Ú	1.0 1 U

.

.

.

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Pace of 1F

Date: 07/27/98

CONSTITUENT (Units in ppb)	SITE SAMPLE ID DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-004S GW-45 06/18/98	MW-005 MW-5A 06/18/98	MW-006 GW-5 06/18/98	MW-007 GW-7 06/18/98
1,1-Dichloroethane		34600		1 ປ	1 U	1 U	1 U
cis-1,2-Dichloroethylene				1 U	1 U	1 U	1 U
Chieroform		287	14100	1 U	4.0	1 U	1 U
1, 1, 1-Trichloroethane		20400	82000	1 U	1 U	1 U	1 U
Trichloroethylene		219	2340	1 U	1 U	1 U	1 U
Bromodichloromethane				1 U	10	1 U	1 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page: 1C of 1F Date: 07/27/98

CONSTITUENT (Unite in ppb)	SITE SAMPLE ID	Residential Volatilization	Surface Water Protection	MW-009A GW-9A	MW-010 GW-10	MW-012 GW-12	MW-013 GW-13
······	DATE	Jan. 1996	Jen. 1996	06/18/98	06/19/98	06/19/98	06/19/98
1,1-Dichloroethane		34800		1 U	5.0 J	1 U	1 U
cis-1,2-Dichloroethylene			•	1 U	1 U	1 U	1 U
Chloroform		287	14100	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane		20400	62000	1 U	2.0 J	1 U	1 U
Trichloroethylene		219	2340	1 U	1 U	1 U	1 U
Bromodichloromethane				1 U	1 U	10	1 U

Values represent total concentrations unless noted <=Not detected at indicated reporting limit NA=Not analyzed

Summary of Groundwater Analytical Data

Pa- D of 1F

Date: 07/27/98

.

CONSTITUENT (Units in ppb)	SITE SAMPLE ID DATE	Residential Volatilization Jan. 1996	Surface Water Protection Jan. 1996	MW-014D ES MW14D 06/18/98	MW-0145 GW-145 06/19/98	MW-015 GW-15 06/18/98	MW-016 GW-16 06/18/98
1,1-Dichloroethane		34600		1 U	1 Մ	1 U	1 U
cis-1,2-Dichloroethylene				1 U	1 U	1 U	1 U
Chloroform		287	14100	12.0	1 U	1 U	1 U
1,1,1-Trichloroethane		20400	82000	1 U	1 U	1 U	1 U
Trichloroethylene		219	2340	1 U	1 U	1 U	1 U
Bromodichloromethane				2.0	1 U	1 U	10

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page: 1F of 1F Date: 07/27/98

.

CONSTITUENT (Units in ppb)	SITE SAMPLE ID DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-021 GW-21 06/18/98	MW-022 GW-22 06/18/98	
1,1-Dichloroethane		34600		1 U	1 U	
cis-1,2-Dichloroethylene				1 U	1 U	
Chloroform		287	14100	1 U	1 U	
1,1,1-Trichloroethane		20400	62000	1 U	1 U	
Frichloroethylene		219	2340	1 U	1 U	
Bromodichloromethane				1 U	1 U	

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

۰.

Page: 1E of 1F Date: 07/27/98

CONSTITUENT (Units in ppb)	SITE SAMPLE ID DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-017D ES MW17D 06/18/98	MW-0175 GW-175 06/19/98	MW-019 GW-19 06/18/98	MW-020 GW-20 06/18/98
1,1-Dichloroethane		34600		1 U	1 U	1 U	1 U
cis-1,2-Dichloroethylene			•	1 U	1 U	1 U	1 U
Chloroform		287	14100	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane		20400	82000	1 U	1 U	1 U	1 U
Frichloroethylene		219	2340	1 U	10	10	10
Bromodichloromethane				1 U	1 U	1 U	10

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

•

Page: 1D of 1F Date: 07/27/98

CONSTITUENT (Units in ppb)	SITE SAMPLE ID DATE	Residential Volatilization Jan. 1996	Surface Water Protection Jan. 1996	MW-014D ES MW14D 06/18/98	MW-0145 GW-145 08/19/98	MW-015 GW-15 06/18/98	MW-016 GW-16 06/18/98
Acenaphthylene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
Benzo(a)anthracene			0.3	0.3 U	[0.47]	0.3 U	0.3 U
3,4-Benzofluoranthene			0.3	0.3 U	[0.73]	0.3 U	0.3 U
Benzo(k)fluoranthene			0.3	0.3 U	[0.92]	0.3 U	0.3 U
Phenanthrene			0.3	0.07 U	[0.36]	0.07 U	0.07 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page: 1C of 1F Date: 07/27/98

.

CONSTITUENT (Units in ppb)	SITE SAMPLE ID DATE	Residentiat Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-009A GW-9A 06/18/98	MW-010 GW-10 06/19/98	MW-012 GW-12 06/19/38	MW-013 GW-13 06/19/98
Acenaphthylene			0.3	[2.2]	0.3 U	0.3 U	0.3 U
Benzo(a)anthracene			0.3 ·	0.3 U	0.3 U	0.3 U	0.3 U
3,4-Benzofluoranthene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
Benzo(k)fluoranthene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
Phenanthrene			0.3	[0.61]	0.07 U	0.07 U	0.07 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed
[] = Greater than Action Level

.

Page: 1B of 1F Date: 07/27/98

CONSTITUENT (Units in ppb)	SITE SAMPLE ID DATE	Residential Volatilization Jan. 1996	Surface Water Protection Jan. 1996	MW-0048 GW-45 06/18/98	MW-005 MW-5A 06/18/98	MW-006 GW-6 06/18/98	MW-007 GW-7 06/18/98
Acenaphthylene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
Benzo(a)anthracene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
3,4-Benzofluoranthene			0.3 ·	0.3 U	0.3 U	0.3 U	0.3 U
Benzo(k)fluoranthene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
Phenanthrene			0.3	0.07 U	0.07 U	0.07 U	0.07 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page: 1A of 1F Date: 07/27/98

.

CONSTITUENT	(Units in ppb)	SITE SAMPLE ID DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-001 GW-1 08/18/98	MW-002 GW-2 06/18/98	MW-003 GW-3 06/18/98	MW-004D ES MW4D 06/18/98
Acanaphthylene			<u> </u>	0.3	0.3 U	0.3 U	0.3 U	0.3 U
Benzo(a)anthracer				0.3	0.3 U	0.3 U	0.3 U	0.3 U
3,4-Benzofluorant				0.3	0.3 U	0.3 U	0.3 U	0.3 U
Benzo(k)fluoranthe	ene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
Phenanthrene				0.3	0.07 U	0.07 U	0.07 U	0.07 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page: 1E of 1F Date: 07/27/98

CONSTITUENT (Units in ppb)	SITE	Residential	Surface Water	MW-017D	MW-0176	MW-019	MW-020
	SAMPLE ID	Volatilizaiton	Protection	ES MW17D	GW-175	GW-19	GW-20
	DATE	Jan. 1996	Jan. 1996	06/18/98	06/19/98	06/18/98	06/18/98
Acenaphthylene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
Benzo(a)anthracene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
3,4-Benzofluoranthene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
Benzo(k)fluoranthene			0.3	0.3 U	0.3 U	0.3 U	0.3 U
Phenanthrene			0,3	[0.54]	0.07 U	[1.3]	0.07 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

.

[] = Greater than Action Level

Summary of Geodetical Data

Pame F of 1F

Date: 07/27/98

CONSTITUENT (Units in ppb)	SITE SAMPLE ID DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-021 GW-21 08/18/98	MW-022 GW-22 06/18/98	
Acenaphthylene			0.3	0.3 U	0.3 U	
Benzo(a)anthracene			0.3	0.3 U	0.3 U	
3,4-Benzofluoranthene			0.3 ·	0.3 U	0.3 U	
Benzo(k)fluoranthene			0.3	0.3 U	0.3 U	
Phenanthrene			0.3	0.07 U	0.07 U	

Values represent total concentrations unless noted <=Not detected at indicated reporting limit NA=Not analyzed

Page: 1A of 1F Date: 07/27/98

CONSTITUENT (Units in mg	A} SITE SAMPLE ID DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-001 GW-1 08/18/98	MW-002 GW-2 06/18/98	MW-003 GW-3 06/18/98	MW-004D ES MW4D 06/18/98
Cadmium Lead Selenium			0.008 0.013 0.05	0.005 U 0.005 U 0.01 U	0.005 U 0.005 U 0.01 U	0.005 U 0.005 U 0.01 U	0.005 U 0.005 U 0.02 J
·							

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page of 1F

Date: 07/27/98

CONSTITUENT	(Units in mg/l)	SITE SAMPLE ID DATE	Residential Voletilization Jan. 1996	Surface Water Protection Jan. 1996	MW-004S GW-45 08/18/98	MW-005 MW-5A 06/18/98	MW-008 GW-6 06/18/98	MW-007 GW-7 08/18/98
Cadmium			<u> </u>	0.008	0.005 U	0.005 U	0.005 U	0.005
Lead				0.013	0.005 U	[0.022]	[0.021]	0.009
Selenium				0.05 [·]	0.01 U	0.01 U	0.01 U	0.01 U

.

Values represent total concentrations unless noted < = Not detected at indicated reporting limit NA = Not analyzed [] = Greater than Action Level

.

2

Page: 1C of 1F Date: 07/27/98

CONSTITUENT	(Units in mg/l)	SITE SAMPLE ID DATE	Residential Volatäizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-009A GW-9A 08/18/98	MW-010 GW-10 08/19/98	MW-012 GW-12 06/19/98	MW-013 GW-13 08/19/98
Cadmium Lead Selenium			•	0.006 0.013 0.05	0.005 U 0.005 U 0.01 U	0.005 U 0.005 UJ <0.01 R	0.005 U 0.005 UJ <0.01 R	0.005 U 0.007 J <0.01 R
		·						

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not enalyzed

٠

Summary of Gluinuwater Analytical Data

Page D of 1F

Date: 07/27/98

CONSTITUENT	(Units in mg/l)	SITÉ SAMPLE 1D DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-014D ES MW14D 06/18/98	MW-0145 GW-145 08/19/98	MW-015 GW-15 06/18/98	MW-016 GW-16 06/18/98
Cadmium				0.008	0.005 U	0.005 U	0.005 U	0.005 U
Lead				0.013	0.005 U	0.008 J	0.005 UJ	0.005
Selenium				0.05 ·	0.01 J	<0.01 R	<0.01 R	0.01 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page: 1F of 1F Date: 07/27/98

CONSTITUENT	(Units in mg/l)	SITE SAMPLE ID DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-021 GW-21 08/18/98	MW-022 GW-22 06/18/98
Cadmium				0.006	0.005 U	0.005 U
Lead				0.013	0.005 UJ	0.005 U
Selenium				0.05 ·	<0.01 R	0.01 U

.

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

.

Page: 1E of 1F Date: 07/27/98

CONSTITUENT	(Units in mg/l)	SITE SAMPLE ID DATE	Residential Volatilizaiton Jan. 1996	Surface Water Protection Jan. 1996	MW-017D ES MW17D 06/18/98	MW-0175 GW-175 06/19/98	MW-019 GW-19 06/18/98	MW-020 GW-20 06/18/98
admium aad Slenium				0.008 0.013 0.05	0.005 U 0.005 U 0.01 U	0.005 U 0.005 UJ <0.01 R	0.005 U 0.005 UJ <0.01 R	0.005 U 0.005 UJ <0.01 R

Page: 1A of 1A Date: 07/27/98

CONSTITUENT (Units in ug/l) SITE DATE DEPTH (ft)	10 Times GA GWPC CTEDP Jan. 1996	MW-021 ES-MW21 (15-17) 05/28/98 16,00	TB-018 ES-TB18 (12-14) 05/28/98 13.00	TB-111 TB-111 (10-12) 07/01/98 11.00
Acenaphthene (SPLP)	4200	5 U	5 U	7.0
Acenaphthylene (SPLP)	4200	5U '	5 U	5.0
Fluorene (SPLP)	2800	5 U	5 U	11.0
Naphthalene (SPLP)	2800	5 U	5 U	16.0
Phenanthrene (SPLP)	2000	5 U	5 U	24.0

.

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

•

Ŧ

h Station

Summary il Analytical Data

AOC 7 Waste Oil AST/Oil Pump House and AOC 13 Former Wastewater Treatment Facility

Para A of 1A

Date: 07/27/98

0.15				
0.15	0.008	0.005 U	0.005 U	0.005 U
				·

1

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page: 1B of 1B Date: 07/27/98

i ·					
		SITE			TB-018
CONSTITUENT	(Units in mg/kg)	SAMPLE ID	GB Mobility	Residential	ES-TB18 (12-14)
		DATE	Criteria	Criteria	05/28/98
		DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	13.00
Arsenic				10	4.5 J
Barium				4700	51.3
Cadmium			•	34 [·]	0.5 U
Chromium					9.2
Lead				500	(2160)
Mercury				20	0.07
Selenium				340	0.5 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed
[] = Greater than Action Level

Page: 1A of 1B Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	AST-01 E5 AST1 {2} 06/11/98 2.00	MW-018 ES-MW18 (14-16) 05/29/98 15.00	MW-021 ES-MW21 (7-9) 05/28/98 8.00	SED-02 ES SED2 (0.5) 06/12/98 0.50
Arsenic				10	1.5	2.8 J	2.1 J	5.3
Barium				4700	22	18.3	35.8	62
Cadmium				34	0.5 U	0.9	0.5 U	0.5 U
Chromium					26.7 J	14.9	17.9	32.0 J
Lead				500	35.9	36.3	22.7	110
Mercury				20	0.03	0.24	0.07	1.66
Selenium				340	0.5 U	0.6 U	0.5 U	1.5

.

Values represent total concentrations unless noted <=Not detected at indicated reporting limit NA=Not analyzed

English Station

· · ·

.

Summary of Soil Analytical Data AOC 7 Waste Oil AST/Oil Pump House and AOC 13 Former Wastewater Treatment Facility

.

Page: 1A of 1C

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	AST-01 ES AST1 (2) 06/11/98 2.00	MW-018 ES-MW18 (14-16) 05/29/98 15.00	MW-021 ES-MW21 (15-17) 05/28/98 16.00	SED-02 ES SED2 (0.5) 06/12/98 0.50
PH			2500	500	[16263]	238	(3805)	191
				•				
			detected at indicated rep					

1

.

Para B of 1C

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	TB-018 ES-TB18 (12-14) 05/28/98 13.00	TB-109 TB-109 (10-12) 07/01/98 11.00	TB-110 TB-110 (5-7) 07/01/98 6.00	TB-110 TB-110 (10-12) 07/01/98 11.00
трн			2500	500	405	[682]	[1759]	[2749]
			•					
	·							
					•			
	total concentrations u	niece noted < - Not	detected at indicated re	porting limit NA-N	lot enclosed	·····-		
[]=Greater than			delected at Indicated ie		lot analyzed			

Page: 1A of 1B

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	AST-01 E5 AST1 (2) 06/11/98 2.00	MW-018 ES-MW18 (14-16) 05/29/98 15.00	MW-021 ES-MW21 (15-17) 05/28/98 16.00	SED-02 ES SED2 (0.5} 06/12/98 0.50
CB's				1	[2]	1.0 U	1.0 U	[1]
					•			
alues represent =Greater than /	total concentrations ur Action Level	nless noted < = Not	detected at indicated re	porting limit NA=N	ot analyzed			

Page: 1C of 1C Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	TB-110 TB-110 (13-15) 07/01/98 14.00	TB-111 TB-111 (2-4) 07/01/98 3.00	TB-111 TB-111 (5-7) 07/01/98 6.00	TB-111 TB-111 (10-12) 07/01/98 11.00
рн			2500	500	[2160]	[1267]	244	[1809]
				•				
							•	
lues represent to	tal concentrations un	less noted < = Not	detected at indicated rep	orting limit the sta				
Greater than Ac	tion Level		accored at indicated tot		ot analyzed			

Page: 1A of 1C Date: 07/27/98

CONSTITUENT	(Units in ug/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	MW-018 ES-MW18 (14-16) 05/29/98 15.00	MW-021 ES-MW21 (15-17) 05/28/98 16.00	SED-02 ES SED2 (0.5) 06/12/98 0.50	TB-018 ES-TB18 (12-14) 05/28/98 13.00
Acenaphthene			84000	1000000	1000 U	4498.0	10000 U	100 U
Acenaphthylene			84000	1000000	1000 U	1000 Ú	10000 U	145.0
Anthracene			400000	1000000	1000 U	5414.0	10000 U	100 U
Benzo(a)anthrace	nə		1000	1000	1000 U	[9320.0]	10000 U	182.0
Benzo(a)pyrene			1000	1000	1000 U	[8488.0] J	10000 U	268.0 J
3,4-Benzofluorani	thene		1000	1000	1000 U	1000 U	10000 U	203.0
Benzo(k)fluoranth	юпе		1000	8400	1000 U	1000 U	10000 U	100 U
Chrysene			980	84000	1000 U	[8964.0]	10000 U	226.0
Fluoranthene			56000	1000000	1000 U	26005.0 J	10000 U	369.0 J
luorene			56000	1000000	1000 U	1272.0	10000 U	100 U
laphthalene			56000	1000000	1000 U	1000 U	10000 U	(65797.0)
henanthrene			40000	1000000	1000 U	9816.0	10000 U	203.0
Pyrana			40000	1000000	1000 U	29130.0	10000 U	529.0

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

•

.

.

[] = Greater than Action Level

Page: 1B of 1B Date: 07/27/98

(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	TB-018 ES-TB18 (12-14) 05/28/98 13.00	7.
			1	1.0 U	
			•		
				-	
	(Units in mg/kg)	(Units in mg/kg) SAMPLE ID DATE	(Units in mg/kg) SAMPLE ID GB Mobility DATE Criteria	(Units in mg/kg) SAMPLE ID GB Mobility Residential DATE Criteria Criteria DEPTH (ft) CTDEP Jan. 1996 CTDEP Jan. 1996	(Unite in mg/kg)SAMPLE ID DATEGB Mobility CriteriaResidential CriteriaES-TB18 (12-14) 05/28/98DEPTH (H)CTDEP Jan. 1996CTDEP Jan. 199613.0011.0 U

Page: 1B of 1C

Date: 07/27/98

CONSTITUENT (Units in ug/kg)	SITE SAMPLE (D DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan, 1996	Residential Criteria CTDEP Jan. 1996	TB-109 TB-109 (10-12) 07/01/98 11.00	TB-110 TB-110 (5-7) 07/01/98 6.00	TB-110 TB-110 (10-12) 07/01/98 11.00	TB-110 TB-110 (13-15) 07/01/98 14.00
Acenaphthene	- <u></u>	84000	1000000 ·	10000 U	100 U	10000 U	100 U
Acenaphthylene		84000	1000000	10000 U	100 U	10000 U	100 U
Anthracene		400000	100000	10000 U	124.0	10000 U	100 U
Benzo(a)anthracene		1000	1000	10000 U	472.0	10000 Ü	100 U
lenzo(a)pyrene		1000	1000	10000 U	498.0 U	10000 U	100 U
,4-Benzofluoranthene		1000	1000	10000 U	203.0	10000 U	100 U
lenzo(k)fluoranthene		1000	8400	10000 U	408.0	10000 U	100 U
Chrysene		980	84000	10000 U	508.0	10000 U	100 U
luoranthene		56000	1000000	10000 U	797.0	10000 U	100 U
luorène		56000	1000000	10000 U	100 U	10000 U	100 U
laphthalene		56000	1000000	10000 U	100 U	10000 U	100 U
henanthrana		40000	1000000	10000 U	414.0	10000 U	100 U
Yrene		40000	1000000	10000 U	964.0	30159.0	100 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Summary Hebbil Analytical Data AOC 7 Waste Oil AST/Oil Pump House and AOC 13 Former Wastewater Treatment Facility

Pa C of 1C

Date: 07/27/98

•

CONSTITUENT (Units in ug/kg)	SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1998	Residential Criteria CTDEP Jan. 1996	TB-111 (2-4) 07/01/98 3.00	TB-111 TB-111 (5-7) 07/01/98 6.00 ~	TB-111 TB-111 (10-12) 07/01/98 11.00
cenaphthene		84000	1000000	100 U	1000 U	4848.0
censphthylene		84000	1000000	100 U	1000 U	3898.0
nthracene		400000	1000000	100 U	1000 U	11650.0
enzo(a)anthracene		1000	1000	100 U	1000 U	[12803.0]
enzo(a)pyrene		1000	1000	100 U	1000 U	[8662.0]
4-Benzofluoranthene		1000	1000	100 U	1000 U	[7092.0]
enzo(k)fluoranthene		1000	8400	100 U	1000 U	[4063.0]
hrysene		960	84000	100 Ú	1000 U	[11907.0]
luoranthene		68000	1000000	100 U	1000 U	38611.0
luorene		56000	1000000	100 U	1000 U	7539.0 J
aphthalene		58000	1000000	100 U	1000 U	2203.0
enanthrene		40000	1000000	100 U	1249.0 U	[4461 1.0]
Yrana		40000	1000000	100 U	1000 U	36244.0

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

[] = Greater than Action Level

Page: 1A of 1C

English Station Summary of Soil Analytical Data AOC 1 Station B

.

.

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	MW-003 ES-MW3 (15-17) 06/04/98 16.00	TB-006 ES-TBB (1-7) 06/04/98 4.00.	TB-007 ES-TB7 (5) 06/04/98 5.00	TB-007A ES-TB7A {7-9} 06/04/98 8.00
ГРН			2500	500	25 U	[4397] J	489	25 U
/alues represent	total concentrations u	niess noted < = Not	t detected at indicated re	porting limit NA = N	lot analyzed			·····

Summary U. Joil Analytical Data AOC 1 Station B

Date: 07/27/98

CONSTITUENT	(Unite in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	TB-102 TB-102 (6-8) 06/30/98 7.00	TB-102 TB-102 (8-12) 06/30/98 10.00	TB-103 TB-103 (4-6) 06/30/98 5.00	TB-103 TB-103 (8-10) 06/30/98 9.00
РН			2500	500	63	68	25 U	384
						,		
•								
ilues represent	total concentrations un	niess noted <=Not	detected at indicated re	porting limit NA = N	ot enalyzed		·····	<u></u>

Par B of 1C

Page: 1A of 1B Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteris CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	CS-005 ES-CS5 (0) 06/11/98 0.00	MW-003 ES-MW3 (15-17) 06/04/98 16.00	TB-006 ES-TB6 (1-7) 06/04/98 4.00	TB-007 ES-TB7 (5) 06/04/98 5.00
'CB's				1	[15]	1.0 U	1.0 U	1.0 U
				•				

Page: 1C of 1C Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	TB-103 TB-103 (10-12) 06/30/98 11.00	
PH			2500	500	93	
				•		
•						
			detected at indicated rep			

Page: 1A of 1A Date: 07/27/98

CONSTITUENT (Units in ug/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan, 1996	Residential Criteria CTDEP Jan. 1996	MW-003 ES-MW3 (15-17) 06/04/98 16.00	TB-006 ES-TB6 (1-7) 06/04/98 4.00	TB-007 ES-TB7 (5) D6/04/98 5.00	TB-007A ES-TB7A (7-9) 06/04/98 8.00
Anthracene		400000	1000000	100 U	198.0	100 U	100 U
Benzo(a)anthracene		1000	1000	100 U	411.0	124.0	100 U
Benzo(a)pyrane		1000	1000	100 U	393.0	100 U	184.0
Benzo(k)fluoranthene		1000	8400	100 U	426.0	100 U	627.0
Chrysene		960	84000	100 U	692.0	100 U	109.0
Fluoranthene		56000	1000000	100 U	778.0	193.0	206.0
Vaphthalene		56000	1000000	100 U	156.0	100 U	100 U
henanthrene		40000	1000000	100 U	771.0	142.0	135.0
Pyrene		40000	1000000	100 U	811.0	218.0	228.0

Values represent total concentrations unless noted <=Not detected at indicated reporting limit NA=Not analyzed

.

Page: 1B of 1B Date: 07/27/98

CONSTITUENT	(Units In mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	TB-007A ES-TB7A (7-9) 06/04/98 8.00	
CB's				1	1.0 U	<u> </u>
				•		
			•			
alues represent t	otal concentrations un	less noted <= Not	detected at indicated rep		t analyzed	

•

English Station Summary of Soil Analytical Data AOC 2 Station B Underground Storage Tanks

Page: 1A of 1A Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	MW-001 ES-MW1 (5-7) 06/02/98 6.00	MW-002 ES-MW2 (13-17) 06/02/98 15.00	TB-001 ES-TB1 (7-8) 06/02/98 7.50	TB-101 TB-101 (12-14) 06/30/98 13.00
PH			2500	500	[1287]	[1212]	[7179]	25 J
				•				
					·			

Page: 1A of 1A Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	MW-003 E5-MW3 (15-17) 06/04/98 16.00	TB-006 ES-TB6 (1-7) 06/04/98 4.00	TB-007A ES-TB7A (7-9) 06/04/98 8.00
Arsenic				10	2.3	8.1	2.8
Barium				4700	9.0	29.0	44.0
Chromium					4.5	8.4	4.9
Lead				500	2.4	43.1	50.4
Mercury				20	0.02 U	0.25	0.76

Values represent total concentrations unless noted <=Not detected at indicated reporting limit NA=Not analyzed

•

English Station Summary of Soil Analytical Data AOC 3 Former Septic Systems

Page: 1A of 1A Date: 07/27/98

		SITE			TB-008A	TB-0088
CONSTITUENT	(Units in mg/kg)	SAMPLE ID	GB Mobility	Residential	ES-TB8A (1-3)	ES-TB88 (15-17)
		DATE	Criteria	Criteria	06/04/98	06/04/98
		DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	2.00	16.00
Arsenic				10	[23.1]	6.6
Barium				4700	100	28.0
Chromium				•	3.7	18.4
Lead				500	[807]	18.4
Mercury				20	0.38	0.02
Selenium				340	3.4	0.5 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed
[] = Greater than Action Level

English Station Summary of Soil Analytical Data AOC 2 Station B Underground Storage Tanks

Page: 1A of 1A Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	MW-001 ES-MW1 (5-7) 06/02/98 6.00	MW-002 ES-MW2 (13-17) 06/02/98 15.00	TB-001 ES-TB1 (7-8) 06/02/98 7.50
Arsenic				10	1.4	1.5	1.0 U
Barium				4700	73	34	22
Chromium					9.3	11.6	11.3
Lead				500	24.5	51.5	11.6
Mercury				20	0.05	0.08	0.03
Selenium				340	0.5 U	0.5 U	0.6

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

English Station Summary of Soil Analytical Data AOC 3 Former Septic Systems

Page: 1A of 1A Date: 07/27/98

CONSTITUENT	(Units in mg/l)	SITE SAMPLE 1D DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan, 1996	TB-008A ES-TB8A (1-3) 06/04/98 2.00	TB-008B ES-TB8B (15-17) 06/04/98 16.00	
ad (SPLP)			0.15	0.021	0.005 U	
				·		
						•

P=1.1A of 1C Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Crit eria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-11 ES PCB11 (1) 06/11/98 1.00	PCB-12 E8 PCB12 (1) 08/11/98 1.00	PCB-13 ES PCB13 (0.5) 06/11/98 0.50	PCB-14 ES PCB14 (1) 06/11/98 1.00
PH			2500	500	25 U	25 U	27	118
			·					
		· .						

Page: 1B of 1C Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-15 ES PCB15 (0.5) 06/11/98 0.50	PCB-16 ES PCB16 (1) 06/11/98 1.00	PCB-17 ES PCB17 (0.5) 08/11/98 0.50	PCB-18 ES PCB18 (1) 06/11/98 1.00
ГРН			2500	500	25 U	25 U	25 U	25 U
				·				
lues represent 1	total concentrations un	less noted <=Not	detected at indicated rep	orting limit NA=No	ot analyzed			
					·			

P=C of 1C

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-18 ES PCB1BA (2) 06/11/98 2.00	PCB-19 ES PCB19 (0.5) 06/11/98 0.50	PCB-19 ES PCB19A (2.6) 06/11/98 2.50
ГРН			2500	500	25 U	28	25
			•				
						•	
ilues represent	total concentrations u	niess noted <=Not	detected at indicated rep	porting limit NA=Ne	ot analyzed		

Page: 1A of 1D Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residenti ai Criteria CTDEP Jan. 1996	CS-001 ES-CS1 (0.5) 06/11/98 0.50	CS-002 ES-CS2 (0.1) 06/11/98 0.10	CS-003 ES-CS3 (0) 06/11/98 0.00	CS-004 ES CS4 (0) 06/11/98 0.00
PCB's				1	[3]	[10]	1.0 U	1.0 U
				·				

•

Page B of 1D

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Rosidential Criteria CTDEP Jan. 1996	PCB-11 ES PCB11 (1) 06/11/98 1.00	PCB-12 ES PCB12 (1) 06/11/98 1.00	PCB-13 ES PCB13 (0.5) 06/11/98 0.50	PCB-14 ES PCB14 {1) 06/11/98 1.00
PCB's		·		1	1.0 U	1.0 U	1.0 U	1.0 U
				•				
Values represent	total concentrations u	uniess noted < ⇒Not	t detected at indicated re	porting limit NA = N	lot analyzed			

•

Page: 1A of 1B

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan, 1996	MW-016 ES-MW16 (6-8) 05/29/98 7.00	MW-017D ESMW17D 26-28 06/10/98 27.00	MW-017S ES-MW17 (4-6) 05/29/98 5.00	SS-001 ES SS1S 0 06/19/98 0.00
Arsenic				10	4.6 J	8.3 J	2.7 J	1.0 U
Barium				4700	30.4	58	24.9	23
Cadmium				34	0.5 U	3.2	0.5 U	0.5 U
Chromium					18.2	72.9	5.9	9.6
.ead				500	20.8	107	22.3	27.1 J
fercury				20	0.19	0,58	0.25	0.30
ielenium				340	0.5 U	2.1	0.5 U	0.5 U
Silver				340	0.2 U	1.0	0.2 U	0.5 U 0.2 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Summar Joi Joil Analytical Data AOC 8 Oil AST's

P B of 1B

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	SS-001 E8 8S1D 0.5 06/19/98 0.50	TB-021 ES-TB21 (0-2) 05/29/98 1.00	TB-024 ES-TB24 (6-8) 05/29/98 7.00	TB-025 ES-TB25 (2-4) 05/29/98 3.00
Arsenic Barium				10	4.0	2.4 J	1.0 UJ	1.9 J
Cadmium				4700	71	34.1	11.1	28.1
			•	34 ·	0.6	0.5 U	0.5 U	0.5 U
hromium					25.1	10.2	0.5 U	5.2
ead				500	185 J	18.2	6.1	43.4
lercury				20	0.18	0.13	0.02 U	0.14
elenium				340	0.5 U	0.5 U	0.5 U	0.5 U
ilver				340	0.2 U	0.2 U	0.2 U	0.2 U

.

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

English Station Summary of Soil Analytical Data AOC 6 Capacitor Release

Page: 1C of 1D Date: 07/27/98

CONSTITUENT	(Unite in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-15 ES PCB15 (0.5) 06/11/98 0.50	PCB-16 ES PC816 (1) 06/11/98 1.00	PCB-17 ES PCB17 (D.5) 06/11/98 0.50	PCB-18 ES PCB18 (1) 06/11/98 1.00
'CB's				_1	1.0 U	1.0 U	[2]	1.0 U

Parallel D of 1D

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-18 ES PCB18A (2) 06/11/98 2.00	PCB-19 ES PCB19 (0.5) 08/11/98 0.50	PCB-19 ES PCB19A (2.5) 06/11/98 2.50
CB' s				1	1.0 U	1.0 U	1.0 U
lues represent	total concentrations u	nless noted < = Not	detected at indicated re	porting limit NA = N	lot analyzed		····

Page: 1B of 1B Date: 07/27/98

CONSTITUENT	(Units in mg/l)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	TB-021 ES-TB21 (0-2) 05/29/98 1.00	TB-024 ES-TB24 (6-8) 05/29/98 7.00	TB-025 ES-TB25 (2-4) 05/29/98 3.00
Lead (SPLP)			0.15	0.005 U	0.005 U	0.007
Selenium (SPLP)			0.5	0.01 U	0.01 U	0.01 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page: 1A of 1B Date: 07/27/98

CONSTITUENT	{Units in mg/l}	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	MW-016 ES-MW16 (6-8) 05/29/98 7.00	MW-017D ESMW17D 26-28 06/10/98 27.00	MW-017S E6-MW17 (4-6) 05/29/98 5.00	SS-001 ES 8815 0 06/19/98 0.00	SS-001 ES 651D 0.5 06/19/98 0.50
Lead (SPLP) Selenium (SPLP)			0.15 0.5	0.005 U 0.01. U	0.005 U 0.02	0.005 U 0.01 U	0.005 U 0.005 U	0.068 J 0.005 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

•

Page: 1B of 1B

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	SS-001 ES SS1D 0.5 06/19/98 0.50	TB-021 ES-TB21 (0-2) 05/29/98 1.00	TB-024 ES-TB24 (6-8) 05/29/98 7.00	TB-025 ES-TB25 (2-4) 05/29/98 3.00
PCB's				1	[14]	1.0 U	1.0 U	1.0 U ⁻
				·				

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA = Not analyzed
[] = Greater than Action Level

.

.

•

.

Page: 1A of 1B Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE (D DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	MW-018 ES-MW16 (6-8) 05/29/98 7.00	MW-017D ESMW17D 26-28 06/10/98 27.00	MW-0178 ES-MW17 (4-6) 05/29/98 5.00	SS-001 ES SS1S 0 06/19/98 0.00
°CB's				1	1.0 U	1.0 U	1.0 U	[1]
				·				
		٠						
		•						

Page: 1A of 1E Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	CS-006 ES C56 0 06/19/98 0.00	PC8-01 Es PC81 (1) 06/11/98 1.00	PCB-02 ES PCB2 {1,5} 06/11/98 1.50	PC8-03 ES PCB3 (0.2) 06/11/98 0.20
PCB's				1	1.0 U	[440]	[2300]	1.0 U
	·							
							·	
						•		
alues represent = Greater than /	total concentrations u	inless noted <=Not	detected at indicated re	porting limit NA=N	ot analyzed	<u> </u>		

• • •

Page: 1E of 1E Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	TB-115 TB-115 (5-7) 07/01/98 6.00	
Ч			2500	500	25 U	
				•		
Jes represent 1	total concentrations un	less noted <= Not	detected at indicated rep			

•

Page: 1D of 1E Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-32 PCB-32 07/07/98 0.00	PCB-33 PCB-33 07/07/98 0.00	PCB-34 PCB-34 07/07/98 0.00	PCB-35 PCB-35 07/07/98 0.00
PH			2500	500	120	25 U	25 U	41
								·
			detected at indicated re		····		· · · · · · · · · · · · · · · · · · ·	

•

.

Page: 1C of 1E Date: 07/27/98

CONSTITUENT (Units in m	SITE Ig/kg) SAMPLE ID DATE DEPTH (ft)	GB Mobility Crit oria CTDEP Jan. 1996	Rosidential Criteria CTDEP Jan. 1996	PCB-10 Es PCB10 {0.5} 06/11/98 0.50	PCB-20 ES PCB20 0.7 06/18/98 0.70	PCB-21 ESPCB21 0.5 06/18/98 0.50	PCB-31 PCB-31 07/07/98 0.00
РН		2500	500	25 U	25 UJ	25 UJ	382
		•					
lues represent total concer	ntrations unless noted <=No	ot detected at indicated re	porting limit NA=N	lot analyzed			

Page: 1B of 1E

Date: 07/27/98

.

	Units in mg/kg}	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-06 ES PCB6 (0.2) 06/11/98 0.20	PCB-07 ES PCB7 (0.5) 06/11/98 0.50	PCB-08 ES PCB8 (0.8) 06/1 1/98 0.80	PCB-09 ES PCB9 (0.8) 06/11/98 0.80
PH			2500	500	[9091]	[600]	33	32
						•		
ues represent tot: Greater than Act	al concentrations un	less noted <=Not	detected at indicated rep	porting limit NA = N	ot analyzed		····	

Page: 1A of 1E Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-02 ES PCB2 (1.5) 06/11/98 1.50	PCB-03 ES PCB3 (0.2) 06/11/98 0.20	PCB-04 ES PCB4 (0.2) 06/11/98 0.20	PCB-05 ES PCB5 (0.5) 06/11/98 0.50
трн			2500	500	58	[9203]	[11235]	165
Values represent		nless noted <=Not	detected at indicated re	porting limit NA =	lot analyzed			

Page: 1D of 1D

.

Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	TB-113 TB-113 (8-12) 07/01/98 10.00	TB-114 TB-114 (4-6) 07/01/98 6.00	TB-114 TB-114 (6-8) 07/01/98 7.00	TB-114 TB-114 (10-12) 07/01/98 11.00
PH			2500	500	25 U	26 U	204	25 U
lues represent	total concentrations u	nless noted <=No	detected at indicated re	porting limit NA = N	lot analyzed			······

Page: 1C of 1D Date: 07/27/98

		CTDEP Jan. 1996	Criteria CTDEP Jan. 1996	TB-112 (0-2) 07/01/98 1.00	TB-112 (4-6) 07/01/98 5.00	TB-112 (12-14) 07/01/98 13.00	TB-1 13 (4-6) 07/01/98 5.00
		2500	500	[5734]	124	428	136
			•				
tal concentrations unit	ess noted <≂Not d	etected at indicated rep	porting limit NA=No	ot analyzed			
	tal concentrations uni tion Level	tal concentrations unless noted <=Not d tion Level					

.

Page: 1B of 1D Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	SS-001 ES SS1D 0.5 06/19/98 0.50	TB-021 ES-TB21 (0-2) 05/29/98 1.00	TB-024 ES-TB24 (6-B) 05/29/98 7.00	TB-025 ES-TB25 (2-4) 05/29/98 3.00
ТРН			2500	500	(1008) J	[1947]	87	[869]
				•				
			,					
				·				
/alues represent] = Greater than .	total concentrations u Action Level	inless noted <=Not	detected at indicated re	porting limit NA=N	lot analyzed			

-

Page: 1A of 1D Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	MW-016 ES-MW16 (6-8) 05/29/98 7.00	MW-017D ESMW17D 26-28 06/10/98 27.00	MW-017S ES-MW17 (4-6) 05/29/98 5.00	SS-001 ES SS15 0 06/19/98 0.00
PH			2500	500	30	270	(1851) J	[35520] J
				·				

Page: 1D of 1D Date: 07/27/98

CONSTITUENT (Units in ug/kg)	SITE SAMPLE ID GB Mobility		TB-114 Residential TB-114 (6-8)		TB-114 TB-114 (10-12)
	DATE	Criteria	Criteria	07/01/98	07/01/98
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	7.00	11.00
Acenaphthene		84000	1000000	100 U	100 U
Acènaphthylene		84000	1000000	100 U	100 U
Anthracene		400000	1000000	100 U	100 U
Benzo(a)anthracene		1000	1000	100 U	100 U
Benzo(a)pyrene		1000	1000	100 U	100 U
3,4-Benzofkuoranthane		1000	1000	100 U	100 U
Benzo(k)fluoranthene		1000	8400	100 U	100 U
Chrysene		960	84000	100 U	100 Ú
Fluoranthene		58000	1000000	100 U	100 U
Fluorene		58000	1000000	100 U	100 U
Naphthalene		56000	1000000	100 U	100 U
Phenanthrene		40000	1000000	100 U	100 Ú
Pyrene		40000	100000	100 U	100 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

Page: 1C of 1D Date: 07/27/98

CONSTITUENT (Units in ug/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Rosidential Criteria CTDEP Jan. 1996	TB-112 TB-112 (12-14) 07/01/98 13.00	TB-113 TB-113 (4-6) 07/01/98 5.00	TB-113 TB-113 (8-12) 07/01/98 10.00	TB-114 TB-114 (4-6) 07/01/98 5.00
Acenaphthene		84000	1000000	100 U	1000 U	100 U	100 U
Aconaphthylene		84000	1000000	100 U	1000 U	100 U	100 U
Anthracene		400000	1000000	100 U	1000 U	100 U	100 U
Benzo(a) anthracene		1000	1000	100 U	[1028.0]	100 U	100 U
Senzo(a)pyrene		1000	1000	100 U	[1838.0]	100 U	100 U
3,4-Benzofluoranthene		1000	1000	100 U	[1315.0]	100 U	100 U
Benzo(k)fluoranthene		1000	8400	100 U	1000 U	100 U	100 U
Chrysene		960	84000	100 U	1000 U	100 U	100 U
fluoranthene		56000	1000000	100 U	1708.0	100 U	100 U
luorene		56000	1000000	100 U	1000 U	100 U	100 U
laphthalene		56000	1000000	100 U	1000 U	100 U	100 U
henanthrene		40000	1000000	193.0	1000 U	100 U	100 U
Yrene		40000	1000000	113.0	2412.0	100 U	100 U

.

⁻.

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

[] = Greater than Action Level

Page: 1B of 1D

Date: 07/27/98

CONSTITUENT (Units in ug/kg)	SITE	GB Mobility	-	SS-001 ES SS1D 0.5 08/19/98 0.50	TB-021 ES-TB21 (0-2) 05/29/98 1.00	TB-024	TB-025 ES-TB25 (2-4) 05/29/98 3.00
	SAMPLE ID		Residential			ES-TB24 (6-8)	
	DATE	Criteria	Criteria			05/29/98	
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996			7.00	
Acenaphthene		84000	1000000	100 U	10000 U	100 U	10000 U
Acenaphthylene		84000	1000000	100 U	10000 U	100 U	10000 U
Anthracene		400000	1000000	100 U	10000 U	156.0	10000 U
Benzo(a)anthracene		1000	1000	105.0	10000 U	286.0	10000 U
Benzo(a)pyrene		1000	1000	100 U	10000 U	100 U	10000 U
3,4-Benzofluoranthene		1000	1000	100 U	10000 U	100 U	10000 U
Benzo(k)fluoranthene		1000	8400	100 U	10000 U	100 U	10000 U
Chrysene		980	84000	120.0	10000 U	287.0	10000 U
luoranthene		58000	1000000	326.0	10000 U	543.0 J	10000 U
Huarene		56000	1000000	100 U	10000 U	100 U	10000 U
Vaphthalane		56000	1000000	100 U	10000 U	134.0	10000 U
henanthrene		40000	1000000	193.0	10000 U	585.0	10000 U
2yrane		40000	1000000	250.0	10000 U	468.0	10000 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

_6

Page: 1A of 1D Date: 07/27/98

CONSTITUENT (Units in ug/kg)	SITE SAMPLE ID DATE	GB Mobility Criteria	Residential Criteria	MW-016 ES-MW16 (6-8) 05/29/98	MW-017D ESMW17D 26-28 06/10/98	MW-017S ES-MW17 (4-6) 05/29/98	SS-001 ES SS15 0
	DEPTH (ft)	CTDEP Jan. 1996	CTDEP Jan. 1996	7.00	27.00	5.00	06/19/98 0.00
Acenaphthene		84000	1000000	50748.0 J	100 U	10000 U	100 U
Acanaphthylene		84000	1000000	21676.0	100 U	10000 U	100 U
Anthracene		400000	1000000	100208.0	100 U	10000 U	100 U
lenzo(a)anthracene		1000	1000	[150051.0]	100 U	10000 U	100 U
lanzo(a)pyrene		1000	1000	[121791.0] J	100 UJ	10000 U	100 U
,4-Benzofluoranthene		1000	1000	[76163.0]	100 U	10000 U	100 U
enzo(k)fluoranthene		1000	8400	[47403.0]	100 U	10000 U	100 U
Chrysene .		960	84000	[151896.0]	100 U	10000 U	100 U
luoranthene Juorene		58000 58000	1000000 1000000	[257812.0] J 36119.0	100 U 100 U	10000 U	100 U
laphthalene		56000	1000000	10000 U	100 U	10000 U	100 U
henanthrene		40000	1000000	[280]91.0]	100 U	10000 U	100 U
yrene		40000	1000000	[308657.0]	100 U	10000 U 10000 U	100 U 100 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

[]=Greater than Action Level

Page: 1C of 1E Date: 07/27/98

CONSTITUENT	(Unite in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-08 ES PCB8 (0.8) 06/11/98 0.80	PCB-09 ES PCB9 (0.8) 06/11/98 0.80	PCB-10 E\$ PCB10 (0.5) 06/11/98 0.50	PCB-20 ES PCB20 0.7 06/18/98 0.70
PCB's				1	1.0 U	[1]	1.0 U	1.0 U
alues represent = Greater than /	total concentrations ur	nless noted < = Not	detected at indicated re	porting limit NA=N	lot analyzed			

.

.

Page: 1B of 1E Date: 07/27/98

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Rosidential Criteria CTDEP Jan. 1996	PCB-04 ES PCB4 (0.2) 06/11/98 0.20	PCB-05 ES PCB5 (0.5) 06/11/98 0.50	PCB-06 ES PCB6 (0.2) 06/11/98 0.20	PCB-07 ES PCB7 (0.5) 06/11/98 0.50
CB's				1	1.0 U	1.0 U	[4]	1.0 U
						•		
		• • • • • • • • • • • •	detected at indicated rep					

Page: 1D of 1E Date: 07/27/98

SITE . PCB-21 PCB-31 PCB-32 PCB-33 CONSTITUENT (Units in mg/kg) GB Mobility SAMPLE ID Residential ESPCB21 0.5 PCB-31 PCB-32 PCB-33 DATE Criteria Criteria 06/18/98 07/07/98 07/07/98 07/07/98 DEPTH (ft) CTDEP Jan, 1996 CTDEP Jan. 1996 0.50 0.00 0.00 0.00 PCB's 1 1.0 U [94] [53] 1.0 U

Values represent total concentrations unless noted <= Not detected at indicated reporting limit NA=Not analyzed

.

[] = Greater than Action Level

Summary of Soil Analytical Data AOC 9 Transformers

Page of 1E

Date: 07/27/98

.

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1996	Residential Criteria CTDEP Jan. 1996	PCB-34 PCB-34 07/07/98 0.00	PCB-35 PCB-35 07/07/98 0.00	TB-115 TB-115 (5-7) 07/01/98 8.00	TB-116 TB-116 (5-7) 07/01/98 6.00
PCB's				1	1.0 U	1.0 U	1.0 U	1.0 U
				•				
		•						
							•	·

Summary of Soil Analytical Data AOC 10 Former Interior Chemical Storage Areas

Page: A of 1B Date: 07/27/98

CONSTITUENT (Units in ug/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GB Mobility Criteria CTDEP Jan. 1998	Rosidential Criteria CTDEP Jan. 1996	MW-012 ES-MW12 (2-4) 06/01/98 3.00	MW-013 ES-MW13 (13-15) 06/01/98 14.00	MW-014D ES MW14D(26-28) 06/11/98 27.00	MW-0145 ES-MW14 (1-3) 06/01/98 2.00
Acenaphthens Acenaphthylens		84000	1000000	100 U	100 U	218.0	100 U
Anthracene		84000	1000000	100 U	100 U	128.0	100 U
		400000	1000000	100 U	100 U	562.0	100 U
Senzo(a)anthracene		1000	1000	100 U	100 U	[1023.0]	260.0
Benzo(a)pyrene		1000	1000	100 U	100 U	561.0	312.0
3,4-Benzofluoranthene		1000	1000	100 U	100 U	550.0	100 U
Benzo(g,h,i)perylene		42000	2033000	500 U	500 U	1081.0	500 U
lenzo(k)fluoranthene		1000	8400	100 U	100 Ù	550.0	100 U
Chrysene		960	84000	100 U	100 U	721.0	297.0
luoranthene		56000	1000000	100 U	115.0	1417.0	573.0
luorene		56000	1000000	100 U	100 U	239.0	100 U
läphthalene		56000	1000000	100 U	100 U	178.0	100 U
hananthrana		40000	1000000	100 U	100 U	1200.0	295.0
³ yréna		40000	1000000	100 U	121.0	2205.0	534.0

Values represent total concentrations unless noted <=Not detected at indicated reporting limit NA=Not enalyzed

[] = Greater than Action Level

Г